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1 Context

Given a finite set of m examples z1, ..., 2y, and a strictly convex differen-
tiable loss function £(z,0) defined on a parameter vector § € R?, we are
interested in minimizing the cost function

1 m
min C(0) = — l(z;,0).
0 ( ) m Z (Z’lu )
=1
One way to perform such a minimization is to use a stochastic gradient al-
gorithm. Starting from some initial value #[1], iteration ¢ consists in picking
an example z[t] and applying the stochastic gradient update
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where the sequence of positive scalars 1, satisfies the well known Robbins-

Monro conditions >, 7 = 0o and Y., 77 < co. We consider three ways to
pick the example z[t] at each iteration:

01t + 1] = 0[t] 0(z[t], 0]t]),

e Random Examples are drawn uniformly from the training set at each
iteration.

e (ycle Examples are picked sequentially from the randomly shuffled
training set, that is, z[km +t] = Zo(t), Where o is a random permuta-
tion of {1,...,m}, and k is a nonnegative integer, and ¢t € {1,...,m}.

e Shuffle Examples are still picked sequentially but the training set is
shuffled before each pass, that is, z[km +t] = z,, (t)» Where the oy, are
random permutations of {1,...,m}, and k is a nonnegative integer,
and t € {1,...,m}.



With suitable assumptions on the function ¢, the random case can be
treated with well known stochastic approximation results [1, 5]. With gains
of the form 7y = ¢/(t + t0) and sufficiently large values of the constant c,
one obtains results such as

E |[C(Ol) ~minC(©)| ~ -,

where the expectation is taken over the random choice of examples at each
iteration. Various theoretical works [2, 3, 6] indicate that no choice of 7,
can lead to faster convergence rates than ¢t~

2 Experiments

We report now empirical results obtained with the three method.

The task is the classification of RCV1 documents belonging to class
CCAT [4]. Each of the 781,265 examples is a pair composed of a 47,152
dimensional vector x; representing a document and a variable y; = +1 rep-
resenting its appartenance to the class CCAT. The parameter vector 6 is
also a 47,152 dimensional vector and the loss function is

l(z,y,0) =log (1 + efy(a'x)) .

All experiments were achieved using a variant of the svmsgd2 program and
datasets.! The only modification consists in implementing our three schemes
for selecting examples at each iteration.

Figure 1 shows log-log plots of the evolution of C(f[t]) as a function of
the number of iterations. The slope of the curve indicates the exponent of
the convergence of the algorithm.

e The random case displays a t ! convergence as predicted by the stochas-
tic approximation theory.

e The cycle case displays a t~% convergence with « significantly greater
than one. This means that this example selection strategy leads to a
faster convergence. The exact value of a changes when we consider
different permutations of the examples.

e The shuffle case displays a more chaotic convergence. A linear inter-
polation of the curve leads to an exponent « that is curiously close to

http://leon.bottou.org/projects/sgd.
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two, suggesting that we have an average t~2 convergence. This result
is stable when we repeat the experiment with different permutations
of the training set.

The Question

In light of the theoretical works associated with stochastic approximations,
stochastic algorithms that converge faster than t~! are very surprising.

In fact, the stochastic approximation results rely on randomness assump-

tion on the successive choice of examples are independent. Both the cycle
and the shuffle break these assumptions but provide a more even coverage
of the training set.

What can we prove for the cycle and the shuffle cases?
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Figure 1: Evolution of C(6[t]) for our three example selection strategies. The
horizontal axe counts the number of epoch. One epoch represents 781,265
iterations, that is, one pass over the training set.



