GALATEA: A C-LIBRARY FOR CONNECTIONIST APPLICATIONS
C. Mejia, L. Bottou, F. Fogelman Soulié

Laboratoire de Recherche en Informatique, bit. 490
Université de Paris Sud- 91 405 ORSAY Cedex - FRANCE

1 Introduction

Neural Networks are techniques which are increasingly used for real world applications. However, developing such
applications does not simply mean applying academic ideas or algorithms: efficient programming tools and
environments are required if one wants to efficiently design networks with optimal performances.

The ESPRIT-Pygmalion project has been set up to achieve a complete programming environment for connectionist
applications. This environment will include both a Hich Level and Intermediate Level languages, a graphic monitor,
and 2 Libraries: one in C and the other in the HL Language. Partners in the project are Thomson (HLL), UCL (ILL
and graphic), IRIAC-LRI (Libraries) and INESC (C-Library). We present here the C-Library, Galatea, which has
been designed so as to allow the partners in Pygmalion to easily develop and test their applications.

2 Galatea: the Algorithms C-Library in the Pygmalion Project

The C-algorithms library Galatea was intended to provide to partners in the ESPRIT-Pygmalion project a tool
including efficient versions of the algorithms most commonly used for the applications developed within the
project, i.e. image and speech processing. When developing the Library, we tried to enforce a unified description of
the algorithms to ease the designing process of algorithms modules and further developments in the High Level
Language of the Pygmalion environment.

2.1 User paradigm

A critical decision consists in defining the kind of objects the user will deal with. We might have defined a very
general data structure, but it would have been 100 complex for most algorithms, and too restrictive for some others.
Unless we use an ad-hoc compiler, such a choice would thus lead to inefficient programs for most algorithms and
almost useless programs for other algorithms!

We describe a network as a black box, which has an input vector and an output vector. We also provide some ways
10 access internal variables as vectors. The user will first define a variable for its network, he will also initialize
this network, with a specific network topology. He can then access the input and output vectors, the internal states,
the weights; and set parameters. He can also operate the network: i.e. train the network, or retrieve results with it.

2.2 Vector-oriented data structures

We do not enforce a high level data structure, but a rather low level data structure: vectors of floating point numbers,
The states of a single layer are grouped into a single vector, as well as the weights, and more generally all the
internal data. This philosophy has a drawback: neural computations can poorly be deduced from the vector structure,
except_in some very simple cases (fully connected networks, for instance). However, in many applications, data

nat Y come as sets of vector: S.
....... “mmm.:::tlln IVA I '
BLULLRNANANY

Function
XIVI4K2YZ+,

. Figure 1! A recomputation rule example. The execution of this rule ﬁll compute the dot product x.y into z.

2.3 Computation rules

We also provide support routines for specifically describing neural computations. These routines are based on the
idea of recomputation rules. A recomputation rule (fig.1) closely looks like a formula in a spreadsheet. They are
basically composed of a function, and of a list of pointers to vectors elements. When a rule is executed, the list of
pointers is passed to the function, which then performs a given computation.

Rule management functions include rules creation, extension, deletion, and execution. The rule system avoids the
definition of complex data structures for designing the network architecture. They will simply describe the
computations to be done rather than the network structure. These functions will be more precisely described below.

3 Galatea organization

3.1 Components
We describe now more precisely the Galatea components. Galatea has five main parts (fig.2):

The Algorithm Independent Part (AIP) contains the computation support routines. It includes functions
performing on vectors, functions for dealing with recomputation rules, and some basic routines for memory and
€ITor management.

TheTools Library contains routines for managing standardized data files, network architecture files, and functions
for implementing the most common classification criteria.

The Algorithm Modules, contain the programs for the connectionist algorithms implemented. .
Algorithm Evaluation Programs are text orienied front-ends for programmer-designed modules. These front-ends
allow the users to rapidly test various algorithms for their applications.

These programs will be written using a standard Environment Library that implements most of the text oriented
front-ends. Writing an evaluation program merely amounts in defining the command names, the associated C
functions, and calling a MainLoop function. The Environment Library provides functionalities for managing
help files, command files, and calling the system functions.

Algurithe Indepeadest Part TeslsLibrary

Network computation subroutines [{§ Data files1/O subroutines
Memory allocation Network architecture specific.
Error processing Performances measures

User Interaction Routines
| Help files routines

User tailored

T Algorithm Evaluation
Application programs Programs

Figure 2: Organization of Galatea

3.2 Algorithms modules in Galatea
Galatea includes at present a large range of algorithms (fig.3). More will be added in the near future.

LAM Linear Associative memories (Pseudo-Inverse Methods)
Hop Hopfield nets

Kan Kanerva associative memory

BAM Bi-Directional Associative Memory

GBP Gradient Back Propagation algorithm
GBPF Gradient Back Propagation with Feed-back
TMap Kohonen Topological maps

SimAnn Simulated Annealing

BM Boltzmann Machines

ART1 Adaptive Resonance Theory

LVQ Learning Vector Quantization

Figure 3: Modules implemented in Galatea

4 How to use Galatea?

4.1 Using the C library.

The easiest way to use Galatea is through the Algorithm Evaluation Programs. These small programs are text-
oriented interfaces to the Galatea functions. They are able to work with one algorithm and one network only, They
share a common environment, common file formats, and similar commands.

Many users, however, need more powerful or more specific network programming. They should then write a C
language program, that directly calls the Galatea routines. So, they gain the ability to deal with many networks,
using different algorithms. They also can compile and link a complete C program.

4.2 An example

We show in figure 4 a program written using the GBP evaluation program to perform a task of hand-written digit
recognition [Bottou 89].

#

a hand written numbers classifier

#

echo "--loading the data ..."

data load numin.dat numout.dat { load the data files)
echo "--defining training set"™

data training 0 319 {use 320 first patterns for training}
echo "--defining test set"™

data test 320 479 {use 160 following patterns for test}
echo "--loading the network ..."

network load handnum.net {load network topology file}
echo "--setting parameters" {this is a MLP with shared weights}
forget inverse 2.4 {set weights initial values)
epsilon sqgrt 0.1 {set iteration step)

echo "--set classify criteria by maximal range cell™
classify max

echo "--status display"

show width 80

status {display the status of network and data}
echo "“-~training performance (before learning)*®

perf range O 9 {compute and display performances for 10 first digits}
echo "--loading weights ...™

load-weights handnum.weil {load weights from another learning session}
echo “--training performance (after learning)™

perf range 0 9 {compute and display performances for 10 first digits}

Figure 4: Command file in the GBP evaluation environment

As can be seen from this command file, programming a multi-layer network, even with a complicated architecture
(here with shared weights [Lang, 88, Botton 90]), is very easy because of the use of the predefined functions
provided by Galatea in the Tools Library.

The previous command file produces the following script file (fig. 5):

Pygmalion C library - GBP evaluation program

(C) IRIAC 1989

--loading the data ...

-~-defining training set

-~defining test set

--loading the network ...

~--setting parameters

--set classify criteria by maximal range cell

—--status display

Network : loaded from <handnum.net>
aged <0> sweeps, epsilon sqrt <0.1000>
momentum not allowed, decay not allowed

Data : <480> patterns (input+output) loaded

Patterns : a <4B0 x 256> matrix

Desired : a <480 x 10> matrix

Training set : from <0> to <319>

Test set : from <320> to <479>

Classify : <max>

Function : <standard sigmoid (~1.7 to 1.7)>

—-training performance (before learning)

Set {0,9}: sweep O . Error= 0.29643, Performance= 20.00

~~loading weights ...

--training performance (after learning)

Set {0,9): sweep O , Error= 0.06378, Performance=100.00

gbp> forget sqrt 1.5 {here Galatea lets you type-in new commands}
gbp> epsilon sqgrt 0.1

gbp> run 1 4

S— {performances on}

Set {0,319): sweep 1 , Error= 0.16296, Performance= 55.00 {learning set)}
Set {320,479): sweep 1 , Error= 0.17202, Performance= 38.75 {test set}
Set {0,319}: sweep 2 , Error= 0.13862, Performance= 77.81

Set {320,479): sweep 2 , Error= 0.15280, Performance= 67.50

Set {0,319)}: sweep 3 , Error= 0.,12355, Performance= B9.38

Set {320,479}: sweep 3 ., Error= 0.13975, Performance= 79.38

Set {0,319}: sweep 4 , Error= 0.11456, Performance= 93.75

Set {320,479): sweep 4 , Error= 0.13253, Performance= 85.63

Figure 5: script file in Galatea
5 C)onclusion

We have presented the Galatea Library which has been developed for the ESPRIT-Pygmalion project. Galatea intends
to offer a fast access to the most commonly used algorithms at the present time. In Galatea, the user can easily
incorporate the library functions into his own program implementation for his specific application. In addition to
the inherent ability to switch from one algorithm to another, when testing an application, through its friendly text-
environment, Galatea invites us to standardize the programming style. Galatea has been widely distributed both
within and out of the Pygmalion consortium. Comments about its use for developing real size applications are
expected from the users.

Galatea has been developed by the IRIAC team, at LRI (Université de Paris-Sud). INESC (Portugal) contributed
some of the modules. The Library is available upon request from the authors.

References

L. Bottou, F. Fogelman Soulié, P. Blanchet, J.S. Blanchard: Speaker independent isolated digit recognition: multi
layer perceptrons vs dynamic time warping. Neural Networks. To appear.

K52Lan58, G.E. Hinton: The development of TDNN architectures for speech recognition. Tech. Report CMU-CS-88-
152, 1988.

C. Mejia, L. Bottou: C Library preliminary specifications. Document 1, ESPRIT Pygmalion project n°2059, 1989.
L. Bottou, X. Driancourt, C. Mejia, E. Viennet: Evaluation of the C-Library. R140-3 Report M12. ESPRIT
Pygmalion project n°2059, 1989.

