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Abstract

We introduce a new algorithm named WGAN,
an alternative to traditional GAN training. In
this new model, we show that we can improve
the stability of learning, get rid of problems like
mode collapse, and provide meaningful learning
curves useful for debugging and hyperparameter
searches. Furthermore, we show that the cor-
responding optimization problem is sound, and
provide extensive theoretical work highlighting
the deep connections to different distances be-
tween distributions.

1. Introduction

The problem this paper is concerned with is that of unsu-
pervised learning. Mainly, what does it mean to learn a
probability distribution? The classical answer to this is to
learn a probability density. This is often done by defining
a parametric family of densities (Py)gcpe and finding the
one that maximized the likelihood on our data: if we have
real data examples {z(V}! |, we would solve the problem
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If the real data distribution IP,. admits a density and Py is the
distribution of the parametrized density Py, then, asymp-
totically, this amounts to minimizing the Kullback-Leibler
divergence K L(PP,.||Py).

For this to make sense, we need the model density Py to
exist. This is not the case in the rather common situation
where we are dealing with distributions supported by low
dimensional manifolds. It is then unlikely that the model
manifold and the true distribution’s support have a non-
negligible intersection (see (Arjovsky & Bottou, 2017)),
and this means that the KL distance is not defined (or sim-
ply infinite).
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The typical remedy is to add a noise term to the model dis-
tribution. This is why virtually all generative models de-
scribed in the classical machine learning literature include
a noise component. In the simplest case, one assumes a
Gaussian noise with relatively high bandwidth in order to
cover all the examples. It is well known, for instance, that
in the case of image generation models, this noise degrades
the quality of the samples and makes them blurry. For ex-
ample, we can see in the recent paper (Wu et al., 2016)
that the optimal standard deviation of the noise added to
the model when maximizing likelihood is around 0.1 to
each pixel in a generated image, when the pixels were al-
ready normalized to be in the range [0, 1]. This is a very
high amount of noise, so much that when papers report the
samples of their models, they don’t add the noise term on
which they report likelihood numbers. In other words, the
added noise term is clearly incorrect for the problem, but is
needed to make the maximum likelihood approach work.

Rather than estimating the density of IP,. which may not ex-
ist, we can define a random variable Z with a fixed dis-
tribution p(z) and pass it through a parametric function
go © Z — X (typically a neural network of some kind)
that directly generates samples following a certain distribu-
tion Pg. By varying 6, we can change this distribution and
make it close to the real data distribution IP,.. This is use-
ful in two ways. First of all, unlike densities, this approach
can represent distributions confined to a low dimensional
manifold. Second, the ability to easily generate samples is
often more useful than knowing the numerical value of the
density (for example in image superresolution or semantic
segmentation when considering the conditional distribution
of the output image given the input image). In general, it
is computationally difficult to generate samples given an
arbitrary high dimensional density (Neal, 2001).

Variational Auto-Encoders (VAEs) (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014) are well known examples of this
approach. Because VAEs focus on the approximate likeli-
hood of the examples, they share the limitation of the stan-
dard models and need to fiddle with additional noise terms.
GANSs offer much more flexibility in the definition of the
objective function, including Jensen-Shannon (Goodfellow
et al., 2014), and all f-divergences (Nowozin et al., 2016)
as well as some exotic combinations (Huszar, 2015). On
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the other hand, training GANs is well known for being del-
icate and unstable, for reasons theoretically investigated in
(Arjovsky & Bottou, 2017).

In this paper, we direct our attention on the various ways to
measure how close the model distribution and the real dis-
tribution are, or equivalently, on the various ways to define
a distance or divergence p(Py,P,.). The most fundamen-
tal difference between such distances is their impact on the
convergence of sequences of probability distributions. A
sequence of distributions (P;):cn converges if and only if
there is a distribution P, such that p(P;, P, ) tends to zero,
something that depends on how exactly the distance p is
defined. Informally, a distance p induces a weaker topol-
ogy when it makes it easier for a sequence of distribution
to converge.! Section 2 clarifies how popular probability
distances differ in that respect.

In order to optimize the parameter 6, it is of course desir-
able to define our model distribution Py in a manner that
makes the mapping 6 — Py continuous. Continuity means
that when a sequence of parameters 6; converges to 6, the
distributions Py, also converge to Py. However, it is essen-
tial to remember that the notion of the convergence of the
distributions Py, depends on the way we compute the dis-
tance between distributions. The weaker this distance, the
easier it is to define a continuous mapping from 6-space to
Pg-space, since it’s easier for the distributions to converge.
The main reason we care about the mapping 6 — Py to be
continuous is as follows. If p is our notion of distance be-
tween two distributions, we would like to have a loss func-
tion 6 — p(IPg, P,.) that is continuous, and this is equivalent
to having the mapping 8 — Py be continuous when using
the distance between distributions p.

The contributions of this paper are:

e In Section 2, we provide a comprehensive theoretical
analysis of how the Earth Mover (EM) distance be-
haves in comparison to popular probability distances
and divergences used in the context of learning distri-
butions.

e In Section 3, we define a form of GAN called
Wasserstein-GAN that minimizes a reasonable and ef-
ficient approximation of the EM distance, and we the-
oretically show that the corresponding optimization
problem is sound.

e In Section 4, we empirically show that WGANSs cure
the main training problems of GANs. In particular,
training WGANS does not require maintaining a care-
ful balance in training of the discriminator and the

"More exactly, the topology induced by p is weaker than that
induced by p’ when the set of convergent sequences under p is a
superset of that under p’.

generator, does not require a careful design of the net-
work architecture either, and also reduces the mode
dropping that is typical in GANs. One of the most
compelling practical benefits of WGANS is the ability
to continuously estimate the EM distance by training
the discriminator to optimality. Because they correlate
well with the observed sample quality, plotting these
learning curves is very useful for debugging and hy-
perparameter searches.

2. Different Distances

‘We now introduce our notation. Let X’ be a compact metric
set, say the space of images [0, 1], and let ¥ denote the
set of all the Borel subsets of X. Let Prob(X) denote the
space of probability measures defined on X. We can now
define elementary distances and divergences between two
distributions P,., P, € Prob(X):

e The Total Variation (TV) distance

6(Pr,Pyg) = sup |P.(A) —Py(A)[ .
Aex

e The Kullback-Leibler (KL) divergence

P (z)

KL, ;) = [1os (Pg (x)) P (@)du()
where both P,. and P, are assumed to admit densities
with respect to a same measure 4 defined on X'.> The
KL divergence is famously assymetric and possibly
infinite when there are points such that P,(z) = 0
and P,(z) > 0.

e The Jensen-Shannon (JS) divergence
JS(Pra Pg) = KL(PTHPm) + KL(PgHPm) )

where P, is the mixture (P, + P,)/2. This diver-
gence is symmetrical and always defined because we
can choose pp = Py,.

e The Earth-Mover (EM) distance or Wasserstein-1

W(P,,P,) = inf E(w7y)~v[ |l — yl| ] , (D)

’YGH(P""]PH)
where II(P,,P,) is the set of all joint distributions
~(z,y) whose marginals are respectively P, and P.
Intuitively, v(x, y) indicates how much “mass” must
be transported from x to y in order to transform the
distributions P, into the distribution ’;. The EM dis-
tance then is the “cost” of the optimal transport plan.

’Recall that a probability distribution P, € Prob(X’) admits

a density P,(x) with respect to u, that is, VA € X, P.(A) =
J 4 Pr(z)dpu(z), if and only it is absolutely continuous with re-
spect to p, thatis, VA € X, u(A) =0=P.(A) =0.
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Figure 1: These plots show p(Pg,Po) as a function of 0 when p is the EM distance (left plot) or the JS divergence (right plot). The EM
plot is continuous and provides a usable gradient everywhere. The JS plot is not continuous and does not provide a usable gradient.

The following example illustrates how apparently simple
sequences of probability distributions converge under the
EM distance but do not converge under the other distances
and divergences defined above.

Example 1 (Learning parallel lines). Let Z ~ U|[0, 1] the
uniform distribution on the unit interval. Let Py be the dis-
tribution of (0, Z) € R? (a 0 on the x-axis and the random
variable Z on the y-axis), uniform on a straight vertical line
passing through the origin. Now let go(2z) = (6, z) with 0
a single real parameter. It is easy to see that in this case,

W(]P)(),IPQ) = |9

)

log 2 if0#£0,
0 ift0=0,

JS(Po, Pp) {

too  ifO£0,
0 if0=0,

KL(Pg||Po) = KL(Po[|Pg) = {

1 ife+£0,
0 ife=0.

and 6(Pp,Py) = {

When 6, — 0, the sequence (IPy, ):cn converges to Py un-
der the EM distance, but does not converge at all under
either the JS, KL, reverse KL, or TV divergences. Figure 1
illustrates this for the case of the EM and JS distances.

Example 1 gives a case where we can learn a probability
distribution over a low dimensional manifold by doing gra-
dient descent on the EM distance. This cannot be done with
the other distances and divergences because the resulting
loss function is not even continuous. Although this simple
example features distributions with disjoint supports, the
same conclusion holds when the supports have a non empty
intersection contained in a set of measure zero. This hap-
pens to be the case when two low dimensional manifolds
intersect in general position (Arjovsky & Bottou, 2017).

Since the Wasserstein distance is much weaker than the JS

distance,® we can now ask whether W (P, Py) is a contin-
uous loss function on # under mild assumptions:

Theorem 1. Let P, be a fixed distribution over X. Let
Z be a random variable (e.g Gaussian) over another
space Z. Let Py denote the distribution of go(Z) where
g:(2,0) € Zx R go(z) € X. Then,

1. If g is continuous in 0, so is W (P,.,Pp).

2. If g is locally Lipschitz and satisfies regularity as-
sumption 1, then W (P,.,Py) is continuous every-
where, and differentiable almost everywhere.

3. Statements 1-2 are false for the Jensen-Shannon di-
vergence JS(P.,Py) and all the KLs.

As a consequence, learning by minimizing the EM distance
makes sense (at least in theory) for neural networks:

Corollary 1. Let gy be any feedforward neural network*
parameterized by 0, and p(z) a prior over z such that
E.p)[ll2ll] < oo (e.g. Gaussian, uniform, etc.). Then
assumption 1 is satisfied and therefore W (P,.,Py) is con-
tinuous everywhere and differentiable almost everywhere.

Both proofs are given in Appendix C.

All this indicates that EM is a much more sensible cost
function for our problem than at least the Jensen-Shannon
divergence. The following theorem describes the relative
strength of the topologies induced by these distances and
divergences, with KL the strongest, followed by JS and TV,
and EM the weakest.

Theorem 2. Let P be a distribution on a compact space X
and (P, )nen be a sequence of distributions on X. Then,
considering all limits as n — 00,

3 Appendix A explains to the mathematically inclined reader
why this happens and how we arrived to the idea that Wasserstein
is what we should really be optimizing.

4By a feedforward neural network we mean a function com-
posed of affine transformations and componentwise Lipschitz
nonlinearities (such as the sigmoid, tanh, elu, softplus, etc). A
similar but more technical proof is required for ReLUs.



Wasserstein Generative Adversarial Networks

1. The following statements are equivalent

o §(P,,P) — 0 with § the total variation distance.

o JS(P,,P) — 0 with JS the Jensen-Shannon di-
vergence.

2. The following statements are equivalent
o W(P,,P) —0.

D D .
e P, — P where — represents convergence in
distribution for random variables.

3. KL(P,|P) — 0 or KL(P||P,) — 0 imply the state-
ments in (1).

4. The statements in (1) imply the statements in (2).
Proof. See Appendix C [

This highlights the fact that the KL, JS, and TV distances
are not sensible cost functions when learning distributions
supported by low dimensional manifolds. However the EM
distance is sensible in that setup. This leads us to the next
section where we introduce a practical approximation of
optimizing the EM distance.

3. Wasserstein GAN

Again, Theorem 2 points to the fact that W (P,., Py) might
have nicer properties when optimized than JS(P,,Py).
However, the infimum in (1) is highly intractable. On the
other hand, the Kantorovich-Rubinstein duality (Villani,
2009) tells us that

W(P,,Py) = sup Eoup,[f(2)] — Eonp,[f(2)] ()

IfllL<1

where the supremum is over all the 1-Lipschitz functions
f + X — R. Note that if we replace ||f||, < 1 for
Il < K (consider K-Lipschitz for some constant K),
then we end up with K - W(PP,., P, ). Therefore, if we have
a parameterized family of functions { fy, }wew that are all
K-Lipschitz for some K, we could consider solving the
problem

113163{/}\5 Emw]}% [fw(l')] - Ezwp(z)[fw(QG(Z)] (3)

and if the supremum in (2) is attained for some w € W
(a pretty strong assumption akin to what’s assumed when
proving consistency of an estimator), this process would
yield a calculation of W(P,,Py) up to a multiplicative
constant. Furthermore, we could consider differentiat-
ing W (P,.,IPy) (again, up to a constant) by back-proping
through equation (2) viaestimating ... ,,(.) [V fuw (96 (2))].
While this is all intuition, we now prove that this process is
principled under the optimality assumption.

Algorithm 1 WGAN, our proposed algorithm. All exper-
iments in the paper used the default values o = 0.00005,
c = 0.01, m = 64, ngitic = 5.

Require: : «, the learning rate. c, the clipping parameter.
m, the batch size. ngiic, the number of iterations of the
critic per generator iteration.

Require: : wy, initial critic parameters. 6y, initial genera-
tor’s parameters.

1: while 6 has not converged do

2 fort =0, ..., Neitic do

3: Sample {2V} | ~ P, abatch from the real data.

4 Sample {2(V}™  ~ p(z) a batch of prior sam-
ples.

w ¢— w + « - RMSProp(w, g.,)
w <+ clip(w, —c¢, ¢)
end for
Sample {2V} | ~ p(2) a batch of prior samples.
10: g+ —Vo= 21" fulge(z™))
11: <+ 60— o-RMSProp(4, go)
12: end while

PRI a;L

Theorem 3. Let P,. be any distribution. Let Py be the dis-
tribution of go(Z) with Z a random variable with density p
and gp a function satisfying assumption 1. Then, there is a
solution f : X — R to the problem

max Egp.[f(2)] — Ezop, [f(2)]

[fllL<1

and we have

VoW (P, Pg) = —E.p)[Vaf(g0(2))]

when both terms are well-defined.
Proof. See Appendix C O

Now comes the question of finding the function f that
solves the maximization problem in equation (2). To
roughly approximate this, something that we can do is
train a neural network parameterized with weights w ly-
ing in a compact space VW and then backprop through
E.p)[Vofuw(ge(z))], as we would do with a typical
GAN. Note that the fact that V¥ is compact implies that all
the functions f,, will be K-Lipschitz for some K that only
depends on W and not the individual weights, therefore
approximating (2) up to an irrelevant scaling factor and the
capacity of the ‘critic’ f,,. In order to have parameters w lie
in a compact space, something simple we can do is clamp
the weights to a fixed box (say W = [—0.01,0.01]) after
each gradient update. The Wasserstein Generative Adver-
sarial Network (WGAN) procedure is described in Algo-
rithm 1.

Gu Vo [ X0 ful@D) = L7, Fulge(z1))]
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Figure 2: Different methods learning a mixture of 8 gaussians spread in a circle. WGAN is able to learn the distribution without mode
collapse. An interesting fact is that the WGAN (much like the Wasserstein distance) seems to capture first the low dimensional structure
of the data (the approximate circle) before matching the specific bumps in the density. Green: KDE plots. Blue: samples from the model.
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Figure 3: Optimal discriminator and critic when learning to dif-
ferentiate two Gaussians. As we can see, the traditional GAN
discriminator saturates and results in vanishing gradients. Our
WGAN critic provides very clean gradients on all parts of the
space.

The fact that the EM distance is continuous and differen-
tiable a.e. means that we can (and should) train the critic
till optimality. The argument is simple, the more we train
the critic, the more reliable gradient of the Wasserstein we
get, which is actually useful by the fact that Wasserstein

is differentiable almost everywhere. For the JS, as the dis-
criminator gets better the gradients get more reliable but
the true gradient is O since the JS is locally saturated and
we get vanishing gradients, as can be seen in Figure 1 of
this paper and Theorem 2.4 of (Arjovsky & Bottou, 2017).
In Figure 3 we show a proof of concept of this, where we
train a GAN discriminator and a WGAN critic till optimal-
ity. The discriminator learns very quickly to distinguish
between fake and real, and as expected provides no reliable
gradient information. The critic, however, can’t saturate,
and converges to a linear function that gives remarkably
clean gradients everywhere. The fact that we constrain the
weights limits the possible growth of the function to be at
most linear in different parts of the space, forcing the opti-
mal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the
critic till optimality makes it impossible to collapse modes
when we do. This is due to the fact that mode collapse
comes from the fact that the optimal generator for a fixed
discriminator is a sum of deltas on the points the discrimi-
nator assigns the highest values, as observed by (Goodfel-
low et al., 2014) and highlighted in (Metz et al., 2016).

In the following section we display the practical benefits of
our new algorithm, and we provide an in-depth comparison
of its behaviour and that of traditional GANs.
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Figure 4: Training curves and samples at different stages of training. We can see a clear correlation between lower error and better
sample quality. Upper left: the generator is an MLP with 4 hidden layers and 512 units at each layer. The loss decreases constistently
as training progresses and sample quality increases. Upper right: the generator is a standard DCGAN. The loss decreases quickly
and sample quality increases as well. In both upper plots the critic is a DCGAN without the sigmoid so losses can be subjected to
comparison. Lower half: both the generator and the discriminator are MLPs with substantially high learning rates (so training failed).
Loss is constant and samples are constant as well. The training curves were passed through a median filter for visualization purposes.

4. Empirical Results

We run experiments on image generation using our
Wasserstein-GAN algorithm and show that there are sig-
nificant practical benefits to using it over the formulation
used in standard GANs. We claim two main benefits:

e a meaningful loss metric that correlates with the gen-
erator’s convergence and sample quality

e improved stability of the optimization process

4.1. Mixtures of Gaussians

In (Metz et al., 2016) the authors presented a simple mix-
ture of Gaussians experiments that served a very specific
purpose. In this mixture, the mode collapse problem of
GAN:Ss is easy to visualize, since a normal GAN would ro-
tate between the different modes of the mixture, and fail
to capture the whole distribution. In 2 we show how our
WGAN algorithm approximately finds the correct distribu-
tion, without any mode collapse.

An interesting thing is that the WGAN first seems to learn
to match the low-dimensional structure of the data (the ap-
proximate circle), before zooming in on the specific bumps
of the true density. Similar to the Wasserstein distance, it
looks like WGAN gives more importance to matching the
low dimensional supports rather than the specific ratios be-
tween the densities.

4.2. Experimental Procedure for Image Generation

We run experiments on image generation. The target dis-
tribution to learn is the LSUN-Bedrooms dataset (Yu et al.,
2015) — a collection of natural images of indoor bedroom:s.
Our baseline comparison is DCGAN (Radford et al., 2015),
a GAN with a convolutional architecture trained with the
standard GAN procedure using the — log D trick (Goodfel-
low et al., 2014). The generated samples are 3-channel im-
ages of 64x64 pixels in size. We use the hyper-parameters
specified in Algorithm 1 for all of our experiments.

4.3. Meaningful loss metric

Because the WGAN algorithm attempts to train the critic f
(lines 2-8 in Algorithm 1) relatively well before each gen-
erator update (line 10 in Algorithm 1), the loss function at
this point is an estimate of the EM distance, up to constant
factors related to the way we constrain the Lipschitz con-
stant of f.

Our first experiment illustrates how this estimate correlates
well with the quality of the generated samples. Besides
the convolutional DCGAN architecture, we also ran exper-
iments where we replace the generator or both the generator
and the critic by 4-layer ReLU-MLP with 512 hidden units.

Figure 4 plots the evolution of the WGAN estimate (3) of
the EM distance during WGAN training for all three archi-
tectures. The plots clearly show that these curves correlate
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Figure 5: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper right) trained with the standard GAN
procedure. Both had a DCGAN discriminator. Both curves have increasing error. Samples get better for the DCGAN but the JS estimate
increases or stays constant, pointing towards no significant correlation between sample quality and loss. Bottom: M LP with both
generator and discriminator. The curve goes up and down regardless of sample quality. All training curves were passed through the

same median filter as in Figure 4.

well with the visual quality of the generated samples.

To our knowledge, this is the first time in GAN litera-
ture that such a property is shown, where the loss of the
GAN shows properties of convergence. This property is
extremely useful when doing research in adversarial net-
works as one does not need to stare at the generated sam-
ples to figure out failure modes and to gain information on
which models are doing better over others.

However, we do not claim that this is a new method to
quantitatively evaluate generative models yet. The con-
stant scaling factor that depends on the critic’s architecture
means it’s hard to compare models with different critics.
Even more, in practice the fact that the critic doesn’t have
infinite capacity makes it hard to know just how close to
the EM distance our estimate really is. This being said, we
have succesfully used the loss metric to validate our exper-
iments repeatedly and without failure, and we see this as a
huge improvement in training GANs which previously had
no such facility.

In contrast, Figure 5 plots the evolution of the GAN esti-
mate of the JS distance during GAN training. More pre-
cisely, during GAN training, the discriminator is trained to
maximize

L(D, g9) = Exnp, [log D(2)] + Exnp,[log(1 — D(x))]

which is is a lower bound of 2JS(P,,Py) — 21log 2. In the
figure, we plot the quantity 1 L(D, go) + log 2, which is a
lower bound of the JS distance.

This quantity clearly correlates poorly the sample quality.
Note also that the JS estimate usually stays constant or goes
up instead of going down. In fact it often remains very
close to log 2 ~ 0.69 which is the highest value taken by
the JS distance. In other words, the JS distance saturates,
the discriminator has zero loss, and the generated samples
are in some cases meaningful (DCGAN generator, top right
plot) and in other cases collapse to a single nonsensical im-
age (Goodfellow et al., 2014). This last phenomenon has
been theoretically explained in (Arjovsky & Bottou, 2017)
and highlighted in (Metz et al., 2016).

When using the —log D trick (Goodfellow et al., 2014),
the discriminator loss and the generator loss are different.
Figure 9 in Appendix F reports the same plots for GAN
training, but using the generator loss instead of the discrim-
inator loss. This does not change the conclusions.

Finally, as a negative result, we report that WGAN train-
ing becomes unstable at times when one uses a momentum
based optimizer such as Adam (Kingma & Ba, 2014) (with
1 > 0) on the critic, or when one uses high learning rates.
Since the loss for the critic is nonstationary, momentum
based methods seemed to perform worse. We identified
momentum as a potential cause because, as the loss blew up
and samples got worse, the cosine between the Adam step
and the gradient usually turned negative. The only places
where this cosine was negative was in these situations of
instability. We therefore switched to RMSProp (Tieleman
& Hinton, 2012) which is known to perform well even on
very nonstationary problems (Mnih et al., 2016).
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Figure 6: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right: standard GAN formulation. Both algorithms
produce high quality samples.

Figure 7: Algorithms trained with a generator without batch normalization and constant number of filters at every layer (as opposed
to duplicating them every time as in (Radford et al., 2015)). Aside from taking out batch normalization, the number of parameters is
therefore reduced by a bit more than an order of magnitude. Left: WGAN algorithm. Right: standard GAN formulation. As we can see
the standard GAN failed to learn while the WGAN still was able to produce samples.

Figure 8: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU nonlinearities. The number of parameters
is similar to that of a DCGAN, but it lacks a strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the DCGAN, and of higher quality than the MLP

of the standard GAN. Note the significant degree of mode collapse in the GAN MLP.

4.4. Improved stability

One of the benefits of WGAN is that it allows us to train
the critic till optimality. When the critic is trained to com-
pletion, it simply provides a loss to the generator that we
can train as any other neural network. This tells us that we
no longer need to balance generator and discriminator’s ca-
pacity properly. The better the critic, the higher quality the
gradients we use to train the generator.

We observe that WGANSs are more robust than GANs when
one varies the architectural choices for the generator in cer-
tain ways. We illustrate this by running experiments on
three generator architectures: (1) a convolutional DCGAN
generator, (2) a convolutional DCGAN generator without
batch normalization and with a constant number of filters
(the capacity of the generator is drastically smaller than that
of the discriminator), and (3) a 4-layer ReLU-MLP with
512 hidden units. The last two are known to perform very
poorly with GANs. We keep the convolutional DCGAN ar-
chitecture for the WGAN critic or the GAN discriminator.

Figures 6, 7, and 8 show samples generated for these three
architectures using both the WGAN and GAN algorithms.
We refer the reader to Appendix H for full sheets of gener-
ated samples. Samples were not cherry-picked.

In no experiment did we see evidence of mode collapse
for the WGAN algorithm.

5. Related Work

We refer the reader to Appendix D for the connections to
the different integral probability metrics (Miiller, 1997).

The recent work of (Montavon et al., 2016) has explored
the use of Wasserstein distances in the context of learn-
ing for Restricted Boltzmann Machines for discrete spaces.
Even though the motivations at a first glance might seem
quite different, at the core of it both our works want to com-
pare distributions in a way that leverages the geometry of
the underlying space, which Wasserstein allows us to do.

Finally, the work of (Genevay et al., 2016) shows new al-
gorithms for calculating Wasserstein distances between dif-
ferent distributions. We believe this direction is quite im-
portant, and perhaps could lead to new ways to evaluate
generative models.

6. Conclusion

We introduced an algorithm that we deemed WGAN, an
alternative to traditional GAN training. In this new model,
we showed that we can improve the stability of learning,
get rid of problems like mode collapse, and provide mean-
ingful learning curves useful for debugging and hyperpa-
rameter searches. Furthermore, we showed that the corre-
sponding optimization problem is sound, and provided ex-
tensive theoretical work highlighting the deep connections
to other distances between distributions.
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A. Why Wasserstein is indeed weak

We now introduce our notation. Let X C R? be a compact set (such as [0, 1]¢ the space of images). We define Prob(X') to
be the space of probability measures over X'. We note

Cy(X) ={f: X =R, fis continuous and bounded}

Note that if f € Cp(X), we can define || f||co = max,cx |f(z)], since f is bounded. With this norm, the space (Cy(X), || -
|loo) is a normed vector space. As for any normed vector space, we can define its dual

Cp(X)" ={¢: Cp(X) — R, ¢ is linear and continuous}

and give it the dual norm ||| = supsec, (x), 7). <1 19(F)]-

With this definitions, (C,(X)*, || - ||) is another normed space. Now let 1 be a signed measure over X, and let us define the
total variation distance

lull7v = sup [u(A)]
ACX

where the supremum is taken over the Borel sets in X'. Since the total variation is a norm, then if we have P, and Py two
probability distributions over X,

6(Pr, Pg) := [P — Pollrv
is a distance in Prob(X") (called the total variation distance).

‘We can consider
d : (Prob(X),8) — (Cp(X)*, ]| - [|)

where ®(P)(f) := E,p[f(x)] is a linear function over Cy,(X'). The Riesz Representation theorem ((Kakutani, 1941),
Theorem 10) tells us that @ is an isometric immersion. This tells us that we can effectively consider Prob(X’) with the
total variation distance as a subset of C,(X)* with the norm distance. Thus, just to accentuate it one more time, the total
variation over Prob(X') is exactly the norm distance over Cy,(X')*.

Let us stop for a second and analyze what all this technicality meant. The main thing to carry is that we introduced a
distance 0 over probability distributions. When looked as a distance over a subset of C;,(X')*, this distance gives the norm
topology. The norm topology is very strong. Therefore, we can expect that not many functions 6 — Py will be continuous
when measuring distances between distributions with §. As we will show later in Theorem 2, ¢ gives the same topology as
the Jensen-Shannon divergence, pointing to the fact that the JS is a very strong distance, and is thus more propense to give
a discontinuous loss function.

Now, all dual spaces (such as Cp(X')* and thus Prob(X')) have a strong topology (induced by the norm), and a weak*
topology. As the name suggests, the weak™* topology is much weaker than the strong topology. In the case of Prob(X),
the strong topology is given by the total variation distance, and the weak* topology is given by the Wasserstein distance
(among others) (Villani, 2009).

B. Assumption definitions

Assumption 1. Let g : Z x R? — X be locally Lipschitz between finite dimensional vector spaces. We will denote go(z)
it’s evaluation on coordinates (z,0). We say that g satisfies assumption 1 for a certain probability distribution p over Z if
there are local Lipschitz constants L(6, z) such that

E-plL(0,2)] < 400

C. Proofs of things

Proof of Theorem 1. Let 0 and ¢’ be two parameter vectors in R?. Then, we will first attempt to bound W (P, Py/), from
where the theorem will come easily. The main element of the proof is the use of the coupling , the distribution of the joint
(90(Z), gor (Z)), which clearly has v € II(Py, Py/).
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By the definition of the Wasserstein distance, we have

W (B, By) < / e — yll dy
XXX
= E(m,y)fv"/[Hx - yH]
= E.[]lg0(2) — g0 (2)I]

If ¢ is continuous in 6, then gg(z) —9—0' go'(2), s0 ||gg — geo’|] — O pointwise as functions of z. Since X is compact, the
distance of any two elements in it has to be uniformly bounded by some constant M, and therefore ||gg(z) — gor (2)|| < M
for all # and z uniformly. By the bounded convergence theorem, we therefore have

W(Py,Py) <E.[llgo(2) — gor (2)[I] =00 0

Finally, we have that
|W(]P>7.,]P’9) — W(P,,.,]P’Q/” < W(P@,Pg/) —g—g 0

proving the continuity of W (P,., Py).

Now let g be locally Lipschitz. Then, for a given pair (0, z) there is a constant L(6, z) and an open set U such that
(6, 2) € U, such that for every (¢, 2") € U we have

190 (2) — go (")l < L0, 2)([16 — 0"]| + [|l= — 2"[])
By taking expectations and 2’ = 2z we

E-[lga(2) — gor (2)II] < 1|6 — 0" E=[L(6, )]

whenever (0, z) € U. Therefore, we can define Uy = {6'|(¢’
well. Furthermore, by assumption 1, we can define L(#) = E,
<

z) € U}. It’s easy to see that since U was open, Uy is as

[L(0, )] and achieve
(W (Pr,Py) — W (P, Por)| < W (Pg, Pyr) < L(6)[|6 — &'

for all ' € Uy, meaning that W (PP, Py) is locally Lipschitz. This obviously implies that W (P,,[Py) is everywhere
continuous, and by Radamacher’s theorem we know it has to be differentiable almost everywhere.

The counterexample for item 3 of the Theorem is indeed Example 1. O

Proof of Corollary 1. We begin with the case of smooth nonlinearities. Since g is C! as a function of (6, z) then for any
fixed (6, z) we have L(0, Z) < ||Vy.g0(2)|| + € is an acceptable local Lipschitz constant for all ¢ > 0. Therefore, it
suffices to prove

Ezr\/p(z) [HV@,ZQQ (Z) ||] < too

If H is the number of layers we know that V. gg(z) = H,If:l W, Dy, where Wy, are the weight matrices and Dy, is are the
diagonal Jacobians of the nonlinearities. Let f;.; be the application of layers ¢ to j inclusively (e.g. g¢ = fi.x). Then,

Vw,.go(z) = ((Hl pa1 WiD; ) Dk) Sik— 1( ). We recall that if L is the Lipschitz constant of the nonlinearity, then
|Di|l < Land || frx—1(2)|| < ||2]|L*~ 1 TTFZ W;. Putting this together,

H
IV-.090(2 H<HHWDII+ZII (( 11 mm) Dk> ()

i=k+1

<" H 1wl +Z||z||LH (H ||W||> ( I1 ||Wi||>

1=k+1
1 C1(0) = LTI, 1Will) and Co(0) = S0, L7 (T IWall) (T2 Wil then

Eznp()[IVo.290(2)[]] < C1(6) + Ca(0)Benps) [ll2]l] < o0

finishing the proof O
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Proof of Theorem 2.

1. e (§P,,P)—0=JS(P,,P)—0 — LetP, bethe mixture distribution P, = %]P’n + %]P’ (note that P,,,
depends on n). It is easily verified that §(P,,, P,,) < 6(P,,P), and in particular this tends to 0 (as does § (P, P)).
We now show this for completeness. Let u be a signed measure, we define |||y = sup 4c v |(A)]. for all
Borel sets A. In this case, -

6(]P)ma]P>n) = ||Pm - ]P)nHTV

1 1
— P+ =P, — P,
||2 + 5 |l 7v

1
— 2P -P,
2|| v
1
= 55(}?”,]1)) < (S(Pn,]P’)

Let f,, = jﬁf# be the Radon-Nykodim derivative between P,, and the mixture. Note that by construction for
every Borel set A we have P,,(A) < 2P,,,(A). If A = {f,, > 3} then we get

which implies P,,,(A) = 0. This means that f,, is bounded by 3 IP,,,(and therefore P,, and P)-almost everywhere.
We could have done this for any constant larger than 2 but for our purposes 3 will sufice.

Let e > 0 fixed, and A,, = {f,, > 1 + €}. Then,
P,(Ay) = / FadPp > (14 €)Pr(Ay)
An

Therefore,

< (P, Prn)
< §(P,, P).

Which implies Py, (4;,) < 1(P,,P). Furthermore,

I[D’IL(A’IL) < ]Pm (An) + ‘Pn(An) - ]P)m(An)‘

IN

1
Z5(Pp, P) + 8(Pp, Pry)
€
1
€

< (1 + 1) 5(P,,P)

(P, P) + 6(P,,P)

We now can see that

KL(Py|[Pry) = / log(f) APy,

<log(L+0)+ [ log(f)dP,
An

< log(1 + €) + log(3)P,(4,)

<log(1+ €) +log(3) <1 + 1> (P, P)
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Taking limsup we get 0 < lim sup K L(P,, ||P,,) < log(1 + €) for all € > 0, which means K L(PP,,||P,,) — O.
dP
dP,,’

2P ({gn > 3}) = P({gn > 3}) = 3Pm({gn > 3})

In the same way, we can define g,, = and

meaning that P,,,({g, > 3}) = 0 and therefore g,, is bounded by 3 almost everywhere for P,,, P,,, and P. With
the same calculation, B,, = {g,, > 1 + €} and

IP(Bn):/B Gn AP > (14 €)Pu(By)

n

50 P (By) < 16(P,Py,) — 0, and therefore P(B,,) — 0. We can now show

KL(P|P,,) = / log(gn) P

<log(l+¢€)+ / log(gy,) dP
B’Vl
<log(1l + €) + log(3)P(B,)

so we achieve 0 < limsup K L(P||P,,) < log(1l + ¢€) and then K L(P||P,,) — 0. Finally, we conclude
1 1

o (JS(P,,P) —» 0= 6(P,,P) - 0) — by asimple application of the triangular and Pinsker’s inequalities
we get

5(Pp,P) < (P, Pp) + 6(P, Py,

\/ KL(P,||P,,) \/ KL(P|P,,)
JS(Py, P) — 0

2. This is a long known fact that W metrizes the weak* topology of (C(X), || - ||c) on Prob(X'), and by definition this
is the topology of convergence in distribution. A proof of this can be found (for example) in (Villani, 2009).

3. This is a straightforward application of Pinsker’s inequality
1

5(B,B) <\ KL(P[P) 0

4. This is trivial by recalling the fact that § and W give the strong and weak* topologies on the dual of (C(X), || - |co)
when restricted to Prob(X’).

Proof of Theorem 3. Let us define

V(.f79) zNIP’ [f(.’ﬂ)] IN]P’Q [f( )}

—ExNP [f(x)] z~p(z)[ ( ( ))}

where f liesin F = {f : X 5 R, f € Co(X), || fllz < 1} and § € R%
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Since X is compact, we know by the Kantorovich-Rubinstein duality (Villani, 2009) that there is an f € F that attains the
value R
W (Pr,Pg) = sup V(f,0) = V(f,0)
fer
Let us define X*(0) = {f € F: V(f,0) = W(P,,Py)}. By the above point we know then that X *(6) is non-empty. We
know by a simple envelope theorem ((Milgrom & Segal, 2002), Theorem 1) that

VoW (Pr,Pg) = VoV (f,0)
for any f € X*(6) when both terms are well-defined.
Let f € X*(#), which we knows exists since X *(6) is non-empty for all §. Then, we get
VoW (P, Pg) = VoV (f,0)
= Vo[Eanp, [f(2)] = Eonp()[f(90(2))]
= —VoE.np(x) [f(90(2))]

under the condition that the first and last terms are well-defined. The rest of the proof will be dedicated to show that

~VoEzp()[(96(2))] = —Enp(z)[Vaf(90(2))] S

when the right hand side is defined. For the reader who is not interested in such technicalities, he or she can skip the rest
of the proof.

Since f € F, we know that it is 1-Lipschitz. Furthermore, gg(z) is locally Lipschitz as a function of (6, z). Therefore,
f(go(2)) is locally Lipschitz on (6, z) with constants L(6, z) (the same ones as g). By Radamacher’s Theorem, f(go(2))
has to be differentiable almost everywhere for (6, z) jointly. Rewriting this, the set A = {(6, z) : f o g is not differentiable}
has measure 0. By Fubini’s Theorem, this implies that for almost every 6 the section Ag = {z : (6, z) € A} has measure 0.
Let’s now fix a 6y such that the measure of Ay, is null (such as when the right hand side of equation (4) is well defined).
For this 6y we have Vg f(go(2))|o, is well-defined for almost any z, and since p(z) has a density, it is defined p(z)-a.e. By
assumption 1 we know that
B [IIVof(90(2)ol] < Eanpz) [L(00, 2)] < +00

SOE. ) [Vof(96(2))|e,] is well-defined for almost every 6. Now, we can see

EZ~p(Z) [f(gH(Z))] - Esz(z)[f(Q@o (Z))] - <(9 - 00)’ EZNp(Z) [Vef(.%(z))‘@o])

®)
16— ol
_ f(90(2)) = f(90,(2)) = (6 = b0), Vo f(g0(2))l0,)
e 10 ol
By differentiability, the term inside the integral converges p(z)-a.e. to 0 as § — 0,. Furthermore,
|| f(gg(Z)) — f(990 (Z)) — <(9 - 90)7 ng(gg(z))|90> ||
16— ol
< 18 =00l L(60, 2) + 1[0 — 0ol Ve f(ga(2))leoll
B 16— ol
< 2[/(00’2)

and since E...,,(-)[2L (6o, 2)] < 400 by assumption 1, we get by dominated convergence that Equation 5 converges to 0 as
0 — 6 so

VO]EZNp(Z) [f(ge(z))] = Ezr\/p(z) [ng(ge(Z))]

for almost every 6, and in particular when the right hand side is well defined. Note that the mere existance of the left hand
side (meaning the differentiability a.e. of E...,.)[f(g6(2))]) had to be proven, which we just did. O
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D. Related Work

There’s been a number of works on the so called Integral Probability Metrics (IPMs) (Miiller, 1997). Given F a set of
functions from X to R, we can define

dF(Pr,Pg) = sup By, [f(2)] = Eonp, [f ()] (6)
fer

as an integral probability metric associated with the function class F. It is easily verified that if for every f € F we have
—f € F (such as all examples we’ll consider), then d r is nonnegative, satisfies the triangular inequality, and is symmetric.
Thus, d is a pseudometric over Prob(X).

While IPMs might seem to share a similar formula, as we will see different classes of functions can yield to radically
different metrics.

e By the Kantorovich-Rubinstein duality (Villani, 2009), we know that W (P,,Py) = dz(P,,Py) when F is the set of
1-Lipschitz functions. Furthermore, if F is the set of K -Lipschitz functions, we get K - W (P, Pg) = dr(P,, Py).

e When F is the set of all continuous functions bounded between -1 and 1, we retrieve d z(P,., Py) = §(P,., Py) the total
variation distance (Miiller, 1997). This already tells us that going from 1-Lipschitz to 1-Bounded functions drastically
changes the topology of the space, and the regularity of dz(IP,.,Py) as a loss function (as by Theorems 1 and 2).

e Energy-based GANs (EBGANSs) (Zhao et al., 2016) can be thought of as the generative approach to the total variation
distance. This connection is stated and proven in depth in Appendix E. At the core of the connection is that the
discriminator will play the role of f maximizing equation (6) while its only restriction is being between 0 and m for
some constant m. This will yield the same behaviour as being restricted to be between —1 and 1 up to a constant
scaling factor irrelevant to optimization. Thus, when the discriminator approaches optimality the cost for the generator
will aproximate the total variation distance (P, Py).

Since the total variation distance displays the same regularity as the JS, it can be seen that EBGANs will suffer
from the same problems of classical GANs regarding not being able to train the discriminator till optimality and thus
limiting itself to very imperfect gradients.

e Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a specific case of integral probability metrics when
F=A{f€H:|fllx <1} for H some Reproducing Kernel Hilbert Space (RKHS) associated with a given kernel
k: X xX — R. As proved on (Gretton et al., 2012) we know that MMD is a proper metric and not only a
pseudometric when the kernel is universal. In the specific case where H = L?(X’,m) for m the normalized Lebesgue
measure on X', we know that { f € C,(X), || f]leo < 1} will be contained in F, and therefore § (P, Py) < dz(P,,Py),
so the regularity of the MMD distance as a loss function will be at least as bad as the one of the total variation.
Nevertheless this is a very extreme case, since we would need a very powerful kernel to approximate the whole L2.
However, even Gaussian kernels are able to detect tiny noise patterns as recently evidenced by (Sutherland et al.,
2017). This points to the fact that especially with low bandwidth kernels, the distance might be close to a saturating
regime similar as with total variation or the JS. This obviously doesn’t need to be the case for every kernel, and
figuring out how and which different MMDs are closer to Wasserstein or total variation distances is an interesting
topic of research.

The great aspect of MMD is that via the kernel trick there is no need to train a separate network to maximize equation
(6) for the ball of a RKHS. However, this has the disadvantage that evaluating the MMD distance has computational
cost that grows quadratically with the amount of samples used to estimate the expectations in (6). This last point makes
MMD have limited scalability, and is sometimes inapplicable to many real life applications because of it. There are
estimates with linear computational cost for the MMD (Gretton et al., 2012) which in a lot of cases makes MMD very
useful, but they also have worse sample complexity.

e Generative Moment Matching Networks (GMMNG5) (Li et al., 2015; Dziugaite et al., 2015) are the generative counter-
part of MMD. By backproping through the kernelized formula for equation (6), they directly optimize dpasp (P, Pp)
(the IPM when F is as in the previous item). As mentioned, this has the advantage of not requiring a separate network
to approximately maximize equation (6). However, GMMNs have enjoyed limited applicability. Partial explanations
for their unsuccess are the quadratic cost as a function of the number of samples and vanishing gradients for low-
bandwidth kernels. Furthermore, it may be possible that some kernels used in practice are unsuitable for capturing
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very complex distances in high dimensional sample spaces such as natural images. This is properly justified by the
fact that (Ramdas et al., 2014) shows that for the typical Gaussian MMD test to be reliable (as in it’s power as a statis-
tical test approaching 1), we need the number of samples to grow linearly with the number of dimensions. Since the
MMD computational cost grows quadratically with the number of samples in the batch used to estimate equation (6),
this makes the cost of having a reliable estimator grow quadratically with the number of dimensions, which makes it
very inapplicable for high dimensional problems. Indeed, for something as standard as 64x64 images, we would need
minibatches of size at least 4096 (without taking into account the constants in the bounds of (Ramdas et al., 2014)
which would make this number substantially larger) and a total cost per iteration of 40962, over 5 orders of magnitude
more than a GAN iteration when using the standard batch size of 64.

That being said, these numbers can be a bit unfair to the MMD, in the sense that we are comparing empirical sample
complexity of GANs with the theoretical sample complexity of MMDs, which tends to be worse. However, in the
original GMMN paper (Li et al., 2015) they indeed used a minibatch of size 1000, much larger than the standard 32 or
64 (even when this incurred in quadratic computational cost). While estimates that have linear computational cost as
a function of the number of samples exist (Gretton et al., 2012), they have worse sample complexity, and to the best
of our knowledge they haven’t been yet applied in a generative context such as in GMMNS.

On another great line of research, the recent work of (Montavon et al., 2016) has explored the use of Wasserstein distances
in the context of learning for Restricted Boltzmann Machines for discrete spaces. The motivations at a first glance might
seem quite different, since the manifold setting is restricted to continuous spaces and in finite discrete spaces the weak
and strong topologies (the ones of W and JS respectively) coincide. However, in the end there is more in commmon than
not about our motivations. We both want to compare distributions in a way that leverages the geometry of the underlying
space, and Wasserstein allows us to do exactly that.

Finally, the work of (Genevay et al., 2016) shows new algorithms for calculating Wasserstein distances between different
distributions. We believe this direction is quite important, and perhaps could lead to new ways to evaluate generative
models.
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E. Energy-based GANs optimize total variation

In this appendix we show that under an optimal discriminator, energy-based GANs (EBGANSs) (Zhao et al., 2016) optimize
the total variation distance between the real and generated distributions.

Energy-based GANSs are trained in a similar fashion to GANs, only under a different loss function. They have a discrimi-
nator DD who tries to minimize

Lp(D, go) = Eanp, [D(@)] + Enp(z[m — D(go(2))]"]
for some m > 0 and [z]T = max(0, z) and a generator network gy that’s trained to minimize

Lc(D, g0) = E.op()[D(90(2))] — Exnp, [D(z)]

Very importantly, D is constrained to be non-negative, since otherwise the trivial solution for D would be to set everything
to arbitrarily low values. The original EBGAN paper used only E_ . ,.)[D(gs(2))] for the loss of the generator, but this is
obviously equivalent to our definition since the term E,.p_ [D(z)] does not dependent on 6 for a fixed discriminator (such
as when backproping to the generator in EBGAN training) and thus minimizing one or the other is equivalent.

We say that a measurable function D* : X — [0, +00) is optimal for gy (or Py) if Lp(D*, gs) < Lp(D, gg) for all other
measurable functions D. We show that such a discriminator always exists for any two distributions P, and Py, and that
under such a discriminator, L (D*, gg) is proportional to §(P., Py). As a simple corollary, we get the fact that L (D*, go)
attains its minimum value if and only if §(IP,.,Pg) is at its minimum value, which is 0, and P,. = Py (Theorems 1-2 of
(Zhao et al., 2016)).

Theorem 4. Let P, be a the real data distribution over a compact space X. Let gy : Z — X be a measurable function
(such as any neural network). Then, an optimal discriminator D* exists for P,. and Py, and

m
La(D*,g0) = 55(197«,19)9)

Proof. First, we prove that there exists an optimal discriminator. Let D : X — [0, +00) be a measurable function, then
D’(x) := min(D(z), m) is also a measurable function, and Lp (D', g9) < Lp(D, gp). Therefore, a function D* : X —
[0, +00) is optimal if and only if D*' is. Furthermore, it is optimal if and only if Lp(D*, gg) < Lp(D, ge) for all D :
X — [0,m]. We are then interested to see if there’s an optimal discriminator for the problem ming< D(z)<m LD (D, go).

Note now that if 0 < D(x) < m we have

E.p(x)[[m — D(gs(2))]7]

EZNP(Z) [’ITL - D(gg( ))]

=m+ ExNIP’r D(-T)] - IEzwp(z) [D(99 (Z))]
(

z

Therefore, we know that
inf Lp(D = inf E,.p.[D —Eyp,[D
ot p(D, go) Mt A r, [D(w)] po [D ()]
=m+ inf Eswp, [D(z)] — Exnp, [D(2)]

-5 <D(x)<%

m
= — inf  Eio —E;n
m+ 5 ot K e, [f(z)] P [f(2)]
The interesting part is that

71§i?(£5)§1 EwNPr [f(l‘)] - EOCNIPB [f(x)] = _6(PT7P0) @)

and there is an f* : X — [—1,1] such that E,p, [f*(z)] — Exp, [/ *(z)] = —0(Py, Py). This is a long known fact, found
for example in (Villani, 2009), but we prove it later for completeness. In that case, we define D*(x) = Z f*(z) + . We
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then have 0 < D(z) < m and
Lp(D*, g9) = m+ Egp, [D*(2)] = Earp, [D7(

m . «
=m+ S Eonp, [D7(2)] = Eunr, [f7(2)]
= m — Z3(P,. Po)
= inf Lp(D,gs)

0<D(z)<m
This shows that D* is optimal and Lp(D*, go) = m — 5 6(P,, P). Furthermore,

La(D",90) = Eonp(z)[D*(90(2))] — Eanp, [D(2)]
= —LD(D*,QQ) —|— m

m
- E(S(IPT, ]P)g)

concluding the proof.

For completeness, we now show a proof for equation (7) and the existence of said f* that attains the value of the infimum.
Take 1 = P, — Py, which is a signed measure, and (P, )) its Hahn decomposition. Then, we can define f* := 1g —1p.
By construction, then

B, [f(2)]—Eonp, [f*(2)] = /f* dp = w(Q)=p(P) = =(u(P)=p(Q)) = —llullrv = —[[Pr=Pyllry = —6(P:, Py)

Furthermore, if f is bounded between -1 and 1, we get

[Eanp, [f(@)] = Eoop, [f @) = | / fdP, - / £ dPy|

< / [l < / Lyl

= |pl(X) = [[pllrv = 0(Pr, Py)

Since ¢ is positive, we can conclude E,.p_[f(z)] — Ezmp, [f(2)] > —6(P, Py). O
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F. Generator’s cost during normal GAN training
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Figure 9: Cost of the generator during normal GAN training, for an MLP generator (upper left) and a DCGAN generator (upper
right). Both had a DCGAN discriminator. Both curves have increasing error. Samples get better for the DCGAN but the cost of the
generator increases, pointing towards no significant correlation between sample quality and loss. Bottom: M L P with both generator

and discriminator. The curve goes up and down regardless of sample quality. All training curves were passed through the same median
filter as in Figure 4.

G. Further comments on clipping and batch normalization

In this appendix we provide further informal insights into the behaviour of weight clipping and batch normalization in the
context of GANs and WGAN:Ss.

G.1. Weight clipping

One may wander what would happen if one were to use weight clipping in a standard GAN. Disregarding the use of the
cross-entropy vs difference loss, the central difference would be the use of a sigmoid in the end of the discriminator. This
brings into place the use of the Dudley metric:

dr(Pr,Pg) = sup Epup, [f(2)] — Exnp, [f(2)]
feF

where
F={f:X =R, fcontinuous and || f||- + || fllz <1}

This is similar to the class of 1-Lipschitz functions, only we restrict how high the values of f can be. This metric is easily
shown to be equivalent to the one with

F'"={f:X =R, f continuous and || f||oc < 1,||f]lz < K}

or the one with
F'={f:X =R, fcontinuousand 0 < f < 1, ||f||lr < K} (8)

This last family is essentially the family of functions we would achieve by adding a sigmoid to the critic of the WGAN,
moving us closer to the standard GAN realm. An easy and very interesting result is that d » and d 7/ have the same topology
as the Wasserstein distance (Villani, 2009), which hints that adding clipping to a GAN lands us closer to a WGAN than
the standard GAN (since the cost function between distributions has the exact same regularity as that of a WGAN, and
drastically different from a normal GAN, see Theorems 1, 2).
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That being said, while the topology of Wasserstein and the Dudley metric is the same, some things are not. There are many
distances that yield the weak topology, but Wasserstein has a number of differences against the rest. These are perfectly
explained in pages 110 and 111 of (Villani, 2009), but we highlight the main idea here. At the core of it, Wasserstein is
better at representing long distances between samples. The saturation behaviour of the sigmoid, or what happens when K
in (8) is large, shows that if the real samples are far away from the fake ones, f can saturate at 1 in the real and 0 in the fake
constantly, providing no usable gradient. Thus, Dudley and Wasserstein have the same behaviour in close samples, but
Wasserstein avoids saturations and provides gradients even when samples are far away. However, if K (i.e. the clipping)
is small enough (such as the 0.01 we use in practice), the saturating regime will never enter in place, so Dudley and
Wasserstein will behave in the same way.

To conclude, if the clipping is small enough, the network is quite literally a WGAN, and if it’s large it will saturate and fail
to take into account information between samples that are far away (much like a normal GAN when the discriminator is
trained till optimum).

As to the similarities between the difference vs cross-entropy on the loss of the discriminator or critic: if the supports of
P, and Py are essentially disjoint (which was shown to happen in (Arjovsky & Bottou, 2017) in the usual setting of low
dimensional supports), with both cost functions the f will simply be trained to attain the maximum value possible in the
real and the minimum possible in the fake, without surpassing the Lipschitz constraint. Therefore, CE and the difference
might behave more similarly than we expect in the typical ‘learning low dimensional distributions’ setting, provided we
have a strong Lipschitz constraint.

G.2. Batch normalization

It is not clear that batch normalization (BN) is a Lipschitz function with a constant independent of the parameters, since
we are dividing by the standard deviation, which depends on the inputs and the parameters. In this subsection we explain
why BN still behaves in a Lipschitz way, and fits in with the theoretical support of our method.

Let z be the input of a BN layer. If there is a positive ¢ € R for which V' (2)'/2 > ¢ (the variance is uniformly bounded

below during training), then this ¢ € R becomes a Lipschitz constant on the BN layer that’s independent of the model
parameters, as we wanted. For V' (z) to not be bounded below as training progresses, it has to go arbitrarily close to 0. In
this case, « has to converge (up to taking a subsequence) to it’s mean, so the term « — E[z] in the numerator of batchnorm

z—E[z]
Vz]/2+e
This will also further render the activation x inactive, which the network has no incentive to do.

will go to 0, and therefore comes the constant 0 (which is obviously 1-Lipschitz) due to the ¢ in the division.

While this argument is handwavy, one can formalize it and prove very simple bounds that depend only on €. By increasing
e one can enforce a stronger Lipschitz constant, and we could have for example clamped the denominator of the BN to
attain a value large enough. However, in practice in all our runs the variance never surpassed low thresholds, and this
clamping of the BN division was simply never set into effect. Thus, we empirically never saw a break in the Lipschitness
of our BN layers.

H. Sheets of samples
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Figure 11: Standard GAN procedure: generator and discriminator are DCGANS.
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Figure 12: WGAN algorithm: generator is a DCGAN without batchnorm and constant filter size. Critic is a DCGAN.

Figure 13: Standard GAN procedure: generator is a DCGAN without batchnorm and constant filter size. Discriminator is a DCGAN.
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Figure 15: Standard GAN procedure: generator is an MLP with 4 hidden layers of 512 units, discriminator is a DCGAN.



