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ABSTRACT

Time Delay Neural Network (TDNN) is a technique, derived from MLP, which performs a time invariant

processing in its lowest layers. This time invariant processing may be extracted from the network, in order
- to code the speech for an other classifier such as Dynamic Time Warping (DTW). The resulting hybrid

system shows improved performances, with respect to both techniques used in isolation.

This paper describes this technique, gives results on a multi-speaker, isolated word recognition task, and

discusses its advantages.

RESUME

Le réseau neuronnal & délai (TDNN), est une technique dérivée du perceptron multicouché (MLP), qui
effectue un traitement invariant dans le temps dans ses couches inférieures. Ce traitement invariant peut
&tre extrait du réseau, afin de coder la parole pour un autre classifieur comme I'alignement temporel par
programmation dynamique (DTW). Le systéme hybride résultant se montre plus performant que les deux

techniques utilisées isolément.

Cet article décrit cette technique, donne des résultats pour un probléme de reconnaissance multi-locuteurs

de mots isolés, et commente ses avantages.
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TDNN-Extracted Features
1 Principle

Neural networks are now well known as powerful learning tools in a variety of tasks related to automatic
speech recognition problems, where they have achieved encouraging results (Bridle, 1984) (Prager, 1986)
(Kohonen, 1988) (Watrous,1987) (Bourlard,1988).

However, speech recognition is a difficult task. Problems such as speaker independence, continuous speech,
noisy environment, vocabulary size, signal variability, coarticulation effect, etc... remain partly
unsolved. All the existing methods successfully overcome some of the difficulties but fail solving the
others. Our aim here was to compare neural networks, and more precisely Multi-Layer Perceptrons (MLPs),
to classical methods on a widely studied and well mastered task for today’s speech recognition systems.

The first MLPs developed for speech recognition tasks were fully connected, with usually one hidden
layer. Such networks have performed correctly on various small sized problems: (Elman, 1987)
(Lippmann, 1987) (Lubensky, 1988). However, on real sized data, those architectures are very inefficient.
The number of training examples is too small to succeed in specifying the whole set of parameters in the
network. As a consequence, generalization is relatively poor, unless a large enough set of examples has

been available for training. But in that case, learning would take very long,.

One way to reduce the complexity of the network is to use local connections, i.e. local fields. Hidden units
are thus assigned local interest tasks, i.e. feature extraction. Since we cannot ensure very precise time
alignment of the signal, and since also the speech signal can be significantly stretched in time without
altering its meaning, we would like to design time invariant feature extractors. This led to the idea of
building networks with position-independent local fields or so-called time-delay neural networks or
TDNN (Waibel, 1987) (Lang, 1988), described in figure 1.
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However part of the problem remains. The feature extractors have a reduced set of parameters, but after
them comes the classifier of the TDNN, which is made of fully connected layers. This classifier has no
specific ability to deal with the temporal dimension, and contains a considerable set of parameters
(independent weights), which requires a huge database for proper training.
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Actually, using fully connected layers as classifier is not required: various classifiers may be used on the
extracted features as well, after the network is trained. General classifiers with reduced sets of
parameters (such as LVQ) could be tried, but it also sounds interesting to use specific classifiers (such as
DTW, HMMs or recurrent networks), to take into account the temporal dimension.
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We propose in this paper a validation of the concept of feature extraction on an Isolated Word Recognition
(IWR) Task. We describe a first experiment of IWR recognition with simple TDNNs. Vector quantization
on extracted features is explored in the third section. A second, larger experiment of IWR is described in
the fourth part.' The fifth section contains results of Dynamic Time Warping (DTW) applied to extracted

features.

2 First IWR experiment with TDNN (IWR1)
2.1 Database and preprocessing

A speech data base, in French, has been elaborated at LIMSI. In the experiment reported in §2, we have
only used part of the data base, namely the utterances of the 10 digits by 26 speakers, male (40%) and
female. Each of the speaker pronounced each digit once.

The signal has been processed in the following way, classically used at LIMSI (Gauvain, 1986). The
speech signal, from the microphone in a quiet room, has been filtered at 5 KHz through a low-pass filter,
then sampled at 10 KHz with a 12 bits A/D converter. High frequency amplitudes are increased at 6 dB
per octave. A DFT is applied on successive 25.6 ms time frames, overlapping by 12.8 ms. Thus 128 energy
spectra values are generated in the 0-5 K Hz frequency domain. A Bark scaled 16-channels filterbank is
then simulated by averaging on triangular frequency windows. The energy spectra are then log-
compressed.

This processing thus results in coding the speech signal into sixteen eight bits values per 12.8 ms time
frame. The digits, in French, are all monosyllabic words, except "zéro". The ten digits used in this
experiment lasted between 15 and 61 time frames.

We defined a 16 speakers learning set, both male and female The remaining ten speakers were used as a

test set. Speakers were assigned to the two sets using alphabetical order, thus independently of any
phonetical clue.

2.2 Experiment

In a preliminary experiment, we trained the network without randomly shifting the training data in the

input window. We easily got a perfect recognition of the training set, and a peak 95% performance on the
test set.
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Unfortunately, although the hidden layers of our network are designed for shift invariance, the last .
weight layer is not. We threfore tested the previous weight configuration on the same patterns that were
used for training, this time randomly shifting them. When the test utterances were randomly shifted in
the 0 to 51ms range, the performance sank to 89%. With even more shifted data, in the 0 to 102ms range,
the network achieved a poor 70% performance.

In order to get a real shift invariance capacity, we then decided to train the network with the randomly .
shifted data described above (shifted by 0 to 128ms). Moreover, such a random shift simulates a poor
word segmentation, and is in fact much closer to real speech tasks than perfectly aligned test and training
data.

The best run produced a network able to correctly classify 99.21% of the training patterns and 99% of the
test patterns (i.e. 1 only unrecognized utterance out of the 100 test utterances ). Unfortunately, this speech
database is clearly too small for statistically validating such performances. A LIMSI dynamic time

warping system has been ran on the same data, and also achieved one error only.

Further experiments were achieved, aiming at improving the statistical significance of these results, and
also at getting a better knowledge of the connectionist IWR behaviour. We decided to lower the
performances by using less speakers for training, and also to use four training and test set within our single
small digits database.

Reduging-the number of training speakers to 10 strongly degrades the network performance. The network

achieved 4.8% errors over 640 test patterns.
(4

Comparisons have been made with the DTW developped at the LIMSI. This system achieved 1.9% errors
only on the same data sets, thus showing a better ability to learn with less training data.

Analysis of the feature extraction performed by the network are provided in §3.



3 Vector quantization on extracted feature

We have used the IWR network described in §2, trained with 16 speakers on the french digit problem
(IWR1). In order to test the feature extraction ability in our network, we have studied the activities of
the last hidden layer cells: there are 6x8 such cells, whose activities can be viewed as é-vectors in an 8-
dimension space. Each of these vectors represents an encoding of the signal over about 100 milliseconds.
They are analyzed through a k-means clustering technique. The result is a description of each digit as a
sequence of labels. We reproduce below (figure 7) the encoding found for some digits, uttered by four
different speakers, using this clustering technique, with eight reference vectors.

00 UN 1 1 4 8 8 8 10 DEUX 7 2 2 8 8 8
100 UN 3 1 4 8 8 8 110 DEUX 7 2 2 8 8 8
200 UN 1 1 4 8 8 8 210 DEUX 7 2 2 8 8 8
300 UN 1 1 4 8 8 8 310 DEUX 7 2 2 8 8 8
400 UN 3 1 4 8 8 8 410 DEUX 7 5 5 2 8 8
500 UN 1 1 4 8 8 8 510 DEUX 7 2 2 8 8 8
600 UN 1 1 4 8 8 8 610 DEUX 7 7 2 2 8 8
700 UN 3 1 1 4 8 8 710 DEUX 7 2 2 2 8 8
800 UN 1 1 4 8 8 8 810 DEUX 7 5 5 8 8 8
900 UN 1 1 4 8 8 8 910 DEUX 7 2 2 8 8 8

20 TROIS 7 3 4 4 8 8 30 QUATRE 2 1 4 4 8 8
120 TROIS 8 3 3 4 8 8 130 QUATRE 7 4 4 4 8 8B
220 TROIS 3 3 4 8 8 8 230 QUATRE 71 4 4 8 8
320 TROIS 7 3 3 4 8 8 330 QUATRE 7 1 4 4 8 8
420 TROIS 7 3 4 8 8 8 430 QUATRE 7 1 4 8 8 8
520 TROIS 7 3 3 8 8 8 530 QUATRE 2 4 4 8 8B 8
620 TROIS 3 3 3 4 8 8 630 QUATRE 7 1 4 4 4 4
720 TROIS 8 3 3 4 8 8 730 QUATRE 7 4 4 4 4 8
820 TROIS 3 3 4 8 8 8 830 QUATRE 7 1 4 4 8B 8
920 TROIS 3 3 4 8 8 8 930 QUATRE 7 1 4 4 8 8

40 CINQ 6 3 2 8 6 8 50 SIX 6 6 6 6 6 8
140 CINQ 6 7 1 7 6 8 150 SIX 6 5 6 8 8 8
240 CINQ 6 8 1 2 6 8 250 SIX 6 6 6 6 6 8
340 CINQ 6 7 1 1 8 8 350 SIX 6 6 6 6 6 6
440 CINQ 6 7 1 2 6 8 450 SIX 6 6 6 6 6 8
540 CINQ 6 3 2 8 8 8 550 SIX 6 5 6 8 8 8
640 CINQ 6 6 1 2 7 8 650 SIX 6 6 6 6 6 6
740 CINQ 6 3 1 8 7 8 750 SIX 6 6 6 6 3 4
840 CINQ 6 12 8 6 8 850 SIX 6 6 6 6 6 8
940 CINQ 6 3 1 8 6 8 950 SIX 6 6 5 6 6 8

60 SEPT 6 7 7 8 8 8 70 HUIT 5 6 4 8 8 8
i60 SEPT 6 7 2 8 8 8 170 HUIT 5 6 4 8 8 8
260 SEPT 6 7 2 8 6 8 270 HUIT 5 6 4 8 8 8
360 SEPT 6 7 2 8 8 8 370 HUIT 5 5 6 8 6 8
460 SEPT 6 7 2 8 8 8 470 HUIT 7 5 6 8 8 8
560 SEPT 6 2 4 8 B 8 570 HUIT 5 5 4 & 8 8
660 SEPT 6 7 2 8 8 8 670 HUIT 5 5 5 8 6 8
760 SEPT 6 6 7 8 3 4 770 HUIT 5 5 8 3 8 8
860 , SEPT 6 6 2 7 8 8 870 HUIT 5 6 4 8 6 8
960 SEPT 6 7 2 8 6 8 970 HUIT 5 5 4 8 8 8



80 NEUF 7 2 1 8 8 8 90 ZERO 5 2 3 8 8 8
180 NEUF 2 1 6 8 8 8 190 ZERO 5 2 3 3 8 8
280 NEUF 7 2 2 8B 8 8 290 ZERO 6 5 3 8 8 8
380 NEUF 2 1 6 8 8 8 390 ZERO 7 2 3 3 3 8
480 NEUF 5 1 4 8 8 8 490 ZERO 7 5 2 3 8 8
580 NEUF 5 2 1 8 8 8 590 ZERO 7 5 2 3 8 8
680 NEUF 5 1 2 6 6 8 690 ZERO 7 5 2 3 3 8
780  NEUF 5 1 6 8 3 8 790 ZERO 5 2 3 3 8 8
880 NEUF 5 2 2 6 6 8 890 ZERO 7 5 2 3 3 8
980 NEUF 2 1 4 B8 8 8 990 ZERO 7 2 2 3 8 8

In figure 7, each line contains the number of the utterance, the corresponding french digit, and the signal
encoding, after a K-means into 8 clusters. The eighth cluster is clearly the prototype of the code for
silence. Further work is needed to get more precise codings: mask sizes probably have to be redefined.

Notice that the validity of the coding can be tested by the performances of the net: we know that these
informations are sufficient for providing a good digit identification, comparable to our IWR network

performance . The basic system for using a network for obtaining a codebook is represented in figure 8:
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However, many questions remain to be solved:

- What is the loss of performance implied by the Vector Quantization step ?

- What are the effects of various preprocessing techniques on the quality of the encoding ?
- How could such a system be extended to a larger database ?

This first experiment shows that some interesting features are extracted from the network. These features
give reasonable results when passed through a vector quantization algorithm, and could be used by any
algorithm needing a codebook (HMMs).

: ¥

The major critics which can be made about this experiment is the weak amount of data used: are the
results reliable? Part 4 proposes a larger experiment with TDNNSs on a larger database. Part 5 describes an
" experiment on the direct use of extracted features (without vector quantization) as input to a DTW..



4 Second experiment of IWR by TDNNs (IWR2)

A common database in English, German, French, Italian and Spanish was developed in Pygmalion,
ESPRIT project nb 2059. Each is composed of thirty words (ten digits and twenty command words),
pronounced ten times by each of ten speakers in an office environment.

A demonstrator of IWR and low-level speech processing was designed on the French database. The signal
processing used was the same as described in §2.1.

Using the same network architecture as in §2.2 appears difficult, because the classification task on the
top of the TDNN is performed by a simple linear classifier, whereas the database of Pygmalion has 30
classes, which should require a more complex classifier. Furthermore the number of degrees of freedom
(independant weights) will increase, which should require a huge database for significant training.

Consequently, various TDNN were trained.The best network for this task was found to have the following

architecture:
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i.e, namely: input layer (IL), first mask layer (ML1), second mask layer (ML2), first global layer, (GL), -
output layer (OL).

The first mask connects one frame of ML1 to three frames of IL. The shift is 2 frames of IL for one frame of
ML1. The second mask connects one frame of ML2 to seven frames of ML1. The shift is f'ive frames of ML1
for one frame of ML2. The biases are free, i.e. they are not shared: the filters produced by the networks are

not fully shift-invariant.

The network performs 99.5% on the training database, and 96.5% on the test database.



As previously said, various architecture were tested. The following misbehaviour can be reported: networks wit
one fully connected layer performed 1 or 2% worse; networks with shorter masks performed 2% or 5% worse; net
with more compact codings (output of each mask) performed 2% worse. Some explanations can be propose
classification task between thirty classes is too complex to be easily done by a single-layer (almost linear) cla:
the masks perform better if they analyse a temporal window slightly larger than a phoneme.

Here are the overall characteristics of the selected network:

Layer Cells Connections Weights Biases
Input 95*16 | 1520

18048 384 376
Mask 1 47*08 376

12600 1400 225
Mask 2 09*25 |225

6750 6750 30
Global 1 30

900 900 30
Output (Global 2) 30
Total 2181 38298 9434 661

E & ol teristics of t1 ot

Mask layers collect most connections, although these connections imply a reasonable amount of weights.

Oppositly, the two global layers collect not so many connections, but these connections imply a
considerable number of weights, which require a large database for significant training. Furthermore,
fully-connected classifiers have no special ability to deal with the temporal dimension. An

unappropriate classifier with too many degrees of freedom in respect to the size of the database.

In order to improve the system, more fitting classifier should process the speech encoding obtained from
mask layer 2. Such an experiment is described in §5.

5 Use of DTW on extracted features

Feature extraction has been defined in §1 and explored through VQ in §4. It looks attractive, since it
provides an intelligent filtering of the data. Figure 7 suggests that DTW should give good results when
used on extracted features. Part 5 applies this idea on the Pygmalion database, already described in §4,
aiming at validating the usefulness of the feature extraction (and, incidentaly, overcoming the problems

raised in §2 and §4 concerning the fully connected layers performing the classification in TDNNSs).
3

We trained several TDNNSs on the IWR problem, and used their code in a simple DTW according to the
principle described in §1 (Figure 3), thus obtaining as many hybrid systems as trained TDNNs.
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The best hybrid system (Figure 9) obtained performed a 98.5% recognition rate on the test database, to
compare with 96.5% obtained with the best isolated TDNN. It is an important improvement, since the
failure rate was divided by two or three.

It validates the usefulness of feature extraction. Actually many other algorithms could be used as
classifiers, including more sophisticated DTWs. ‘

It must be noticed that feature extraction is not performed the same way by different TDNNs. The best
TDNN for IWR does not provide the best code for DTW, although it can be thought that the extracted
features are at least as much complete in the best TDNN for IWR as in the best TDNN for DTW. The same
architecture for feature extractors may lead to codings with different properties, or looking not the same

way, due to the differences between the classifiers used on the top of the network during the training
phase.

The advantages of this technique are numerous:
- improved recognition rate with respect to both tecniques
- possibilities of continuous-speech recognition (which can not be done by TDNNs)
- computation time reduction for DTW due to the compaction of data

Several potential advantages should be explored:
“ - if the vocabulary of the TDNN is phoneticaly well-balanced, one could expect to extend the
vocabulary of the hybrid system just as it can be done witha DTW ’
- gain in speaker-independency could be obtained, compared to isolated DTW

4



6 Conclusion

We described experiments of Isolated Word Recognition with TDNNs. We proposed two experiments
validating the concept of feature extraction: a vector quantization and a dynamic time warping applied on

the last mask layer of the TDNNs. Vector quantization enables the coding of words as sequences of

reference vectors. These sequences look consistent, and suggest that dynamic time warping should be

efficient when used on the extracted features. Dynamic TimeWarping gave a significant improvement of

the performances of the IWR system with regard to single TDNNs. Once the concept of feature extraction
validated, any combination of TDNN and classifier may be considered, including discrete HMMs and

recurrent networks.
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