
Support Vector Machine Solvers

Support Vector Machine Solvers

Léon Bottou leon@bottou.org

NEC Labs America, Princeton, NJ 08540, USA

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University, Taipei, Taiwan

Abstract

Considerable efforts have been devoted to the implementation of efficient optimization
method for solving the Support Vector Machine dual problem. This document proposes an
historical perspective and and in depth review of the algorithmic and computational issues
associated with this problem.

1. Introduction

The Support Vector Machine (SVM) algorithm (Cortes and Vapnik, 1995) is probably the
most widely used kernel learning algorithm. It achieves relatively robust pattern recognition
performance using well established concepts in optimization theory.

Despite this mathematical classicism, the implementation of efficient SVM solvers has
diverged from the classical methods of numerical optimization. This divergence is common
to virtually all learning algorithms. The numerical optimization literature focuses on the
asymptotical performance: how quickly the accuracy of the solution increases with com-
puting time. In the case of learning algorithms, two other factors mitigate the impact of
optimization accuracy.

1.1 Three Components of the Generalization Error

The generalization performance of a learning algorithm is indeed limited by three sources
of error:

• The approximation error measures how well the exact solution can be approximated
by a function implementable by our learning system,

• The estimation error measures how accurately we can determine the best function
implementable by our learning system using a finite training set instead of the unseen
testing examples.

• The optimization error measures how closely we compute the function that best sat-
isfies whatever information can be exploited in our finite training set.

The estimation error is determined by the number of training example and by the capacity
of the family of functions (e.g. Vapnik, 1982). Large family of functions have smaller
approximation errors but lead to higher estimation errors. This compromise has been

1

Bottou and Lin

extensively discussed in the literature. Well designed compromises lead to estimation and
approximation errors that scale between the inverse and the inverse square root of the
number of examples (Steinwart and Scovel, 2004).

In contrast, the optimization literature discusses algorithms whose error decreases ex-
ponentially or faster with the number of iterations. The computing time for each iteration
usually grows linearly or quadratically with the number of examples.

It is easy to see that exponentially decreasing optimization error are irrelevant in com-
parison to the other sources of errors. Therefore it is often desirable to use poorly regarded
optimization algorithms that trade asymptotical accuracy for lower iteration complexity.
This document describes in depth how SVM solvers have evolved towards this objective.

1.2 Small Scale Learning vs. Large Scale Learning

There is a budget for any given problem. In the case of a learning algorithm, the budget can
be a limit on the number of training examples or a limit on the computation time. Which
constraint applies can be used to distinguish small-scale learning problems from large-scale
learning problems.

• Small-scale learning problems are constrained by the number of training examples.
The generalization error is dominated by the approximation and estimation errors.
The optimization error can be reduced to insignificant levels since the computation
time is not limited.

• Large-scale learning problems are constrained by the total computation time. Besides
adjusting the approximation capacity of the family of function, one can also adjust
the number of training examples that a particular optimization algorithm can process
within the allowed computing resources. Approximate optimization algorithm can
then achieve better generalization error because they process more training exam-
ples (Bottou and Le Cun, 2004).

The computation time is always limited in practice. This is why some aspects of large
scale learning problems always percolate into small-scale learning problems. One simply
looks for algorithms that can quickly reduce the optimization error comfortably below the
expected approximation and estimation errors. This has been the main driver for the
evolution of SVM solvers.

1.3 Contents

The present document contains an in-depth discussion of optimization algorithms for solving
the dual formulation on a single processor. The objective is simply to give the reader a
precise understanding of the various computational aspects of sparse kernel machines.

Section 2 reviews the mathematical formulation of SVMs. Section 3 presents the generic
optimization problem and performs a first discussion of its algorithmic consequences. Sec-
tion 5 and 6 discuss various approaches used for solving the SVM dual problem. Section 7
presents the state-of-the-art LIBSVM solver and explains the essential algorithmic choices.

2

Support Vector Machine Solvers

Figure 1: The optimal hyperplane separates positive and negative examples with the max-
imal margin. The position of the optimal hyperplane is solely determined by the
few examples that are closest to the hyperplane (the support vectors.)

2. Support Vector Machines

The earliest pattern regognition systems were linear classifiers (Nilsson, 1965). A pattern
x is given a class y = ±1 by first transforming the pattern into a feature vector Φ(x) and
taking the sign of a linear discriminant function ŷ(x) = w⊤Φ(x) + b.

The hyperplane ŷ(x) = 0 defines a decision boundary in the feature space. The problem
specific features Φ(x) is usually chosen by hand. The parameters w and b are determined
by running a learning procedure on a training set (x1, y1) · · · (xn, yn).

Three additional ideas define the modern SVMs.

2.1 Optimal Hyperplane

The training set is said to be linearly separable when there exists a linear discriminant
function whose sign matches the class of all training examples. When a training set is
linearly separable there usually is an infinity of separating hyperplanes.

Vapnik and Lerner (1963) propose to choose the separating hyperplane that maximizes
the margin, that is to say the hyperplane that leaves as much room as possible between the
hyperplane and the closest example. This optimum hyperplane is illustrated in figure 1.

The following optimization problem expresses this choice:

min P(w, b) =
1

2
w2

subject to ∀i yi(w
⊤Φ(xi) + b) ≥ 1

(1)

Directly solving this problem is difficult because the constraints are quite complex. The
mathematical tool of choice for simplifying this problem is the Lagrangian duality the-

3

Bottou and Lin

ory (e.g. Bertsekas, 1995). This approach leads to solving the following dual problem:

max D(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiαi yjαj Φ(xi)
⊤Φ(xj)

subject to

{

∀i αi ≥ 0,
∑

i yiαi = 0.

(2)

Problem (2) is computationally easier because its constraints are much simpler. The di-
rection w∗ of the optimal hyperplane is then recovered from a solution α∗ of the dual
optimization problem (2).

w∗ =
∑

i

α∗
i yiΦ(xi).

Determining the bias b∗ becomes a simple one-dimensional problem. The linear discriminant
function can then be written as:

ŷ(x) = w∗⊤x+ b∗ =

n
∑

i=1

yiαi Φ(xi)
⊤Φ(x) + b∗ (3)

Further details are discussed in section 3.

2.2 Kernels

The optimization problem (2) and the linear discriminant function (3) only involve the
patterns x through the computation of dot products in feature space. There is no need to
compute the features Φ(x) when one knows how to compute the dot products directly.

Instead of hand-choosing a feature function Φ(x), Boser, Guyon, and Vapnik (1992) pro-
pose to directly choose a kernel function K(x,x′) that represents a dot product Φ(x)⊤Φ(x′)
in some unspecified high dimensional space

The Reproducing Kernel Hilbert Spaces theory (Aronszajn, 1944) precisely states which
kernel functions correspond to a dot product and which linear spaces are implicitly induced
by these kernel functions. For instance, any continuous decision boundary can be imple-
mented using the RBF kernel Kγ(x, y) = e−γ‖x−y‖2 . Although the corresponding feature
space has infinite dimension, all computations can be performed without ever computing a
feature vector. Complex non-linear classifiers are computed using the linear mathematics
of the optimal hyperplanes.

2.3 Soft-Margins

Optimal hyperplanes (section 2.1) are useless when the training set is not linearly sepa-
rable. Kernels machines (section 2.2) can represent complicated decision boundaries that
accomodate any training set. But this is not very wise when the problem is very noisy.

Cortes and Vapnik (1995) show that noisy problems are best addressed by allowing some
examples to violate the margin constraints in the primal problem (1). These potential viola-
tions are represented using positive slack variables ξ = (ξi . . . ξn). An additional parameter

4

Support Vector Machine Solvers

C controls the compromise between large margins and small margin violations.

min
w,b,ξ

P(w, b, ξ) =
1

2
w2 + C

n
∑

i=1

ξi

subject to

{

∀i yi(w
⊤Φ(xi) + b) ≥ 1− ξi

∀i ξi ≥ 0

(4)

The dual formulation of this soft-margin problem is strikingly similar to the dual forumlation
(2) of the optimal hyperplane algorithm. The only change is the appearance of the upper
bound C for the coefficients α.

max D(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiαi yjαj K(xi,xj)

subject to

{

∀i 0 ≤ αi ≤ C
∑

i yiαi = 0

(5)

2.4 Other SVM variants

A multitude of alternate forms of SVMs have been introduced over the years(see Schölkopf
and Smola, 2002, for a review). Typical examples include SVMs for computing regres-
sions (Vapnik, 1995), for solving integral equations (Vapnik, 1995), for estimating the sup-
port of a density (Schölkopf et al., 2001), SVMs that use different soft-margin costs (Cortes
and Vapnik, 1995), and parameters (Schölkopf et al., 2000; Chang and Lin, 2001b). There
are also alternate formulations of the dual problem (Keerthi et al., 1999; Bennett and Bre-
densteiner, 2000). All these examples reduce to solving quadratic programing problems
similar to (5).

3. Duality

This section discusses the properties of the SVM quadratic programming problem. The
SVM literature usually establishes basic results using the powerful Karush-Kuhn-Tucker
theorem (e.g. Bertsekas, 1995). We prefer instead to give a more detailled account in order
to review mathematical facts of great importance for the implementation of SVM solvers.

The rest of this document focuses on solving the Soft-Margin SVM problem (4) using
the standard dual formulation (5),

max D(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiαi yjαj Kij

subject to

{

∀i 0 ≤ αi ≤ C,
∑

i yiαi = 0,

where Kij = K(xi,xj) is the matrix of kernel values.
After computing the solution α∗, the SVM discriminant function is

ŷ(x) = w∗⊤x+ b∗ =

n
∑

i=1

yiα
∗
iK(xi,x) + b∗. (6)

5

Bottou and Lin

Equality Constraint

Box Constraints

Feasible
Polytope

Figure 2: Geometry of the dual SVM problem (5). The box constraints Ai ≤ αi ≤ Bi and
the equality constraint

∑

αi = 0 define the feasible polytope, that is, the domain
of the α values that satisfy the constraints.

The optimal bias b∗ can be determined by returning to the primal problem, or, more effi-
ciently, using the optimality criterion (11) discussed below.

It is sometimes convenient to rewrite the box constraint 0 ≤ αi ≤ C as box constraint
on the quantity yiαi:

yiαi ∈ [Ai, Bi] =

{

[0, C] if yi = +1,
[−C, 0] if yi = −1.

(7)

In fact, some SVM solvers, such as SVQP2, optimize variables βi = yiαi that are positive
or negative depending on yi. Other SVM solvers, such as LIBSVM (see section 7), optimize
the standard dual variables αi. This document follows the standard convention but uses
the constants Ai and Bi defined in (7) when they allow simpler expressions.

3.1 Construction of the Dual Problem

The difficulty of the primal problem (4) lies with the complicated inequality constraints that
represent the margin condition. We can represent these constraints using positive Lagrange
coefficients αi ≥ 0.

L(w, b, ξ,α) =
1

2
w2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi (yi(w
⊤Φ(xi) + b)− 1 + ξi).

The formal dual objective function D(α) is defined as

D(α) = min
w,b,ξ

L(w, b, ξ,α) subject to ∀i ξi ≥ 0. (8)

6

Support Vector Machine Solvers

This minimization no longer features the complicated constraints expressed by the Lagrange
coefficients. The ξi ≥ 0 constraints have been kept because they are easy enough to han-
dle directly. Standard differential arguments1 yield the analytical expression of the dual
objective function.

D(α) =

{ ∑

i αi −
1
2

∑

i,j yiαi yjαj Kij if
∑

i yiαi = 0 and ∀i αi ≤ C,

−∞ otherwise.

The dual problem (5) is the maximization of this expression subject to positivity constraints
αi ≥ 0. The conditions

∑

i yiαi = 0 and ∀i αi ≤ C appear as constraints in the dual problem
because the cases where D(α) = −∞ are not useful for a maximization.

The differentiable function

D(α) =
∑

i

αi −
1

2

∑

i,j

yiαi yjαj Kij

coincides with the formal dual function D(α) when α satisfies the constraints of the dual
problem. By a slight abuse of language, D(α) is also referred to as the dual objective
function.

The formal definition (8) of the dual function ensures that the following inequality
holds for any (w, b, ξ) satisfying the primal constraints (4) and for any α satisfying the dual
constraints (5).

D(α) = D(α) ≤ L(w, b, ξ,α) ≤ P(w, b, ξ) (9)

This property is called weak duality : the set of values taken by the primal is located above
the set of values taken by the dual.

Suppose we can find α∗ and (w∗, b∗, ξ∗) such that D(α∗) = P(w∗, b∗, ξ∗). Inequality (9)
then implies that both (w∗, b∗, ξ∗) and α∗ are solutions of the primal and dual problems.
Convex optimization problems with linear constraints are known to have such solutions.
This is called strong duality.

Our goal is now to find such a solution for the SVM problem.

3.2 Optimality Criteria

Let α∗ = (α∗
1 . . . α

∗
n) be solution of the dual problem (5). Obviously α∗ satisfies the dual

constraints. Let g∗ = (g∗1 . . . g
∗
n) be the derivatives of the dual objective function in α∗.

g∗i =
∂D(α∗)

∂αi
= 1− yi

n
∑

j=1

yjα
∗
j Kij (10)

Consider a pair of subscripts (i, j) such that yiα
∗
i < Bi and Aj < yjα

∗
j . The constants Ai

and Bj were defined in (7).
Define αε = (αε

1 . . . α
ε
n) ∈ R

n as

αε
k = α∗

k +







+ε yk if k = i,
−ε yk if k = j,
0 otherwise.

1. This simple derivation is relatively lenghty because many cases must be considered.

7

Bottou and Lin

The point αε clearly satisfies the constraints if ε is positive and sufficiently small. Therefore
D(αε) ≤ D(α∗) because α∗ is solution of the dual problem (5). On the other hand, we can
write the first order expansion

D(αε)−D(α∗) = ε (yig
∗
i − yjg

∗
j) + o(ε).

Therefore the difference yig
∗
i − yjg

∗
j is necessarily negative. Since this holds for all pairs

(i, j) such that yiα
∗
i < Bi and Aj < yjα

∗
j , we can write the following necessary optimality

criterion.

∃ρ ∈ R such that max
i∈Iup

yig
∗
i ≤ ρ ≤ min

j∈Idown

yjg
∗
j (11)

where Iup = { i | yiαi < Bi } and Idown = { j | yjαj > Aj }.
Usually, there are some coefficients α∗

k strictly between their lower and upper bounds.
Since the corresponding ykg

∗
k appear on both sides of the inequality, this common situation

leaves only one possible value for ρ.
We can rewrite (11) as

∃ρ ∈ R such that ∀k,

{

if ykg
∗
k > ρ then ykα

∗
k = Bk,

if ykg
∗
k < ρ then ykα

∗
k = Ak,

(12)

or, equivalently, as

∃ρ ∈ R such that ∀k,

{

if g∗k > ykρ then α∗
k = C,

if g∗k < ykρ then α∗
k = 0.

(13)

Let us now pick

w∗ =
∑

k

ykα
∗
kΦ(xk), b∗ = ρ, and ξ∗k = max{0, g∗k − ykρ}. (14)

These values satisfy the constraints of the primal problem (4). A short derivation using (10)
then gives

P(w∗, b∗, ξ∗)−D(α∗) = C
n
∑

k=1

ξ∗k −
n
∑

k=1

α∗
kg

∗
k =

n
∑

k=1

(Cξ∗k − α∗
kg

∗
k) .

We can compute the quantity Cξ∗k − α∗
kg

∗
k using (14) and (13). The relation Cξ∗k − α∗

kg
∗
k = −ykα

∗
kρ

holds regardless of whether g∗k is less than, equal to, or greater than ykρ. Therefore

P(w∗, b∗, ξ∗)−D(α∗) = −ρ
n
∑

i=1

yiα
∗
i = 0. (15)

This strong duality has two implications:

• Our choice for (w∗, b∗, ξ∗) minimizes the primal problem because inequality (9) states
that the primal function P(w, b, ξ) cannot take values smaller thanD(α∗) = P(w∗, b∗, ξ∗).

8

Support Vector Machine Solvers

• The optimality criteria (11—13) are in fact necessary and sufficient. Assume that
one of these criteria holds. Choosing (w∗, b∗, ξ∗) as shown above yields the strong
duality property P(w∗, b∗, ξ∗) = D(α∗). Therefore α∗ maximizes the dual because
inequality (9) states that the dual function D(α) cannot take values greater than
D(α∗) = P(w∗, b∗, ξ∗).

The necessary and sufficient criterion (11) is particularly useful for SVM solvers (Keerthi
et al., 2001).

4. Sparsity

The vector α∗ solution of the dual problem (5) contains many zeroes. The SVM discriminant
function ŷ(x) =

∑

i yiα
∗
iK(xi,x) + b∗ is expressed using a sparse subset of the training

examples called the Support Vectors (SVs).

From the point of view of the algorithm designer, sparsity provides the opportunity
to considerably reduce the memory and time requirements of SVM solvers. On the other
hand, it is difficult to combine these gains with those brought by algorithms that handle
large segments of the kernel matrix at once. Algorithms for sparse kernel machines and
algorithms for other kernel machines have evolved differently.

4.1 Support Vectors

The optimality criterion (13) characterizes which training examples become support vectors.
Recalling (10) and (14)

gk − ykρ = 1− yk

n
∑

i=1

yiαiKik − ykb
∗ = 1− yk ŷ(xk). (16)

Replacing in (13) gives

{

if yk ŷ(xk) < 1 then αk = C,
if yk ŷ(xk) > 1 then αk = 0.

(17)

This result splits the training examples in three categories2:

• Examples (xk, yk) such that yk ŷ(xk) > 1 are not support vectors. They do not appear
in the discriminant function because αk = 0.

• Examples (xk, yk) such that yk ŷ(xk) < 1 are called bounded support vectors because
they activate the inequality constraint αk ≤ C. They appear in the discriminant
function with coefficient αk = C.

• Examples (xk, yk) such that yk ŷ(xk) = 1 are called free support vectors. They appear
in the discriminant function with a coefficient in range [0, C].

2. Some texts call an example k a free support vector when 0 < αk < C and a bounded support vector when

αk = C. This is almost the same thing as the above definition.

9

Bottou and Lin

Let B represent the best error achievable by a linear decision boundary in the chosen feature
space for the problem at hand. When the training set size n becomes large, one can expect
about Bn misclassified training examples, that is to say yk ŷ ≤ 0. All these misclassified
examples3 are bounded support vectors. Therefore the number of bounded support vectors
scales at least linearly with the number of examples.

When the hyperparameter C follows the right scaling laws, Steinwart (2004) has shown
that the total number of support vectors is asymptotically equivalent to 2Bn. Noisy prob-
lems do not lead to very sparse SVMs. Collobert et al. (2006) explore ways to improve
sparsity in such cases.

4.2 Complexity

There are two intuitive lower bounds on the computational cost of any algorithm that solves
the SVM problem for arbitrary kernel matrices Kij .

• Suppose that an oracle reveals which examples are not support vectors (αi = 0),
and which examples are bounded support vectors (αi = C). The coefficients of the
R remaining free support vectors are determined by a system of R linear equations
representing the derivatives of the objective function. Their calculation amounts to
solving such a system. This typically requires a number of operations proportional to
R3.

• Simply verifying that a vector α is a solution of the SVM problem involves computing
the gradient g of the dual and checking the optimality conditions (11). With n
examples and S support vectors, this requires a number of operations proportional to
n S.

Few support vectors reach the upper bound C when it gets large. The cost is then dominated
by the R3 ≈ S3. Otherwise the term n S is usually larger. The final number of support
vectors therefore is the critical component of the computational cost of solving the dual
problem.

Since the asymptotical number of support vectors grows linearly with the number of
examples, the computational cost of solving the SVM problem has both a quadratic and
a cubic component. It grows at least like n2 when C is small and n3 when C gets large.
Empirical evidence shows that modern SVM solvers come close to these scaling laws.

4.3 Computation of the kernel values

Although computing the n2 components of the kernel matrix Kij = K(xi,xj) seems to be a
simple quadratic affair, a more detailled analysis reveals a much more complicated picture.

• Computing kernels is expensive — Computing each kernel value usually involves the
manipulation of sizeable chunks of data representing the patterns. Images have thou-
sands of pixels (e.g. Boser et al., 1992). Documents have thousands of words (e.g.

3. A sharp eyed reader might notice that a discriminant function dominated by these Bn misclassified

examples would have the wrong polarity. About Bn additional well classified support vectors are needed

to correct the orientation of w.

10

Support Vector Machine Solvers

Joachims, 1999). In practice, computing kernel values often accounts for more than
half the total computing time.

• Computing the full kernel matrix is wasteful — The expression of the gradient (10)
only depend on kernel values Kij that involve at least one support vector (the other
kernel values are multiplied by zero). All three optimality criteria (11—13) can be
verified with these kernel values only. The remaining kernel values have no impact
on the solution. To determine which kernel values are actually needed, efficient SVM
solvers compute no more than 15% to 50% additional kernel values (Graf, personal
communication). The total training time is usually smaller than the time needed to
compute the whole kernel matrix. SVM programs that precompute the full kernel
matrix are not competitive.

• The kernel matrix does not fit in memory — When the number of examples grows,
the kernel matrix Kij becomes very large and cannot be stored in memory. Kernel
values must be computed on the fly or retrieved from a cache of often accessed values.
The kernel cache hit rate becomes a major factor of the training time.

These issues only appear as “constant factors” in the asymptotic complexity of solving
the SVM problem. But practice is dominated by these constant factors.

5. Early SVM Algorithms

The SVM solution is the optimum of a well defined convex optimization problem. Since
this optimum does not depend on the details of its calculation, the choice of a particular
optimization algorithm can be made on the sole basis4 of its computational requirements.
High performance optimization packages, such as MINOS, and LOQO (Vanderbei, 1994)
can efficiently handle very varied quadratic programming workloads. There are however
differences between the SVM problem and the usual quadratic programming benchmarks.

• Quadratic optimization packages were often designed to take advantage of sparsity in
the quadratic part of the objective function. Unfortunately, the SVM kernel matrix
is rarely sparse: sparsity occurs in the solution of the SVM problem.

• The specification of a SVM problem rarely fits in memory. Kernel matrix coefficient
must be cached or computed on the fly. As explained in section 4.3, vast speedups
are achieved by accessing the kernel matrix coefficients carefully.

• Generic optimization packages sometimes make extra work to locate the optimum with
high accuracy. As explained in section 1.1, the accuracy requirements of a learning
problem are unusually low.

Using standard optimization packages for medium size SVM problems is not straightfor-
ward (section 6). In fact, all early SVM results were obtained using ad-hoc algorithms.

These algorithms borrow two ideas from the optimal hyperplane literature (Vapnik,
1982; Vapnik et al., 1984). The optimization is achieved by performing successive applica-
tions of a very simple direction search. Meanwhile, iterative chunking leverages the sparsity

4. Defining a learning algorithm for a multilayer network is a more difficult exercise.

11

Bottou and Lin

of the solution. We first describe these two ideas and then present the modified gradient
projection algorithm.

5.1 Iterative Chunking

The first challenge was of course to solve a quadratic programming problem whose specifi-
cation does not fit in the memory of a computer. Fortunately, the quadratic programming
problem (2) has often a sparse solution. If we knew in advance which examples are support
vectors, we could solve the problem restricted to the support vectors and verify a posteriori
that this solution satisfies the optimality criterion for all examples.

Let us solve problem (2) restricted to a small subset of training examples called the
working set. Because learning algorithms are designed to generalize well, we can hope that
the resulting classifier performs honorably on the remaining training examples. Many will
readily fulfill the margin condition yi ŷ(xi) ≥ 1. Training examples that violate the margin
condition are good support vector candidates. We can add some of them to the working
set, solve the quadratic programming problem restricted to the new working set, and repeat
the procedure until the margin constraints are satisfied for all examples.

This procedure is not a general purpose optimization technique. It works efficiently
because the underlying problem is a learning problem. It reduces the large problem to a
sequence of smaller optimization problems.

5.2 Direction Search

The optimization of the dual problem is then achieved by performing direction searches
along well chosen successive directions.

Assume we are given a starting point α that satisfies the constraints of the quadratic
optimization problem (5). We say that a direction u = (u1 . . . un) is a feasible direction if
we can slightly move the point α along direction u without violating the constraints.

Formally, we consider the set Λ of all coefficients λ ≥ 0 such that the point α + λu
satisfies the constraints. This set always contains 0. We say that u is a feasible direction
if Λ is not the singleton {0}. Because the feasible polytope is convex and bounded (see
figure 2), the set Λ is a bounded interval of the form [0, λmax].

We seek to maximizes the dual optimization problem (5) restricted to the half line {α+ λu, λ ∈ Λ}.
This is expressed by the simple optimization problem

λ∗ = argmax
λ∈Λ

D(α+ λu).

Figure 3 represent values of the D(α+λu) as a function of λ. The set Λ is materialized by
the shaded areas. Since the dual objective function is quadratic, D(α + λu) is shaped like
a parabola. The location of its maximum λ+ is easily computed using Newton’s formula

λ+ =

∂D(α+λu)
∂λ

∣

∣

∣

λ=0

∂2D(α+λu)
∂λ2

∣

∣

∣

λ=0

=
g⊤u

u⊤Hu

12

Support Vector Machine Solvers

0

α

maxλ

α

0
maxλ

Figure 3: Given a starting point α and a feasible direction u, the direction search maximizes
the function f(λ) = D(α + λu) for λ ≥ 0 and α + λu satisfying the constraints
of (5).

where vector g and matrix H are the gradient and the Hessian of the dual objective function
D(α),

gi = 1− yi
∑

j

yjαj Kij and Hij = yiyjKij .

The solution of our problem is then the projection of the maximum λ+ into the inter-
val Λ = [0, λmax],

λ∗ = max

(

0, min

(

λmax,
g⊤u

u⊤Hu

))

. (18)

This formula is the basis for a family of optimization algorithms. Starting from an initial
feasible point, each iteration selects a suitable feasible direction and applies the direction
search formula (18) until reaching the maximum.

5.3 Modified Gradient Projection

Several conditions restrict the choice of the successive search directions u.

• The equality constraint (5) restricts u to the linear subspace
∑

i yiui = 0.

• The box constraints (5) become sign constraints on certain coefficients of u. Coefficient
ui must be non-negative if αi = 0 and non-positive if αi = C.

• The search direction must be an ascent direction to ensure that the search makes
progress towards the solution. Direction u must belong to the half space g⊤u > 0
where g is the gradient of the dual objective function.

• Faster convergence rates are achieved when successive search directions are conjugate,
that is, u⊤Hu′ = 0, where H is the Hessian and u′ is the last search direction. Similar

13

Bottou and Lin

to the conjugate gradient algorithm (Golub and Van Loan, 1996), this condition is
more conveniently expressed as u⊤(g − g′) = 0 where g′ represents the gradient of
the dual before the previous search (along direction u′).

Finding a search direction that simultaneously satisfies all these restrictions is far from sim-
ple. To work around this difficulty, the optimal hyperplane algorithms of the seventies (see
Vapnik, 1982, Addendum I, section 4) exploit a reparametrization of the dual problem that
squares the number of variables to optimize. This algorithm (Vapnik et al., 1984) was in
fact used by Boser et al. (1992) to obtain the first experimental results for SVMs.

The modified gradient projection technique addresses the direction selection problem
more directly. This technique was employed at AT&T Bell Laboratories to obtain most
early SVM results (Bottou et al., 1994; Cortes and Vapnik, 1995).

Algorithm 5.1 Modified Gradient Projection
1: α← 0

2: B← ∅
3: while there are examples violating the optimality condition, do
4: Add some violating examples to working set B.
5: loop

6: ∀k ∈ B gk ← ∂D(α)/∂αk using (10)
7: repeat ⊲ Projection–eviction loop
8: ∀k /∈ B uk ← 0
9: ρ← mean{ ykgk | k ∈ B }

10: ∀k ∈ B uk ← gk − ykρ ⊲ Ensure
∑

i yiui = 0
11: B← B \ { k ∈ B | (uk > 0 and αk = C) or (uk < 0 and αk = 0) }
12: until B stops changing
13: if u = 0 exit loop

14: Compute λ∗ using (18) ⊲ Direction search
15: α← α+ λ∗u

16: end loop

17: end while

The four conditions on the search direction would be much simpler without the box
constraints. It would then be sufficient to project the gradient g on the linear subspace
described by the equality constraint and the conjugation condition. Modified gradient
projection recovers this situation by leveraging the chunking procedure. Examples that
activate the box constraints are simply evicted from the working set!

Algorithm 5.1 illustrates this procedure. For simplicity we omit the conjugation condi-
tion. The gradient g is simply projected (lines 8–10) on the linear subspace corresponding
to the inequality constraint. The resulting search direction u might drive some coefficients
outside the box constraints. When this is the case, we remove these coefficients from the
working set (line 11) and return to the projection stage.

Modified gradient projection spends most of the computing time searching for training
examples violating the optimality conditions. Modern solvers simplify this step by keeping
the gradient vector g up-to-date and leveraging the optimality condition (11).

14

Support Vector Machine Solvers

6. The Decomposition Method

Quadratic programming optimization methods achieved considerable progress between the
invention of the optimal hyperplanes in the 60s and the definition of the contemportary
SVM in the 90s. It was widely believed that superior performance could be achieved using
state-of-the-art generic quadratic programming solvers such as MINOS or LOQO.

Unfortunately the design of these solvers assume that the full kernel matrix is readily
available. As explained in section 4.3, computing the full kernel matrix is costly and un-
needed. Decomposition methods (Osuna et al., 1997; Saunders et al., 1998; Joachims, 1999)
were designed to overcome this difficulty. They address the full scale dual problem (5) by
solving a sequence of smaller quadratic programming subproblems.

Iterative chunking (section 5.1) is a particular case of the decomposition method. Modi-
fied gradient projection (section 5.3) and shrinking (section 7.3) are slightly different because
the working set is dynamically modified during the subproblem optimization.

6.1 General Decomposition

Instead of updating all the coefficients of vector α, each iteration of the decomposition
method optimizes a subset of coefficients αi, i ∈ B and leaves the remaining coefficients αj ,
j /∈ B unchanged.

Starting from a coefficient vector α we can compute a new coefficient vector α′ by adding
an additional constraint to the dual problem (5) that represents the frozen coefficients:

max
α′

D(α′) =
n
∑

i=1

α′
i −

1

2

n
∑

i,j=1

yiα
′
i yjα

′
j K(xi,xj)

subject to







∀i /∈ B α′
i = αi,

∀i ∈ B 0 ≤ α′
i ≤ C,

∑

i yiα
′
i = 0.

(19)

We can rewrite (19) as a quadratic programming problem in variables αi, i ∈ B and remove
the additive terms that do not involve the optimization variables α′:

max
α′

∑

i∈B

α′
i



1− yi
∑

j /∈B

yjαj Kij



−
1

2

∑

i∈B

∑

j∈B

yiα
′
i yjα

′
j Kij

subject to ∀i ∈ B 0 ≤ α′
i ≤ C and

∑

i∈B

yiα
′
i = −

∑

j /∈B

yjαj.

(20)

Algorithm 6.1 illustrates a typical application of the decomposition method. It stores
a coefficient vector α = (α1 . . . αn) and the corresponding gradient vector g = (g1 . . . gn).
This algorithm stops when it achieves5 the optimality criterion (11). Each iteration selects
a working set and solves the corresponding subproblem using any suitable optimization
algorithm. Then it efficiently updates the gradient by evaluating the difference between
old gradient and new gradient and updates the coefficients. All these operations can be
achieved using only the kernel matrix rows whose indices are in B. This careful use of the
kernel values saves both time and memory as explained in section 4.3

5. With some predefined accuracy, in practice. See section 7.1.

15

Bottou and Lin

Algorithm 6.1 Decomposition method

1: ∀k ∈ {1 . . . n} αk ← 0 ⊲ Initial coefficients
2: ∀k ∈ {1 . . . n} gk ← 1 ⊲ Initial gradient

3: loop

4: Gmax ← maxi yigi subject to yiαi < Bi

5: Gmin ← minj yjgj subject to Aj < yjαj

6: if Gmax ≤ Gmin stop. ⊲ Optimality criterion (11)

7: Select a working set B ⊂ {1 . . . n} ⊲ See text

8: α′ ← argmax
α′

∑

i∈B

α′
i



1− yi
∑

j /∈B

yjαj Kij



−
1

2

∑

i∈B

∑

j∈B

yiα
′
i yjα

′
j Kij

subject to ∀i ∈ B 0 ≤ α′
i ≤ C and

∑

i∈B

yiα
′
i = −

∑

j /∈B

yjαj

9: ∀k ∈ {1 . . . n} gk ← gk − yk
∑

i∈B

yi(α
′
i − αi)Kik ⊲ Update gradient

10: ∀i ∈ B αi ← α′
i ⊲ Update coefficients

11: end loop

The definition of (19) ensures that D(α′) ≥ D(α). The question is then to define a
working set selection scheme that ensures that the increasing values of the dual reach the
maximum.

• Like the modified gradient projection algorithm (section 5.3) we can construct the
working sets by eliminating coefficients αi when they hit their lower or upper bound
with sufficient strength.

• Joachims (1999) proposes a systematic approach. Working sets are constructed by
selecting a predefined number of coefficients responsible for the most severe violation
of the optimality criterion (11). Section 7.2.2 illustrates this idea in the case of working
sets of size two.

Decomposition methods are related to block coordinate descent in bound-constrained opti-
mization (Bertsekas, 1995). However the equality constraint

∑

i yiαi = 0 makes the con-
vergence proofs more delicate. With suitable working set selection schemes, asymptotic
convergence results state that any limit point of the infinite sequence generated by the al-
gorithm is an optimal solution (e.g. Chang et al., 2000; Lin, 2001; Hush and Scovel, 2003;
List and Simon, 2004; Palagi and Sciandrone, 2005). Finite termination results state that
the algorithm stops with a predefined accuracy after a finite time (e.g. Lin, 2002).

6.2 Decomposition in Practice

Different optimization algorithms can be used for solving the quadratic programming sub-
problems (20). The Royal Holloway SVM package was designed to compare various sub-
problem solvers (Saunders et al., 1998). Advanced solvers such as MINOS or LOQO have
relatively long setup times. Their higher asymptotic convergence rate is not very useful

16

Support Vector Machine Solvers

because a coarse solution is often sufficient for learning applications. Faster results were
often achieved using SVQP, a simplified version of the modified gradient projection algo-
rithm (section 5.3): the outer loop of algorithm 5.1 was simply replaced by the main loop
of algorithm 6.1.

Experiments with various working set sizes also gave surprising results. The best learn-
ing times were often achieved using working sets containing very few examples (Joachims,
1999; Platt, 1999; Collobert, 2004).

6.3 Sequential Minimal Optimization

Platt (1999) proposes to always use the smallest possible working set size, that is, two
elements. This choice dramatically simplifies the decomposition method.

• Each successive quadratic programming subproblem has two variables. The equality
constraint makes this a one dimensional optimization problem. A single direction
search (section 5.2) is sufficient to compute the solution.

• The computation of the Newton step (18) is very fast because the direction u contains
only two non zero coefficients.

• The asymptotic convergence and finite termination properties of this particular case
of the decomposition method are very well understood (e.g. Keerthi and Gilbert, 2002;
Takahashi and Nishi, 2005; Chen et al., 2006; Hush et al., 2006).

The Sequential Minimal Optimization algorithm 6.2 selects working sets using the maximum
violating pair scheme. Working set selection schemes are discussed more thoroughly in
section 7.2. Each subproblem is solved by performing a search along a direction u containing
only two non zero coefficients: ui = yi and uj = −yj. The algorithm is otherwise similar to
algorithm 6.1. Implementation issues are discussed more thoroughly in section 7.

Algorithm 6.2 SMO with Maximum Violating Pair working set selection

1: ∀k ∈ {1 . . . n} αk ← 0 ⊲ Initial coefficients
2: ∀k ∈ {1 . . . n} gk ← 1 ⊲ Initial gradient

3: loop

4: i← argmaxi yigi subject to yiαi < Bi

5: j ← argminj yjgj subject to Aj < yjαj ⊲ Maximal violating pair
6: if yigi ≤ yjgj stop. ⊲ Optimality criterion (11)

7: λ← min

{

Bi − yiαi, yjαj −Aj ,
yigi − yjgj

Kii +Kjj − 2Kij

}

⊲ Direction search

8: ∀k ∈ {1 . . . n} gk ← gk − λyk Kik + λyk Kjk ⊲ Update gradient
9: αi ← αi + yiλ αj ← αj − yjλ ⊲ Update coefficients

10: end loop

The practical efficiency of the SMO algorithm is very compelling. It is easier to program
and often runs as fast as careful implementations of the full fledged decomposition method.

SMO prefers sparse search directions over conjugate search directions (section 5.3). This
choice sometimes penalizes SMO when the soft-margin parameter C is large. Reducing C

17

Bottou and Lin

often corrects the problem with little change in generalization performance. Second order
working set selection (section 7.2.3) also helps.

The most intensive part of each iteration of algorithm 6.2 is the update of the gradient
on line 8. These operations require the computation of two full rows of the kernel matrix.
The shrinking technique (Joachims, 1999) reduces this calculation. This is very similar to
the decomposition method (algorithm 6.1) where the working sets are updated on the fly,
and where successive subproblems are solved using SMO (algorithm 6.2). See section 7.3
for details.

7. A Case Study: LIBSVM

This section explains the algorithmic choices and discusses the implementation details of a
modern SVM solver. The LIBSVM solver (version 2.82) (Chang and Lin, 2001a) is based
on the SMO algorithm, but relies on a more advanced working set selection scheme. After
discussing the stopping criteria and the working set selection, we present the shrinking
heuristics and their impact on the design of the cache of kernel values.

This section discusses the dual maximization problem

max D(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

yiαi yjαj K(xi,xj)

subject to

{

∀i 0 ≤ αi ≤ C,
∑

i yiαi = 0,

Let g = (g1 . . . gn) be the gradient of the dual objective function,

gi =
∂D(α)

∂αi
= 1− yi

n
∑

k=1

ykαk Kik.

Readers studying the source code should be aware that LIBSVM was in fact written as the
minimization of −D(α) instead of the maximization of D(α). The variable G[i] in the
source code contains −gi instead of gi.

7.1 Stopping Criterion

The LIBSVM algorithm stops when the optimality criterion (11) is reached with a predefined
accuracy ǫ,

max
i∈Iup

yigi − min
j∈Idown

yjgj < ǫ, (21)

where Iup = { i | yiαi < Bi } and Idown = { j | yjαj > Aj } as in (11).
Theoretical results establish that SMO achieves the stopping criterion (21) after a finite

time. These finite termination results depend on the chosen working set selection scheme.
See (Keerthi and Gilbert, 2002; Takahashi and Nishi, 2005; Chen et al., 2006; Bordes et al.,
2005, appendix).

Schölkopf and Smola (2002, section 10.1.1) propose an alternate stopping criterion based
on the duality gap (15). This criterion is more sensitive to the value of C and requires
additional computation. On the other hand, Hush et al. (2006) propose a setup with
theoretical guarantees on the termination time.

18

Support Vector Machine Solvers

7.2 Working set selection

There are many ways to select the pair of indices (i, j) representing the working set for each
iteration of the SMO algorithm.

Assume a given iteration starts with coefficient vector α. Only two coefficients of the
solution α′ of the SMO subproblem differs from the coefficients of α. Therefore α′ = α+λu
where the direction u has only two non zero coefficients. The equality constraint further
implies that

∑

k ykuk = 0. Therefore it is sufficient to consider directions uij = (uij1 . . . uijn)
such that

uijk =







yi if k = i,
−yj if k = j,

0 otherwise.
(22)

The subproblem optimization then requires a single direction search (18) along direction
uij (for positive λ) or direction −uij = uji (for negative λ). Working set selection for the
SMO algorithm then reduces to the selection of a search direction of the form (22). Since
we need a feasible direction, we can further require that i ∈ Iup and j ∈ Idown.

7.2.1 Maximal Gain Working Set Selection

Let U = {uij | i ∈ Iup, j ∈ Idown } be the set of the potential search directions. The most
effective direction for each iteration should be the direction that maximizes the increase of
the dual objective function:

u∗ = argmax
u
ij∈U

max
0≤λ

D(α+ λuij)−D(α)

subject to

{

yiαi + λ ≤ Bi,
yjαj − λ ≥ Aj .

(23)

Unfortunately the search of the best direction uij requires iterating over the n(n − 1)
possible pairs of indices. The maximization of λ then amounts to performing a direction
search. These repeated direction searches would virtually access all the kernel matrix during
each SMO iteration. This is not acceptable for a fast algorithm.

Although maximal gain working set selection may reduce the number of iterations, it
makes each iteration very slow. Practical working set selection schemes need to simplify
problem (23) in order to achieve a good compromise between the number of iterations and
the speed of each iteration.

7.2.2 Maximal Violating Pair Working Set Selection

The most obvious simplification of (23) consist in performing a first order approximation
of the objective function

D(α+ λuij)−D(α) ≈ λ g⊤uij ,

and, in order to make this approximation valid, to replace the constraints by a constraint
that ensures that λ remains very small. This yields problem

u∗ = argmax
u
ij∈U

max
0≤λ≤ǫ

λ g⊤uij .

19

Bottou and Lin

We can assume that there is a direction u ∈ U such that g⊤u > 0 because we would
otherwise have reached the optimum (see section 3.2). Maximizing in λ then yields

u∗ = argmax
u
ij∈U

g⊤uij . (24)

This problem was first studied by Joachims (1999). A first look suggests that we may have
to check the n(n− 1) possible pairs (i, j). However we can write

max
u
ij∈U

g⊤uij = max
i∈Iup j∈Idown

(yigi − yjgj) = max
i∈Iup

yigi − min
j∈Idown

yjgj .

We recognize here the usual optimality criterion (11). The solution of (24) is therefore the
maximal violating pair (Keerthi et al., 2001)

i = argmax
k∈Iup

ykgk,

j = argmin
k∈Idown

ykgk.
(25)

This computation require a time proportional to n. Its results can immediately be reused
to check the stopping criterion (21). This is illustrated in algorithm 6.2.

7.2.3 Second Order Working Set Selection

Computing (25) does not require any additional kernel values. However some kernel values
will eventually be needed to perform the SMO iteration (see algorithm 6.2, lines 7 and 8).
Therefore we have the opportunity to do better with limited additional costs.

Instead of a linear approximation of (23), we can keep the quadratic gain

D(α+ λuij)−D(α) = λ(yigi − yjgj)−
λ2

2
(Kii +Kjj − 2Kij)

but eliminate the constraints. The optimal λ is then

yigi − yjgj
Kii +Kjj − 2Kij

and the corresponding gain is

(yigi − yjgj)
2

2(Kii +Kjj − 2Kij)
.

Unfortunately the maximization

u∗ = argmax
u
ij∈U

(yigi − yjgj)
2

2(Kii +Kjj − 2Kij)
subject to yigi > yjgj (26)

still requires an exhaustive search through the the n(n − 1) possible pairs of indices. A
viable implementation of second order working set selection must heuristically restrict this
search.

20

Support Vector Machine Solvers

The LIBSVM solver uses the following procedure (Fan et al., 2005).

i = argmax
k∈Iup

ykgk

j = argmax
k∈Idown

(yigi − ykgk)
2

2(Kii +Kkk − 2Kik)
subject to yigi > ykgk

(27)

The computation of i is exactly as for the maximal violating pair scheme. The computation
of j can be achieved in time proportional to n. It only requires the diagonal of the kernel
matrix, which is easily cached, and the i-th row of the kernel matrix, which is required
anyway to update the gradients (algorithm 6.2, line 8).

We omit the discussion of Kii +Kjj − 2Kij = 0. See (Fan et al., 2005) for details and
experimental results. The convergence of this working set selection scheme is proved in
(Chen et al., 2006).

Note that the first order (24) and second order (26) problems are only used for selecting
the working set. They do not have to maintain the feasibility constraint of the maximal
gain problem (23). Of course the feasibility constraints must be taken into account during
the computation of α′ that is performed after the determination of the working set. Some
authors (Lai et al., 2003; Glasmachers and Igel, 2006) maintain the feasibility constraints
during the working set selection. This leads to different heuristic compromises.

7.3 Shrinking

The shrinking technique reduces the size of the problem by temporarily eliminating variables
αi that are unlikely to be selected in the SMO working set because they have reached
their lower or upper bound (Joachims, 1999). The SMO iterations then continues on the
remaining variables. Shrinking reduces the number of kernel values needed to update the
gradient vector (see algorithm 6.2, line 8). The hit rate of the kernel cache is therefore
improved.

For many problems, the number of free support vectors (section 4.1) is relatively small.
During the iterative process, the solver progressively identifies the partition of the training
examples into non support vectors (αi = 0), bounded support vectors (αi = C), and free
support vectors. Coefficients associated with non support vectors and bounded support
vectors are known with high certainty and are good candidates for shrinking.

Consider the sets6

Jup(α) = { k | ykgk > m(α)} with m(α) = max
i∈Iup

yigi, and

Jdown(α) = { k | ykgk < M(α)} with M(α) = min
j∈Idown

yjgj .

With these definitions, we have

k ∈ Jup(α) =⇒ k /∈ Iup =⇒ αk = ykBk, and
k ∈ Jdown(α) =⇒ k /∈ Idown =⇒ αk = ykAk.

In other words, these sets contain the indices of variables αk that have reached their lower
or upper bound with a sufficiently “strong” derivative, and therefore are likely to stay there.

6. In these definitions, Jup, Jdown and gk implicitely depend on α.

21

Bottou and Lin

• Let α∗ be an arbitrary solution of the dual optimization problem. The quantities
m(α∗), M(α∗), and yk gk(α

∗) do not depend on the chosen solution (Chen et al.,
2006, theorem 4). Therefore the sets J∗

up = Jup(α
∗) and J∗

down = Jdown(α
∗) are also

independent of the chosen solution.

• There is a finite number of possible sets Jup(α) or Jdown(α). Using the continuity
argument of (Chen et al., 2006, theorem 6), both sets Jup(α) and Jdown(α) reach and
keep their final values J∗

up and J∗
down after a finite number of SMO iterations.

Therefore the variables αi, i ∈ J∗
up ∪J

∗
down also reach their final values after a finite number

of iterations and can then be safely eliminated from the optimization. In practice, we cannot
be certain that Jup(α) and Jdown(α) have reached their final values J∗

up and J∗
down. We can

however tentatively eliminate these variables and check later whether we were correct.

• The LIBSVM shrinking routine is invoked every min(n, 1000) iterations. It dynami-
cally eliminates the variables αi whose indices belong to Jup(α) ∪ Jdown(α).

• Since this strategy may be too aggressive, unshrinking takes place wheneverm(αk)−M(αk) < 10ǫ,
where ǫ is the stopping tolerance (21). The whole gradient vector g is first recon-
structed. All variables that do not belong to Jup(α) or Jdown(α) are then reactivated.

The reconstruction of the full gradient g can be quite expensive. To decrease this cost,
LIBSVM maintains an additional vector ḡ = (ḡ1 . . . ḡn)

ḡi = yi
∑

αk=C

ykαk Kik = yiC
∑

αk=C

yk Kik.

during the SMO iterations. This vector needs to be updated whenever a SMO iteration
causes a coefficient αk to reach or leave the upper bound C. The full gradient vector g is
then reconstructed using the relation

gi = 1− ḡi − yi
∑

0<αk<C

ykαk Kik.

The shrinking operation never eliminate free variables (0 < αk < C). Therefore this
gradient reconstruction only needs rows of the kernel matrix that are likely to be present
in the kernel cache.

7.4 Implementation Issues

Two aspects of the implementation of a robust solver demand a particular attention: nu-
merical accuracy and caching.

7.4.1 Numerical Accuracy

Numerical accuracy matters because many parts of the algorithm distinguish the variables
αi that have reached their bounds from the other variables. Inexact computations could
unexpectedly change this partition of the optimization variables with catastrophic conse-
quences.

22

Support Vector Machine Solvers

Algorithm 6.2 updates the variables αi without precautions (line 9). The LIBSVM code
makes sure, when a direction search hits the box constraints, that at least one of the
coefficient αi or αj is exactly equal to its bound. No particular attention is then necessary
to determine which coefficients of α have reached a bound.

Other solvers use the opposite approach (e.g. SVQP2) and always use a small tolerance
to decide whether a variable has reached its lower or upper bound.

7.4.2 Data Structure for the Kernel Cache

Each entry i of the LIBSVM kernel cache represents the i-th row of the kernel matrix, but
stores only the first li ≤ n row coefficients Ki1 . . . Ki li . The variables li are dynamically
adjusted to reflect the known kernel coefficients.

Shrinking is performed by permuting the examples in order to give the lower indices
to the active set. Kernel entries for the active set are then grouped at the beginning of
each kernel matrix row. To swap the positions of two examples, one has to swap the
corresponding coefficients in vectors α, g, ḡ and the corresponding entries in the kernel
cache.

When the SMO algorithm needs the first l elements of a particular row i, the LIBSVM

caching code retrieves the corresponding cache entry i and the number li of cached coeffi-
cients. Missing kernel values are recomputed and stored. Finally a pointer to the stored
row is returned.

The LIBSVM caching code also maintains a circular list of recently used rows. Whenever
the memory allocated for the cached rows exceeds the predefined maximum, the cached
coefficients for the least recently used rows are deallocated.

8. Conclusion

This chapter has presented the state-of-the-art technique to solve the SVM dual optimiza-
tion problem with an accuracy that comfortably exceeds the needs of most machine learning
applications. Like early SVM solvers, these techniques perform repeated searches along well
chosen feasible directions (section 5.2). The choice of search directions must balance several
objectives:

• Search directions must be sparse: the SMO search directions have only two non zero
coefficients (section 6.3).

• Search directions must leverage the cached kernel values. The decomposition method
(section 6) and the shrinking heuristics (section 7.3) are means to achieve this objec-
tive.

• Search directions must offer good chances to increase the dual objective function
(section 7.2).

This simple structure provides opportunities for large scale problems. Search directions are
usually selected on the basis of the gradient vector which can be costly to compute. Bordes
et al. (2005) use an approximate optimization algorithm that partly relies on chance to
select the successive search directions.

23

Bottou and Lin

Approximate optimization can yield considerable speedups because there is no point
in achieving a small optimization error when the estimation and approximation errors are
relatively large. However, the determination of stopping criteria in dual optimization can
be very challenging (Tsang et al., 2005; Loosli and Canu, 2006).

Global approaches have been proposed for the approximate representation (Fine and
Scheinberg, 2001) or computation (Yang et al., 2005) of the kernel matrix. These methods
can be very useful for non sparse kernel machines. In the case of Support Vector Machines,
it remains difficult to achieve the benefits of these methods without partly losing the benefits
of sparsity.

Acknowledgements

Part of this work was funded by NSF grant CCR-0325463. The second author thanks his
students for proofreading the paper.

References

Nachman Aronszajn. La théorie générale des noyaux réproduisants et ses applications.
Proceedings of the Cambridge Philosophical Society, 39:133–153, 1944.

Kristin P. Bennett and Erin J. Bredensteiner. Duality and geometry in SVM classifiers. In
P. Langley, editor, Proceedings of the 17th International Conference on Machine Learning,
pages 57–64, San Francisco, California, 2000. Morgan Kaufmann.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers
with online and active learning. Journal of Machine Learning Research, 6:1579–1619,
September 2005.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, PA, July 1992.
ACM Press.

Léon Bottou and Yann Le Cun. Large scale online learning. In Sebastian Thrun, Lawrence
Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Sys-
tems 16, Cambridge, MA, 2004. MIT Press.

Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, Lawrence D.
Jackel, Yann LeCun, Urs A. Muller, Edward Sackinger, Patrice Simard, and Vladimir N.
Vapnik. Comparison of classifier methods: a case study in handwritten digit recogni-
tion. In Proceedings of the 12th IAPR International Conference on Pattern Recognition,
Conference B: Computer Vision & Image Processing., volume 2, pages 77–82, Jerusalem,
October 1994. IEEE.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines,
2001a. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

24

Support Vector Machine Solvers

Chih-Chung Chang and Chih-Jen Lin. Training ν-support vector classifiers: Theory and
algorithms. Neural Computation, 13(9):2119–2147, 2001b.

Chih-Chung Chang, Chih-Wei Hsu, and Chih-Jen Lin. The analysis of decomposition meth-
ods for support vector machines. IEEE Transactions on Neural Networks, 11(4):1003–
1008, 2000.

Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin. A study on SMO-type decomposition
methods for support vector machines. IEEE Transactions on Neural Networks, 17:893–
908, July 2006.

Ronan Collobert. Large Scale Machine Learning. PhD thesis, Université Paris VI, 2004.

Ronan Collobert, Fabian Sinz, Jason Weston, and Léon Bottou. Large scale transductive
svms. Journal of Machine Learning Research, 7:1687–1712, September 2006.

Corinna Cortes and Vladimir N. Vapnik. Support vector networks. Machine Learning, 20:
pp 1–25, 1995.

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second order
information for training svm. Journal of Machine Learning Research, 6:1889–1918, 2005.

Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel representa-
tions. Journal of Machine Learning Research, 2:243–264, 2001.

Tobias Glasmachers and Christian Igel. Maximum-gain working set selection for SVMs.
Journal of Machine Learning Research, 7:1437–1466, July 2006.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 3rd edition, 1996.

Don Hush and Clint Scovel. Polynomial-time decomposition algorithms for support vector
machines. Machine Learning, 51:51–71, 2003.

Don Hush, Patrick Kelly, Clint Scovel, and Ingo Steinwart. QP algorithms with guaran-
teed accuracy and run time for support vector machines. Journal of Machine Learning
Research, 7:733–769, 2006.

Thorsten Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C. J. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learn-
ing, pages 169–184, Cambridge, MA, USA, 1999. MIT Press.

S. Sathiya Keerthi and Elmer G. Gilbert. Convergence of a generalized SMO algorithm for
SVM classifier design. Machine Learning, 46:351–360, 2002.

S. Sathiya Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya, and Krishna R. K.
Murthy. A fast iterative nearest point algorithm for support vector machine classifier
design. Technical Report Technical Report TR-ISL-99-03, Indian Institute of Science,
Bangalore, 1999.

25

Bottou and Lin

S. Sathiya Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya, and Krishna R. K.
Murthy. Improvements to Platt’s SMO algorithm for SVM classifier design. Neural
Computation, 13:637–649, 2001.

Damiel Lai, Nallasamy Mani, and Marimuthu Palaniswami. A new method to select working
sets for faster training for support vector machines. Technical Report MESCE-30-2003,
Dept. Electrical and Computer Systems Engineering Monash University, Australia, 2003.

Chih-Jen Lin. A formal analysis of stopping criteria of decomposition methods for support
vector machines. IEEE Transactions on Neural Networks, 13(5):1045–1052, 2002.

Chih-Jen Lin. On the convergence of the decomposition method for support vector machines.
IEEE Transactions on Neural Networks, 12(6):1288–1298, 2001.

Niko List and Hans-Ulrich Simon. A general convergence theorem for the decomposition
method. Technical report, Fakultät für Mathematik, Ruhr Universität Bochum, 2004.

Gaëlle Loosli and Stéphane Canu. Comments on the “Core Vector Machines: Fast SVM
training on very large data sets”. Technical report, INSA Rouen, July 2006. Submitted
to JMLR.

Nils J. Nilsson. Learning machines: Foundations of Trainable Pattern Classifying Systems.
McGraw–Hill, 1965.

Edgar Osuna, Robert Freund, and Frederico Girosi. Support vector machines: Training and
applications. Technical Report AIM-1602, MIT Artificial Intelligence Laboratory, 1997.

Laura Palagi and Marco Sciandrone. On the convergence of a modified version of SVMlight

algorithm. Optimization Methods and Software, 20(2-3):315–332, 2005.

John Platt. Fast training of support vector machines using sequential minimal optimization.
In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods
— Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

Craig J. Saunders, Mark O. Stitson, Jason Weston, Bottou Léon, Bernhard Schölkopf,
and J. Smola, Alexander. Support vector machine reference manual. Technical Report
CSD-TR-98-03, Royal Holloway University of London, 1998.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

Bernhard Schölkopf, Alexanxer J. Smola, Robert C. Williamson, and Peter L. Bartlett.
New support vector algorithms. Neural Computation, 12:1207–1245, 2000.

Bernhard Schölkopf, John Platt, John Shawe-Taylor, Alexander J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Compu-
tation, 13:1443–1471, 2001.

Ingo Steinwart. Sparseness of support vector machines—some asymptotically sharp bounds.
In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

26

Support Vector Machine Solvers

Ingo Steinwart and Clint Scovel. Fast rates for support vector machines using gaussian
kernels. Technical Report LA-UR-04-8796, Los Alamos National Laboratory, 2004. to
appear in Annals of Statistics.

Norikazu Takahashi and Tetsuo Nishi. Rigorous proof of termination of SMO algorithm for
support vector machines. IEEE Transactions on Neural Networks, 16(3):774–776, 2005.

Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Very large SVM training using
Core Vector Machines. In Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics (AISTAT’05). Society for Artificial Intelligence and Statistics,
2005.

Robert J. Vanderbei. Interior-point methods: Algorithms and formulations. ORSA Journal
on Computing, 6(1):32–34, 1994.

Vladimir N. Vapnik. Estimation of dependences based on empirical data. Springer Series in
Statistics. Springer Verlag, Berlin, New York, 1982.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York,
1995. ISBN 0-387-94559-8.

Vladimir N. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24:774–780, 1963.

Vladimir N. Vapnik, T. G. Glaskova, V. A. Koscheev, A. I. Mikhailski, and A. Y. Chervo-
nenkis. Algorihms and Programs for Dependency Estimation. Nauka, 1984. In Russian.

Changjaing. Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using
the improved fast Gauss transform. In L. K. Saul, Y. Weiss, and L. Bottou, editors,
Advances in Neural Information Processing Systems 17, pages 1561–1568. MIT Press,
Cambridge, MA, 2005.

27

