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Abstract
Adaptive gradient methods such as AdaGrad and
its variants update the stepsize in stochastic gra-
dient descent on the fly according to the gradi-
ents received along the way; such methods have
gained widespread use in large-scale optimiza-
tion for their ability to converge robustly, with-
out the need to fine-tune parameters such as the
stepsize schedule. Yet, the theoretical guaran-
tees to date for AdaGrad are for online and con-
vex optimization. We bridge this gap by provid-
ing strong theoretical guarantees for the conver-
gence of AdaGrad over smooth, nonconvex land-
scapes. We show that the norm version of Ada-
Grad (AdaGrad-Norm) converges to a stationary
point at the O(log(N)/

√
N) rate in the stochas-

tic setting, and at the optimal O(1/N) rate in
the batch (non-stochastic) setting – in this sense,
our convergence guarantees are “sharp”. In par-
ticular, both our theoretical results and extensive
numerical experiments imply that AdaGrad-Norm
is robust to the unknown Lipschitz constant and
level of stochastic noise on the gradient.

1. Introduction
Consider the problem of minimizing a differentiable func-
tion F : Rd → R via stochastic gradient descent (SGD);
starting from x0 ∈ Rd and stepsize η0 > 0, SGD iterates
until convergence

xj+1 ← xj − ηjG(xj), (1)

where ηj > 0 is the stepsize at the jth step and G(xj)
is the stochastic gradient in the form of a random vec-
tor satisfying E[G(xj)] = ∇F (xj) and having bounded
variance. SGD is the de facto standard for deep learn-
ing optimization problems, or more generally, for large-
scale optimization problems where the loss function F (x)
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can be approximated by the average of a large number
n of component functions, F (x) = 1

n

∑n
i=1 fi(x). It

is more efficient to measure a single component gradi-
ent ∇fij (x), ij ∼ Uniform{1, 2, . . . , N}, and move
in the noisy direction Gj(x) = ∇fij (x), than to com-
pute a full gradient ∇F (x) = 1

n

∑n
j=1∇fj(x) (Bottou

& Bousquet, 2008). In the stochastic setting, the ques-
tion of how to choose the stepsize η > 0 or stepsize
schedule {ηj} is difficult. The classical Robbins/Monro
theory (Robbins & Monro, 1951) says that in order for
limk→∞ E[‖∇F (xk)‖2] = 0, the stepsize schedule should
satisfy

∞∑
k=1

ηk =∞ and
∞∑
k=1

η2k <∞; (2)

Yet, these bounds do not necessarily inform how to set the
stepsize in practice, where algorithms are run for a finite
iterations and the constants in the rate of convergence matter.

1.1. Adaptive Gradient Methods

Adaptive stochastic gradient methods such as AdaGrad (in-
troduced independently by Duchi et al. (2011) and McMa-
han & Streeter (2010)) have been widely used in the past
few years. AdaGrad updates the stepsize ηj = η/bj on
the fly given information of all previous (noisy) gradients
observed along the way. The most common variant of Ada-
Grad updates an entire vector of per-coefficient stepsizes.
To be concrete, for optimizing a function F : Rd → R,
the “coordinate” version of AdaGrad updates d scalar pa-
rameters [bj ]`, ` = 1, 2, . . . , d at the j iteration – one
for each [xj ]` coordinate of xj ∈ Rd – according to
([bj+1]`)

2 = ([bj ]`)
2 + ([∇F (xj)]`)2 in the noiseless set-

ting, and ([bj+1]`)
2 = ([bj ]`)

2 + ([G(xj)]`)
2 in the noisy

gradient setting. This common use makes AdaGrad a vari-
able metric method and has been the object of recent criti-
cism for machine learning applications (Wilson et al., 2017).

One can also consider a variant of AdaGrad which up-
dates only a single (scalar) stepsize according to the sum
of squared gradient norms observed so far. In this work,
we focus instead on the “norm” version of AdaGrad as a
single stepsize adaptation method using the gradient norm
information, which we call AdaGrad-Norm. The update in
the stochastic setting is as follows: initialize a single scalar
b0 > 0; at the jth iteration, observe the random variable Gj
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such that E[Gj ] = ∇F (xj) and iterate

xj+1 ← xj − η
G(xj)

bj+1
with b2j+1 = b2j + ‖G(xj)‖2

where η > 0 is to ensure homogeneity and that the units
match. It is straightforward that in expectation, E[b2k] =
b20 +

∑k−1
j=0 E[‖G(xj)‖2]; thus, under the assumption of

uniformly bounded gradient ‖∇F (x)‖2 ≤ γ2 and uni-
formly bounded variance Eξ

[
‖G(x; ξ)−∇F (x)‖2

]
≤ σ2,

the stepsize will decay eventually according to 1
bj
≥

1√
2(γ2+σ2)j

. This stepsize schedule matches the schedule

which leads to the rates of convergence for SGD in the case
of convex but not necessarily smooth functions, as well
as smooth but not necessarily convex functions (see, for
instance, Agarwal et al. (2009) and Bubeck et al. (2015)).
This observation suggests that AdaGrad-Norm should be
able to achieve convergence rates for SGD, but without hav-
ing to know Lipschitz smoothness parameter of F and the
parameter σ a priori to set the stepsize schedule.

Theoretically rigorous convergence results for AdaGrad-
Norm were provided in the convex setting recently (Levy,
2017). Moreover, it is possible to obtain convergence rates
in the offline setting by online-batch conversion. However,
making such observations rigorous for nonconvex functions
is difficult because bj is itself a random variable which is
correlated with the current and all previous noisy gradients;
thus, the standard proofs in SGD do not straightforwardly
extend to the proofs of AdaGrad-Norm. This paper provides
such proof for AdaGrad-Norm.

Main Contributions Our results make rigorous and pre-
cise the observed phenomenon that the convergence behav-
ior of AdaGrad-Norm is highly adaptable to the unknown
Lipschitz smoothness constant and level of stochastic noise
on the gradient: when there is noise, AdaGrad-Norm con-
verges at the rate of O(log(N)/

√
N), and when there is no

noise, the same algorithm converges at the optimal O(1/N)
rate like well-tuned batch gradient descent. Moreover, our
analysis shows that AdaGrad-Norm converges at these rates
for any choices of the algorithm hyperparameters b0 > 0
and η > 0, in contrast to GD or SGD with fixed stepsize
where if the stepsize is set above a hard upper threshold
governed by the (generally unknown) smoothness constant
L, the algorithm might not converge at all. Finally, we note
that the constants in the rates of convergence we provide are
explicit in terms of their dependence on the hyperparameters
b0 and η. We list our two main theorems (informally) in the
following.

For a differential non-convex function F with L-Lipschitz
gradient and F ∗ = infx F (x) > −∞, Theorem 2.1 im-
plies that AdaGrad-Norm converges to an ε-approximate

stationary point with high probability at the rate

min
`∈[N−1]

‖∇F (x`)‖2

≤O
(
γ(σ + ηL+ (F (x0)− F ∗)/η) log(Nγ2/b20)√

N

)
.

When there is no noise in the gradient, i.e., σ = 0, we can
improve this rate to the optimal O (1/N) rate of conver-
gence (see Theorem 2.2) without the additional log factor.

If the optimal value of the loss function F ∗ is known and
one sets η = F (x0)− F ∗ accordingly, then the constant in
our rate is close to the best-known constant σL(F (x0)−F ∗)
achievable for SGD with fixed stepsize η = η1 = · · · =
ηN = min{ 1

L ,
1

σ
√
N
} carefully tuned to knowledge of L

and σ, as given in Ghadimi & Lan (2013).

Extensive experiments in Section 4 shows that the robust-
ness of AdaGrad-Norm extends from simple linear regres-
sion to state-of-the-art models in deep learning, without
sacrificing generalization.

1.2. Previous Work

Theoretical guarantees of convergence for AdaGrad were
provided in Duchi et al. (2011) in the setting of online con-
vex optimization, where the loss function may change from
iteration to iteration and be chosen adversarially. AdaGrad
was subsequently observed to be effective for accelerating
convergence in the nonconvex setting, and has become a
popular algorithm for optimization in deep learning prob-
lems. Many modifications of AdaGrad with or without
momentum have been proposed, namely, RMSprop (Sri-
vastava & Swersky, 2012), AdaDelta (Zeiler, 2012), Adam
(Kingma & Ba, 2015), AdaFTRL(Orabona & Pal, 2015),
SGD-BB(Tan et al., 2016), AdaBatch (Defossez & Bach,
2017), SC-Adagrad (Mukkamala & Hein, 2017), AMS-
GRAD (Reddi et al., 2018), Padam (Chen & Gu, 2018),
etc. Extending our convergence analysis to these popular
alternative adaptive gradient methods remains an interesting
problem for future research.

Regarding the convergence guarantees for the norm ver-
sion of adaptive gradient methods in the offline setting, the
recent work by Levy (2017) introduces a family of adap-
tive gradient methods inspired by AdaGrad, and proves
convergence rates in the setting of (strongly) convex loss
functions without knowing the smoothness parameter L in
advance. Yet, that analysis still requires the a priori knowl-
edge of a convex setK with known diameter D in which the
global minimizer resides. More recently, Wu et al. (2018)
provids convergence guarantees in the non-convex setting
for a different adaptive gradient algorithm, WNGrad, which
is closely related to AdaGrad-Norm and inspired by weight
normalization (Salimans & Kingma, 2016). In fact, the
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Algorithm 1 AdaGrad-Norm

1: Input: Initialize x0 ∈ Rd, b0 > 0, η > 0 and N
2: for j = 1 to N do
3: Generate ξj−1 and Gj−1 = G(xj−1, ξj−1)
4: b2j ← b2j−1 + ‖Gj−1‖2
5: xj ← xj−1 − η

bj
Gj−1

6: end for

WNGrad stepsize update is similar to AdaGrad-Norm’s:

(WNGrad) bj+1 = bj + ‖∇F (xj)‖/bj ;
(AdaGrad-Norm) bj+1 = bj + ‖∇F (xj)‖/(bj + bj+1).

However, the guaranteed convergence in Wu et al. (2018)
is only for the batch setting and the constant in the conver-
gence rate is worse than the one provided here for AdaGrad-
Norm. Independently, Li & Orabona (2018) also proves the
O(1/

√
N) convergence rate for a variant of AdaGrad-Norm

in the non-convex stochastic setting, but their analysis re-
quires knowledge of of smoothness constant L and a hard
threshold of b0 > ηL for their convergence. In contrast to Li
& Orabona (2018), we do not require knowledge of the Lips-
chitz smoothness constant L, but we do assume that the gra-
dient∇F is uniformly bounded by some (unknown) finite
value, while Li & Orabona (2018) only assumes bounded
variance Eξ

[
‖G(x; ξ)−∇F (x)‖2

]
≤ σ2.

1.3. Notation

Throughout, ‖ · ‖ denotes the `2 norm. We use the notation
[N ] := {0, 1, 2, . . . , N}. A function F : Rd → R has
L-Lipschitz smooth gradient if

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd (3)

If L > 0 is the smallest number such that the above is
satisfied, then we write F ∈ C1

L and refer to L as the
smoothness constant for F .

2. AdaGrad Convergence
To be clear about the adaptive algorithm, we stateAdaGrad-
Norm update in Algorithm 1 for our analysis.

At the kth iteration, we observe a stochastic gradient
G(xk, ξk), where ξk, k = 0, 1, 2 . . . are random variables,
and such that Eξk [G(xk, ξk)] = ∇F (xk) is an unbiased
estimator of ∇F (xj). We require the following additional
assumptions: for each k ≥ 0,

1. The random vectors ξk, k = 0, 1, 2, . . . , are indepen-
dent of each other and also of xk;

2. Eξk [‖G(xk, ξk)−∇F (xk)‖2] ≤ σ2;

3. ‖∇F (xk)‖ ≤ γ uniformly.

The first two assumptions are standard (see e.g. Nemirovski
& Yudin (1983); Nemirovski et al. (2009); Bottou et al.
(2018)). The third assumption is somewhat restrictive as
it rules out strongly convex objectives, but is not an unrea-
sonable assumption for AdaGrad-Norm, where the adaptive
stepsize is a cumulative sum of all previous observed gradi-
ent norms.

Because of the variance in gradient, the AdaGrad-Norm
stepsize η

bk
decreases to zero roughly at a rate between

1√
2(γ2+σ2)k

and 1
σ
√
k

. It is known that AdaGrad-Norm

stepsize decreases at this rate (Levy, 2017), and that this
rate is optimal in k in terms of the resulting convergence
theorems in the setting of smooth but not necessarily convex
F , or convex but not necessarily strongly convex or smooth
F . Still, standard convergence theorems for SGD do not
extend straightforwardly to AdaGrad-Norm because the
stepsize is a random variable and dependent on all previous
points visited along the way. From this point on, we use the
shorthand Gk = G(xk, ξk) for simplicity of notation.
Theorem 2.1. Suppose F ∈ C1

L and F ∗ = infx F (x) >
−∞. Suppose that the random variables G`, ` ≥ 0, satisfy
the above assumptions. Then with probability 1− δ,

min
`∈[N−1]

‖∇F`‖2 ≤

(
2b0
N

+
2
√
2(γ + σ)√
N

)
Q
δ3/2

and min
k∈[N−1]

‖∇Fk‖2 ≤
4Q
Nδ

(
8Q
δ

+ 2b0

)
+

8Qσ
δ3/2
√
N

where

Q =
F0 − F ∗

η
+

4σ + ηL

2
log

(
20N(γ2 + σ2)

b20
+ 10

)
.

Due to page limit, we give proof for the first bound, i.e.,

min
`∈[N−1]

‖∇F`‖2 ≤

(
2b0
N

+
2
√
2(γ + σ)√
N

)
Q
δ3/2

in Section 3 while deferring the second one to the appendix.

This result implies that AdaGrad-Norm converges starting
from any value of b0 for a given η. To put this result in
context, we can compare to Corollary 2.2 of Ghadimi & Lan
(2013), which implies that under the same conditions and
Assumption (1) and (2) but not (3), if the Lipschitz constant
L and the variance σ are known a priori, and the step-size is

ηj =
1

bj
=

1

b
= min

{
1

L
,

1

σ
√
N

}
, j = 0, 1, . . . , N−1,

then with probability 1− δ

min
`∈[N−1]

‖∇F`‖2 ≤
2L(F0 − F ∗)

Nδ
+

(L+ 2(F0 − F ∗))σ
δ
√
N

.
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Thus, essentially, we match the O(1/
√
N) rate of Ghadimi

& Lan (2013), but without a priori knowledge of L and σ.
The constant in theO(1/

√
N) rate of AdaGrad-Norm scales

according to σ2 (up to a logarithmic factors in σ) while the
results with well-tuned stepsize scales linearly with σ.

We reiterate however that the main emphasis in Theorem 2.1
is on the robustness of the AdaGrad-Norm convergence to its
hyperparameters η and b0, compared to plain SGD’s depen-
dence on its parameters η and σ. Although the constant in
the rate of our theorem is not as good as the best-known con-
stant for stochastic gradient descent with well-tuned fixed
stepsize, our result suggests that implementing AdaGrad-
Norm allows one to vastly reduce the need to perform labori-
ous experiments to find a stepsize schedule with reasonable
convergence when implementing SGD. Practically, our re-
sults imply a good strategy for setting the hyperparameters
when implementing AdaGrad-Norm: set η = (F (x0)−F ∗)
(if F ∗ is known) and set b0 > 0 to be a very small value.
If F ∗ is unknown, then setting η = 1 should work well for
a wide range of values of L, and in the noisy case with σ2

strictly greater than zero.

We note that for the second bound in 2.1, in the limit as
σ → 0 we recover an O (log(N)/N) rate of convergence
for noiseless gradient descent. We can establish a stronger
result in the noiseless setting using a different method of
proof, removing the additional log factor and Assumption 3
of uniformly bounded gradient. We state the theorem below
and defer our proof to the appendix.
Theorem 2.2. Suppose that F ∈C1

L with
F ∗= infx F (x)>−∞. Consider AdaGrad in deterministic
setting with following update,

xj = xj−1 −
η

bj
∇Fj−1 with b2j = b2j−1 + ‖∇Fj−1‖2

Then minj∈[N ] ‖∇F (xj)‖2 ≤ ε for
if b0

η
≥ L :

N=1 +
⌈

2(F (x0)−F∗)(b0+2(F (x0)−F∗)/η)
ηε

⌉
,

if b0
η

< L :

N=1 +
⌈

(ηL)2−b20
ε

+
4
(
(F (x0)−F∗)/η+

(
3
4
+log

(
ηL
b0

))
ηL

)2

ε

⌉
.

3. Proof of Theorem 2.1
We first introduce two important lemmas in Subsection 3.1
and give the proof of the first bound in Subsection 3.2, and
defer the proof of the second bound to the appendix.

3.1. Ingredients of The Proof

The following two lemmas will be used in the proof for
Theorem 2.1. We repeatedly appeal to the following clas-
sical Descent Lemma, which is also the main ingredient in
Ghadimi & Lan (2013), and can be proved by considering
the Taylor expansion of F around y.

Lemma 3.1 (Descent Lemma). Let F ∈ C1
L. Then,

F (x) ≤ F (y) + 〈∇F (y), x− y〉+ L

2
‖x− y‖2.

We will also use the following lemmas concerning sums of
non-negative sequences.
Lemma 3.2. For any non-negative a1, · · · , aT , and a1 ≥ 1,
we have

T∑
`=1

a`∑`
i=1 ai

≤ log

(
T∑
i=1

ai

)
+ 1. (4)

Proof. The lemma can be proved by induction. That the
sum should be proportional to log

(∑T
i=1 ai

)
can be seen

by associating to the sequence a continuous function g :
R+ → R satisfying g(`) = a`, 1 ≤ ` ≤ T , and g(t) = 0
for t ≥ T , and replacing sums with integrals.

3.2. The Proof

Proof. By Descent Lemma 3.1, for j ≥ 0,

Fj+1 − Fj
η

≤ −〈∇Fj ,
Gj
bj+1
〉+ ηL

2b2j+1

‖Gj‖2

= −‖∇Fj‖
2

bj+1
+
〈∇Fj ,∇Fj −Gj〉

bj+1
+
ηL‖Gj‖2

2b2j+1

.

At this point, we cannot apply the standard method of proof
for SGD, since bj+1 and Gj are correlated random variables
and thus, in particular, for the conditional expectation

Eξj
[
〈∇Fj ,∇Fj −Gj〉

bj+1

]
6=

Eξj [〈∇Fj ,∇Fj −Gj〉]
bj+1

=
1

bj+1
· 0;

If we had a closed form expression for Eξj [ 1
bj+1

], we would
proceed by bounding this term as∣∣∣∣Eξj [ 1

bj+1
〈∇Fj ,∇Fj −Gj〉

]∣∣∣∣
=

∣∣∣∣Eξj [( 1

bj+1
− Eξj

[
1

bj+1

])
〈∇Fj ,∇Fj −Gj〉

]∣∣∣∣
≤Eξj

[∣∣∣∣ 1

bj+1
− Eξj

[
1

bj+1

]∣∣∣∣ ‖〈∇Fj ,∇Fj −Gj〉‖] . (5)

Since we do not have a closed form expression for Eξj [ 1
bj+1

]

though, we use the estimate 1√
b2j+‖∇Fj‖2+σ2

as a surrogate

for Eξj [ 1
bj+1

] to proceed. Condition on ξ1, . . . , ξj−1 and
take expectation with respect to ξj ,

0 =
Eξj [〈∇Fj ,∇Fj −Gj〉]√

b2j + ‖∇Fj‖2 + σ2
= Eξj

 〈∇Fj ,∇Fj −Gj〉√
b2j + ‖∇Fj‖2 + σ2


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thus,

Eξj [Fj+1]− Fj
η

≤Eξj

 〈∇Fj ,∇Fj −Gj〉
bj+1

− 〈∇Fj ,∇Fj −Gj〉√
b2j + ‖∇Fj‖2 + σ2


− Eξj

[
‖∇Fj‖2

bj+1

]
+ Eξj

[
Lη‖Gj‖2

2b2j+1

]

≤Eξj

 1√
b2j + ‖∇Fj‖2 + σ2

− 1

bj+1

 〈∇Fj , Gj〉


− ‖∇Fj‖2√
b2j + ‖∇Fj‖2 + σ2

+
ηL

2
Eξj

[
‖Gj‖2

b2j+1

]
(6)

Now, observe the term in (6)

1√
b2j + ‖∇Fj‖2 + σ2

− 1

bj+1

=
(‖Gj‖ − ‖∇Fj‖)(‖Gj‖+ ‖∇Fj‖)− σ2

bj+1

√
b2j + ‖∇Fj‖2 + σ2

(√
b2j + ‖∇Fj‖2 + σ2 + bj+1

)
≤ |‖Gj‖ − ‖∇Fj‖|

bj+1

√
b2j + ‖∇Fj‖2 + σ2

+
σ

bj+1

√
b2j + ‖∇Fj‖2 + σ2

thus, applying Cauchy-Schwarz to the first term in (6),

Eξj

 1√
b2j + ‖∇Fj‖2 + σ2

− 1

bj+1

 〈∇Fj , Gj〉


≤Eξj

 |‖Gj‖ − ‖∇Fj‖| ‖Gj‖‖∇Fj‖
bj+1

√
b2j + ‖∇Fj‖2 + σ2


+ Eξj

 σ‖Gj‖‖∇Fj‖

bj+1

√
b2j + ‖∇Fj‖2 + σ2

 (7)

By applying the inequality ab ≤ λ
2a

2 + 1
2λb

2 with λ =
2σ2√

b2j+‖∇Fj‖2+σ2
, a =

‖Gj‖
bj+1

, and b = |‖Gj‖−‖∇Fj‖|‖∇Fj‖
b2j+‖∇Fj‖2

,

the first term in (7) can be bounded as

Eξj

 |‖Gj‖ − ‖∇Fj‖| ‖Gj‖‖∇Fj‖
bj+1

√
b2j + ‖∇Fj‖2 + σ2


≤

√
b2j + ‖∇Fj‖2 + σ2

4σ2

‖∇Fj‖2Eξj
[
(‖Gj‖ − ‖∇Fj‖)2

]
b2j + ‖∇Fj‖2 + σ2

+
σ2√

b2j + ‖∇Fj‖2 + σ2
Eξj

[
‖Gj‖2

b2j+1

]

≤ ‖∇Fj‖2

4
√
b2j + ‖∇Fj‖2 + σ2

+ σEξj

[
‖Gj‖2

b2j+1

]
(8)

where the last inequality due to the fact that

|‖Gj‖ − ‖∇Fj‖| ≤ ‖Gj −∇Fj‖.

Similarly, applying the inequality ab ≤ λ
2a

2 + 1
2λb

2

with λ = 2√
b2j+‖∇Fj‖2+σ2

, a =
σ‖Gj‖
bj+1

, and b =

‖∇Fj‖√
b2j+‖∇Fj‖2+σ2

, the second term of the right hand side

in equation (7) is bounded by

Eξj

 σ‖∇Fj‖‖Gj‖

bj+1

√
b2j + ‖∇Fj‖2 + σ2


≤σEξj

[
‖Gj‖2

b2j+1

]
+

‖∇Fj‖2

4
√
b2j + ‖∇Fj‖2 + σ2

. (9)

Thus, puting inequalities (8) and (9) back into (7) gives

Eξj

 1√
b2j + ‖∇Fj‖2 + σ2

− 1

bj+1

 〈∇Fj , Gj〉


≤ 2σEξj

[
‖Gj‖2

b2j+1

]
+

‖∇Fj‖2

2
√
b2j + ‖∇Fj‖2 + σ2

and, therefore, back to (6),

Eξj [Fj+1]− Fj
η

≤ηL
2
Eξj

[
‖Gj‖2

b2j+1

]
+ 2σEξj

[
‖Gj‖2

b2j+1

]

− ‖∇Fj‖2

2
√
b2j + ‖∇Fj‖2 + σ2

Rearranging,

‖∇Fj‖2

2
√
b2j + ‖∇Fj‖2 + σ2

≤
Fj − Eξj [Fj+1]

η

+
4σ + ηL

2
Eξj

[
‖Gj‖2

b2j+1

]
Applying the law of total expectation, we take the expec-
tation of each side with respect to ξj−1, ξj−2, . . . , ξ1, and
arrive at the recursion

E

 ‖∇Fj‖2

2
√
b2j + ‖∇Fj‖2 + σ2


≤E[Fj ]− E[Fj+1]

η
+

4σ + ηL

2
E

[
‖Gj‖2

b2j+1

]
.
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Taking j = N and summing up from k = 0 to k = N − 1,

N−1∑
k=0

E

[
‖∇Fk‖2

2
√
b2k + ‖∇Fk‖2 + σ2

]

≤F0 − F ∗

η
+

4σ + ηL

2
E
N−1∑
k=0

[
‖Gk‖2

b2k+1

]
. (10)

For term of left hand side in equation (10), we apply
Hölder’s inequality,

E|XY |
(E|Y |3)

1
3

≤
(
E|X| 32

) 2
3

with X =

(
‖∇Fk‖2√

b2k + ‖∇Fk‖2 + σ2

) 2
3

and Y =

(√
b2k + ‖∇Fk‖2 + σ2

) 2
3

to obtain

E

[
‖∇Fk‖2

2
√
b2k + ‖∇Fk‖2 + σ2

]
≥

(
E‖∇Fk‖

4
3

) 3
2

2
√
E [b2k + ‖∇Fk‖2 + σ2]

≥

(
E‖∇Fk‖

4
3

) 3
2

2
√
b20 + 2(k + 1)(γ2 + σ2)

where the last inequality is due to

E
[
b2k − b2k−1

]
≤ E

[
‖Gk‖2

]
≤ 2E

[
‖Gk −∇Fk‖2

]
+ 2E

[
‖∇Fk‖2

]
≤ 2σ2 + 2γ2.

As for the second term of right hand side in equation (10),
we apply Lemma (3.2) and then Jensen’s inequality to bound
the final summation:

E
N−1∑
k=0

[
‖Gk‖2

b2k+1

]
≤ E

[
1 + log

(
1 +

N−1∑
k=0

‖Gk‖2/b20

)]

≤ log

(
10 +

20N
(
σ2 + γ2

)
b20

)
.

Thus (10) arrives at the inequality

min
k∈[N−1]

(
E
[
‖∇Fk‖

4
3

]) 3
2 N

2
√
b20 + 2N(γ2 + σ2)

≤F0 − F ∗

η
+

4σ + ηL

2

(
log

(
1 +

2N
(
σ2 + γ2

)
b20

)
+ 1

)
.

Multiplying by 2b0+2
√
2N(γ+σ)
N , the above inequality gives

min
k∈[N−1]

(
E
[
‖∇Fk‖

4
3

]) 3
2 ≤

(
2b0
N

+
2
√
2(γ + σ)√
N

)
Q︸ ︷︷ ︸

CN

where

Q =
F0 − F ∗

η
+

4σ + ηL

2
log

(
20N

(
σ2 + γ2

)
b20

+ 10

)
.

Finally, the bound is obtained by Markov’s Inequality:

P
(

min
k∈[N−1]

‖∇Fk‖2 ≥
CN
δ3/2

)
=P

(
min

k∈[N−1]

(
‖∇Fk‖2

)2/3 ≥ ( CN
δ3/2

)2/3
)

≤δ
E
[
mink∈[N−1] ‖∇Fk‖4/3

]
C

2/3
N

≤ δ

where the second inequality applies Jensen’s inequality to
the concave function φ(x) = mink hk(x).

4. Numerical Experiments
With guaranteed convergence of AdaGrad-Norm and its
strong robustness to the choice of hyper-parameters η and
b0, we perform experiments on several data sets ranging
from simple linear regression on Gaussian data to neural
network architectures on state- of-the-art (SOTA) image
data sets including ImageNet.

4.1. Synthetic Data

In this section, we consider linear regression to corroborate
our analysis, i.e.,

F (x) =
1

2m
‖Ax− y‖2 =

1

(m/n)

m/n∑
k=1

1

2n
‖Aξkx− yξk‖2

where A ∈ Rm×d, m is the total number of samples, n is
the mini-batch (small sample) size for each iteration, and
Aξk ∈ Rn×d. Then AdaGrad-Norm update is

xj+1 = xj −
ηATξj

(
Aξjxj − yξj

)
/n√

b20 +
∑j
`=0

(
‖ATξ` (Aξ`x` − yξ`) ‖/n

)2 .
We simulate A ∈ R1000×2000 and x∗ ∈ R1000 such that

each entry of A and x∗ is an i.i.d. standard Gaussian. Let
y = Ax∗. For each iteration, we independently draw a
small sample of size n = 20 and x0 whose entries fol-
low i.i.d. uniform in [0, 1]. The vector x0 is same for
all the methods so as to eliminate the effect of random
initialization in weight vector. Since F ∗ = 0, we set
η = F (x0) − F ∗ = 1

2m‖Ax0 − b‖2 = 650. We vary
the initialization b0 > 0 as to compare with plain SGD
using (a) SGD-Constant: fixed stepsize 650

b0
, and (b) SGD-

DecaySqrt: decaying stepsize ηj = 650
b0
√
j
. Figure 1 plots
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Figure 1: Gaussian Data. The top 3 figures plot the gradient norm
for linear regression, ‖AT (Axj − y) ‖/m, w.r.t. b0 at iteration
10, 2000 and 5000 (see title) respectively. The bottom 3 figures plot
the corresponding effective learning rates (LR) w.r.t. b0 at iteration
10, 2000 and 5000 respectively. Note black curve overlaps with
red curve when b0 >= 56234.

‖AT (Axj − y) ‖/m (GradNorm) and the effective learning
rates at iterations 10, 2000, and 5000, and as a function of
b0, for each of the three methods. The effective learning
rates are 650

bj
(AdaGrad-Norm), 650

b0
(SGD-Constant), and

650
b0
√
j
(SGD-DecaySqrt).

We can see in Figure 1 how AdaGrad-Norm auto-tunes
the learning rate to a certain level to match the unknown
Lipschitz smoothness constant and the stochastic noise so
that the gradient norm converges for a significantly wider
range of b0 than for either SGD method. In particular, when
b0 is initialized too small, AdaGrad-Norm still converges
with good speed while SGD-Constant and SGD-DecaySqrt
diverge. When b0 is initialized too large (stepsize too small),
surprisingly AdaGrad-Norm converges at the same speed as
SGD-Constant. This possibly can be explained by Theorem
2.2 because this is somewhat like the deterministic setting
(the stepsize controls the variance σ and a smaller learning
rate implies smaller variance).

4.2. Image Data

In this section, we extend our numerical analysis to the
setting of deep learning and show that the robustness of
AdaGrad-Norm does not come at the price of worse gener-
alization – an important observation that is not explained by
our current theory. The experiments are done in PyTorch
(Paszke et al., 2017) and parameters are by default if no

specification is provided.1 We did not find it practical to
compute the norm of the gradient for the entire neural net-
work during back-propagation.2 Instead, we adopt a stepsize
for each neuron or each convolutional channel by updating
bj with the gradient of the neuron or channel. Hence, our
experiments depart slightly from a strict AdaGrad-Norm
method and include a limited adaptive metric component.
Details in implementing AdaGrad-Norm in a neural network
are explained in the appendix and the code is also provided.3

Datasets and Models We test on three data sets: MNIST
(LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009), see Table 1 in the appendix
for detailed descriptions. For MNIST, our models are a
logistic regression (LR), a multilayer network with two fully
connected layers (FC) with 100 hidden units and ReLU
activations. For CIFAR10, our models are LeNet (with
ReLU as activation functions instead of sigmoid function,
see Table 2 in the appendix for details) and ResNet-18 (He
et al., 2016). For both data sets, we use simple SGD without
momentum and set mini-batch of 128 images per iteration
(2 GPUs with 64 images/GPU, 468 iterations per epoch
for MNIST and 390 iterations per epoch for CIFAR10) and
repeat five trails to avoid the random initialization effect. For
ImagetNet, we use ResNet-50 with no momentum and 256
images for one iteration (8 GPUs with 32 images/GPU, 5004
iterations per epoch). Note that we do not use accelerated
methods such as adding momentum in the training. In the
setting of ResNet, the differences from the standard setup
are the batch normalization layers where we set no learnable
parameters in batch normalization so as to minimize the
effect of this optimization method. In addition, we set the
initialization of weights in the last fully connected layer to
be i.i.d. Gaussian with zero mean and variance 1/2048. 4

We pick these models for the following reasons: (1) LR with
MNIST represents the smooth loss function; (2) FC with
MNIST represents non-smooth loss function; (3) LeNet
in CIFAR10 belongs to a class of simple shallow network
architectures; (4) ResNet-18 in CIFAR10 represents a com-
plicated network architecture involving many other added
features for SOTA; (5) ResNet-50 in ImageNet represents
large-scale data and a very deep network architecture.

We set η = 1 in AdaGrad-Norm implementations, noting
that in all these problems we know that F ∗ = 0 and measure
that F (x0) is between 1 and 10. Fixing all other parameters,

1The code we used is originally from https://github.com/

pytorch/examples/tree/master/imagenet
2The computation time to obtain the gradient norm of the entire

neural network is large.
3AdaGrad-Norm https://github.com/xwuShirley/pytorch/

blob/master/torch/optim/adagradnorm.py
4Set nn.BatchNorm2d(planes,affine=False), and use regular-

ization (weight decay 0.0001) for both LeNet and ResNet.

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py
https://github.com/xwuShirley/pytorch/blob/master/torch/optim/adagradnorm.py
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we vary the initialization b0 and plot the training and testing
accuracy after different numbers of epochs. We compare
AdaGrad-Norm with initial parameter b20 to SGD with (a)
1
b0

(SGD-Constant) and (b) ηj = 1
b0
√
j

(SGD-DecaySqrt).

Observations The experiments shown in Figures 2, 3
and 4 clearly verify that AdaGrad-Norm convergence is ex-
tremely robust to the choice of b0, while the SGD methods
are much more sensitive. In all except the LeNet experiment,
AdaGrad-Norm convergence degrades very slightly even for
very small initial values b0. Similar to Synthetic Data, when
b0 is initialized too small, AdaGrad-Norm still converges
with good speed, while SGDs do not. When b0 is initialized
in the range of well-tune stepsizes, AdaGrad-Norm gives
almost the same accuracy as constant SGD.
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Figure 2: MNIST. In each plot, y-axis is train or test accuracy and
x-axis is b20. The top 6 plots are for logistic regression (LR) with
snapshots at epoch 5, 20 and 60 (see title). The bottom 6 plots are
for two fully connected (FC) layer.
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Figure 3: CIFAR10. Top 6 plots use LeNet and bottom 6 plots
use ReNet-18. See Figure 2 for instruction.
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