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1 Introduction

The term “Neural Networks” has been used for a variety of
ideas, most of which have been presented as solutions to prob-
lems in Pattern Recognition. It is often difficult to tell whether
results presented in Neural Network papers are really signifi-
cant in practical applications, compared with more conventional
methods. We set out to compare several different neural net-
work and other methods on a common dataset relevant to Au-
tomatic Speech Recognition. The particular problem chosen
(speaker-independent EE-set recognition) is rather specialised,
but particularly difficult.

Speaker-independent EE-set word recognition is very difficult,
because some of the distinctions are rather subtle and there
are large variations due to the speaker. It is also of practical
importance, because a spelling mode would be useful in some
applications of speech recognition. Even people sometimes re-
sort to spelling out difficult names or other uncommon words.
(Most of the errors in alphabet-word recognition are due to
the EE-set.) Because the sequential structure of these words is
relatively simple we might expect basically static methods (all
except the HMMs and TDNN in our case). to have an unfair
advantage compared with real speech problems.

Among the studies which have concentrated on speaker inde-
pendent EE-set recognition there have been impressive results
using statistical pattern recognition applied to the output of
specially designed feature detectors [1] and HMM systems using
discrimination-based training [2]. (The datasets used in these
references included the American pronunciation of “Z”.)

2 Data

The data is a portion of a larger dataset from British Tele-
com Research Labs (BTRL). It is part of one of the CONNEX
datasets which BTRL are preparing for experiments on neural
networks. 104 speakers had been asked to say the (British) En-
glish names of the letters of the alphabet. We used only the first
utterance, by each speaker, of the “EE” words: “B, C, D, E, G,
P, T, V” (not “Z”, since “Z” is not pronounced with an “ee” in
British English). Endpoints of the utterances had been noted
using a semi-automatic system. We used only the data between
these endpoints. Durations ranged from 260ms to 930ms, with
a mean of approximately 470ms. The speakers had been divided
into training and test sets, approximately balanced for sex and
age. Thus the training and testing sets consisied of approxi-
mately 400 words each with different speakers in training and
test sets.

Initial acoustic analysis, which was the same for all experi-
ments, used the “SRUbank” filierbank analysis system. This
has 27 bandpass filters, followed by squaring, lowpass filters,
and downsampling to the “frame rate”. Filters 2 to 20 are com-
patible with the 19 channels of the JSRU Vocoder analysis [3].
Filter 1 is a lowpass filter (zero frequency bandpass). Filters

21 to 27 extend beyond the vocoder’s 19 channels from 3.2kHz
up to 10kHz. The frequency scale is approximately the same as
mel. The lowpass filters are designed to be suitable for frame
rates down to 100 frames per second, which is the rate used
here.

Most experiments used the first eight cosinc components of
this spectrum representation, producing a represenation usu-
ally known as “mel frequency cepstrum coefficients” (mfccs).
One of the mfccs is the average value of the log power spectrum
(see, for example, [4]). The HMM methods add up scores for a
sequence of frames, and their performance may be improved by
augmenting the individual vectors so they can be more sensitive
to higher-order properties. Some experiments used augmented
frames of mfccs plus differences between values in the previous
and next frames (“delta-cepstrum”). For some experiments the
data was truncated: only the first 26 frames of data were used.
(This is the length of the shortest utterance.)

3 Pattern Recognition Systems Used

In order to present a meaningful evaluation of the performance
of these “Neural Network” methods we have included standard
gencral purpose methods as well as existing methods specialised
for the application area in our comparison.

3.1 General-Purpose Methods

¢ Nearest Class Mean (NCM)

There is one reference point for each class. Its position
is the mean of the training data for the class. We com-
pute Euclidean distances from a test pattern to all the
reference points. The class of the closest reference point
is the answer. Data was 27 channel or 8 mfccs, truncated.

(Reference points and test vectors are 26 * 27 or 26 + 8
dimensional)

k-Nearest Neighbours (kNN)

Euclidean distances are computed to all 400 training sam-
ples. The class with most representatives among the k
nearest neighbours wins. Results are produced for vari-
ous values of k, for 27 channel. and 8 mfccs, truncated.

3.2 Speech-Specific Methods

15-state HMM Word Models

15-state hidden Markov models, with one Gaussian out-
put distributions per state, diagonal covariance matrix es-
timated for each state. Transitions are to same state (re-
peat loops) or to next state. Training uses the Forward-
Backward algorithm to compute posterior probability dis-
tributions, and the Baum-Welch re-estimation to hill-
climb on the likelihood of the data for a given class.



In the basic system each observation is an 8 component
vector (the 8 mfccs). Two variations and their combina-
tion were tried: a) Each observation is a concatenation of
the 8 mfccs and 8 differences between values in the pre-
vious and the next frame. b) The initial and final states
are “tied” so that their parameters are identical (ie. a
silence state), and states 6 to 14 are tied across models,
in an attempt to use the knowledge that the same vowel
is used in all words.

Template-style HMMs

Many dynamic programming template matching word
recognition methods can be thought of as particular forms
of HMM-based recogniser [5]. Picone {6] suggests using
as many states as the average number of frames in the
word, and a fixed transition matrix allowing repeats and
single-state skips, with probabilities based on the aver-
age distances between frames corresponding to the same
sound. The most template-like methods tried estimated
a mean for each state, and a common diagonal covariance
matrix. The recogniser could then use Euclidean distances
on weighted acoustic veciors. Resulis were also produced
for the case where a diagonal covariance matrix is esti-
mated for each state separatcly.

3.3 Network Methods

All these networks have 8 outputs (one for each class) and the
class with the largest output is taken as the response. The map-
ping from inputs to outputs is controlled by weights, which are
adjusted to minimise the difference between the outputs and
the desired outputs. Large enough networks are always able
to fit the training data well — the real problem is to obtain
good performance on unseen data (the test data in these exper-
iments). For most networks the smaller the size of the network
the better the performance on the training data will carry over
to test data. It is however necessary to have a certain minimum
size of network in order to cope with the scale of the problem.
For best results any prior knowledge about the structure of the
patterns should be incorporated into the structure of the net-
work. Most of the network methods investigated are without
special structure. (For instance the two-dimensionality of set
of inputs is lost.) In the Locally connected MLPs used here,
we exploit the idea that a set of properties of short segments
of the signal should be sufficient. (The same basic idea lies be-
hind the HMM systems too.) The TDNN version also imposes
a shift-invariance.

e Radial Basis Function Networks (RBFn)

A Radial Basis Function Network consists of a nonlin-
ear mapping followed by a linear mapping [8]. The input
noclinear mapping computes functions of the distances
between the input vector and a set of reference vectors.
These “radial basis functions” are the input to a linear
mapping to the output nodes. We used Euclidean distance
() to reference vectors, and an z’logz nonlinearity.

The simplest way to train an RBFN is to fix the reference
vectors (we used a subset of the training points) and solve
for output weights which produce minimum mean square
error. We randomised the order of the training data and
used the first n points as centres, for n = 10 to 200 in
steps of 10.

Kanerva Memory Model (KMM)

The modified Kanerva model [9,10] is a static network
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consisting of a fixed non-linear mapping (location match-
ing) followed by a single layer of adaptive links. The KMM
can be thought of as a radial basis function network with a
threshold nonlinearity. The present system used random
points in input space for reference vectors.

The modified Kanerva model experiment was performed
with the full 27 element input vectors of filter outputs.
Each training pattern was presented in many versions,
with offsets from the start of up to 30 frames, in tenths
of a frame. In this experimant 9600 location units werc
used.

For testing the output of the model was determined by
taking the majority vote of the output units as the input
window was scanned across the spectral data. About 30
different positions in the input buffer were considered in
each case.

Fully-connected semi-linear logistic multi-layer percep-
trons (MLPn)

A series of “no frills” backpropagation networks [7], with
one layer of hidden units. Results were produced for vari-
ous numbers of hidden units (5 to 40 in steps of 5), using
one run for each, with small random starting weights.

MLP with NCM initialisation (MLPNCM)

A set of weight values was calculated for a layered logis-
tic MLP network which was functionally equivalent to the
nearest class mean classifier. The perpendicular bisectors
of each pair of class means were implemented as hidden
unit hyperplanes. Those hyperplanes which did not con-
tribute to the NCM decision boundaries were removed.
The second layer of weights formed the conjunction of
the relevant hidden unit outputs. The neiwork was then
trained using the conjugate gradients optimization scheme
(an essentially parameterless method). The need for ex-
ploratory experiments with different numbers of hidden
units and different random weight starts is obviated by
this technique (the results are tor the first and ouly run
for each data set). The 27 channel data MLP had 18 hid-
den units. The 8 channel mfec data MLP had 20 hidden
units.

Multi-layer network with independent local connections

(LMLP)

Most of the results used truncation to 26 frames, but as
a check one set of results was obtained using 50 frames
of 27 channels. For the 26 frame cases, the input layer
is divided into 13 overlapping windows of three frames
cacl. A dluster of 10 hidden units is connected to each
window. This first hidden layer is divided into 4 windows,
each comprising four sets of 10 units, overlapping by one
sct. Six cells in the second hidden layer arc connected
to each of these 4 windows. Th- second hidden layer is
fully connecied to an eight cell output layer. During the
training we added Gaussian noise to the input data. Both
the learning rate and the amplitude of the noise were pro-
gressively reduced during training. Results were produced
using the 27 channel data, 8 mfccs, 12 mfecs, and 12 mfces
plus 12 time differences.

Time delay neural network (TDNN)

These networks are of the same configuration as the
LMLPs, but weights which are in equivalent positions at
different times in the pattern are “shared” (constrained to
have the same values) [11,12]. This forces the lower levels
of the network to be shift-invariant, and instantiates the



idea that the absolute time of an event is not important.
This general theme of constrained back-propagation has
been addressed in [13]. The experimental procedure was
the same as for LMLP.

4 Results

Here we report only the percentage error rates on the test data
(see tables 1-5). For some methods there is an order parame-
ter, which changes the number of degrees of freedom, or alters
the amount of smoothing of the input distributions. In these
cases we have tried to indicate the range over which the per-
formance is good. Ideally these parameters would be estimated
from the available training data, by use of cross-validation or
equivalent techniques. With this exception, any parameters of
the methods were left in their default settings (performance was
not optimised on the test data).

5 Discussion

The first thing to note about the results is the poor performance
of all the methods. It is conceivable that an automated tele-
phone directory assistance system could make use of a speech
front-end with a 15% error rate on the EE-set, but we have no
reason to believe that this performance would be maintained in

the field.
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Although not reported in detail here, the systems differed
greatly in the amount of computation and storage needed for
training and for recogrition. It could be argued that for a
speaker-independent word recogniser the training time is irrel-
evant, as long as it is feasible. On the other hand, any serious
attempt at this task would use a very much larger training set,
from many thousands of speakers.

Five systems had error rates of about 17% (measured on the test
set). They were the fully connected MLP started from NCM,
the locally-connected MLP, the RBF networks, and two HMMs.
The MLPs need about an order of magnitude less computation
at recognition time than the other systems. The best result
(14%) was by an HMM, which was the most expensive HMM
tested. All three best HMM systems used cepstrum differences.
For the systems that rely on Euclidean distances (NCM, kNN,
RBF), the 8mfccs performed better than the full 27 channel
data. In other words, smoothing the log power spectrum re-
moves confusing detail. It is rather surprising that the cepstral
inputs perform so badly with the locally connected networks.

As expected, the speech-specific methods (HMM and TDNN)
did not show an advantage on this data. This is well segmented
data, whose discriminative areas are in predictable positions.
However we can say that the large reduction of the number of
different weights for the TDNN compared with the LMLP has
not reduced the performance much.

This is only a preliminary comparison, and has shown up
many conditions which should be tested so that arbitrary differ-
ences between methods are minimised. For example, the HMM

Input | NCM =1 | Best range for k | Error range
27ch || 44% || 37% 8-19 30% - 32%
8mfcc | 31% | 28% 4-11 22% — 24%

Table 1: Error rates for Nearest Neighbour methods (including

NCM)
15 states Template Style
Input Basic | Tied | Common variances | Separate variances
8 mices 37% | 28% 24% 25%
8mfces + diffs || 23% | 17% 17% 14%

Table 2: Error rates for HMM methods

Input || Best range for n | Error range | Kanerva
27ch 70 - 240 22% - 24% | 25% |
8mfcc 155 — 230 17% - 18%

Table 3: Error rates for Radial Basis Function networks

Random start NCM start
Input || Best range for #HU | Error range | #HU | Error
27¢h 20 19%
8mfcc 25 — 40 21% 22% 18 17%

Table 4: Error rates for fully-connected MLPs

Independent weights (LMLP) || Shared weights (TDNN)
Input num wis Error num wis Error
26*27 ch 1450 17% 373 20%
50*27ch 2900 20% 457 25%
26*8mfcc 631 32% 316 35%
26*12mfec 865 25% 328 27%
26%(12+12d 1333 31% 364 35%

Table 5: Error rates for locally connected MLPs



methods could be tested on the truncated data, and the Eu-
clidean distance based methods (NCM, kNN, RBF) could use
the data weighting derived in the template-style HMM (or some
other weighting, such as that produced by Linear Discriminant
Analysis).

As a reference point we would like to know the performance
of human listeners, using both the original waveforms and re-
synthesised from the parametric representation used in the ex-
periments.

Finally, there are many other interesting kinds of neural network
worth trying out on this data, together with hybrids of HMMs
and networks.
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