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This paper presents the comparison of several methods on a multi-speaker
isolated word small vocabulary problem. A sub-optimal cooperation between
Time Delay Neural Networks and other algorithms is proposed and successfully
tested on the problem. An optimal cooperation method between Dynamic
Programming and some other algorithms is proposed.

We use the following abbreviations: Dynamic Programming (DP), Multi-Layer
Perceptron (MLP), Time Delay Neural Network (TDNN), Recurrent Neural
Network (RNN), Learning Vector Quantization (LVQ), Isolated Word Recognition
(IWR), Hidden Markov Models (HMM).

1 INTRODUCTION

Speech can be considered as a sequence of local phonetic events. Consequently, speech
recognition should integrate both sequence and phonetic events detection aspects. From this
point of view, many already popularized speech recognition methods are not satisfying. Many
methods use global recognition of whole patterns (e.g. classical MLP, LVQ, K-Means ...), some
methods perform local events detection (e.g. TDNNs, Shift-Tolerant LVQ or K-Means ...).
Dynamic Programming performs sequence detection by using some simple distance to match
frames. Two popular methods partially integrate the two aspects: Hidden Markov Models
which try to reduce the weakness of local detection performed by DP and Recurrent Networks
which learn to perform some kind of sequence detection. Cooperation between HMM or DP
for time alignement and Neural Networks for local events detection seems especially
interesting. Such cooperative models have been recently introduced [2], [3], [4].

In §2 we detail a problem of speech recognition. Then we compare the efficiency of several
methods to solve this problem in §3. In §4, we explain and test a sub-optimal algorithm of
cooperation between TDNN and other classifiers, especially DP. Finally, we introduce an
optimal algorithm of cooperation between DP and TDNN, K-Means or LVQ.

2 A MULTI-SPEAKER ISOLATED WORD RECOGNITION PROBLEM

The French database used for the experiment reported here is made of thirty words uttered
ten times by each of ten speakers. It was sampled at 10 KHz. In all the experiments reported
here, we have used a bark-scale filterbank signal preprocessing. The result is a condensed
spectrogram, made of 100 frames of 16 coefficients per second; the overlap between two
consecutive frames is 1/200 second.

The database was recorded in an office environment. The words selected for the database are
the ten digits and twenty text editor command words.

Half of the database was used for training and the other half for testing. The test set had about
1500 examples, so for instance the 95% confidence interval at 96% correct classification is 1.1%.



3 COMPARISON OF SEVERAL METHODS

We give herein some details about the versions of the different methods we have employed,
as well as the recognition rates they obtained on the test base.

Dynamic Programming (DP)

Adaline

Our Dynamic Programming algorithm is quite simple and uses as references the
examples from the training base. This DP obtained 86.7% recognition.

Adaline gave a baseline performance of 74%.

Time Delay Neural Network (TDNN)

Our version of TDNN [7] is stochastic. Figure 1 shows our most efficient
architecture, called IWR2.
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Many architectures were tested. We mention here two modifications of TWR2:
IWR1 where the layer “global layer 1” has been deleted and TWR1-16 where global
layer 1 has been deleted and where mask layer 1 uses 16 hidden units per frame
(instead of 8 in IWR2). IWR2 gave a 96,5% recognition rate, IWR1-16 96.5%, and
IWR1 94.5%.

Frequentialy Connected TDNN (F-TDNN)

Recurrent

In common TDNN, masks (i.e. quasi-linear filters) are local along the temporal
dimension, but global in the frequential dimension. It is possible to use masks
which use local connections in both dimensions. Then "expert” knowledge can be
introduced in the design of these connections, which can improve performance
and speed. A first attempt with this method, gave 97% recognition. This F-TDNN
is a restriction of the architecture of TDNN IWRI.

Neural Networks (RNN)

We used a special kind of Recurrent Neural Network where the recurrent part of
the RNN is implemented with shared weights, by unfolding the recurrent
network along time. Consequently, the RNN has a finite temporal extension.

We faced problems in conditionning the algorithm. Qur best recurrent network
obtained 96% success.
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K-Means

K-Means is a stochastic algorithm: we adapt references after presentation of each
example and the database is presented several times. K-Means can be used as an
efficient classification method. To do this, we supervise the algorithm by applying
a K-Means independently to the different classes. Furthermore, we use a shift-



tolerant version, based on the same principle as the shift-tolerant LVQ algorithm
(5]: during training, K-Means is applied to temporal windows over the input
samples. For classification, each word is scanned and the decision is obtained
through the vote of all temporal windows. This sophisticated version obtained
82% success.
Learning Vector Quantization (LVQ)

We used a shift-tolerant LVQ2 [5] [4] (see above K-Means for more details on shift-
tolerance), modified the following way [1]: we consider the nearest reference of the
good class instead of the second closest reference. We initialized LVQ with K-
Means. The best LVQ of this kind had 11 references for each class, and obtained
83% success; with 16 references per class, the learning rate was better, but the test
was not as good: 79%.

The following table sums up all results mentionned in §3:

Dr Shift Shift  Shift Adaline TDNN TDNN TDNN F-IWR1 RNN
K-Means LVQ-16 LVQ-32 IWR1 IWR2 IWRI1-16
86.7 82 83 79 74 94.5 96.5 96.5 97 96

Table 1: % of correct answers on the test set for the different classifiers

4 A SIMPLE SUB-OPTIMAL COOPERATION METHOD: FEATURE EXTRACTION

The method we propose here consists in using the lower layers of a TDNN to provide a
preprocessing. Then any classifier can be used on the preprocessed data. More precisely, we
build a two module architecture. First module is a TDNN, which will be used to code the data
in one of its hidden layer H. The top of the TDNN (i.e.. layers above H) is then exchanged with
another classifier which will receive as input the output of H which is called extracted features..
Speech data will be processed sequentially by the two modules. Training is performed as
follows: we first train the TDNN and then use the outputs of H, as training data for the second
module. Figure 3 illustrates the method.
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We have tested various combinations of TDNN architectures and classifiers. The results are
given below:

Top classifier

Feat. extractor DP MLP1 MLP2 LVQ-LBG LVQKM16 LVQKM32 RNN

TDNN [WR1 98.8 94.5 96.5 97.75 97.12 97.25 96.5
TDNN IWR2 92 86 95 KM stands for K-Means; LBG is another
TDNN IWR1 16 94 clustering algorithm used to initialize LVQ;
F-TDNN IWR1 [ 98.8 MLP1 and 2 are MLPs with 0 and 1 hidden layer.

Further experiments should be made for a complete understanding of these first results. We
can already make some remarks:
* The best scores are clearly obtained by combining DP and TDNN IWRI1 or F-TDNN
IWR1,



* The architecture of the upper layers of a TDNN influence the training of the lower
layers. A two layers top is more complex than a single layer top. Therefore, codes from
IWR2 may be more complex than codes from IWRI.

* These cooperative systems are clearly sub-optimal: the code obtained by feature
extraction may be not especially adapted to the top classifier. It is especially critical for
DP, which is not adaptive and uses simple distances (Euclidean, Manhattan...) to match
frames.

¢ A further advantage of feature extraction is the reduction of dimensionality which
allows to spare a large amount of time for training adaptative top classifiers (LVQ, ...) or
for using matching algorithms (DP); in the case of DP, there is a ratio of about 8 to 1.

This cooperation is said sub-optimal because nothing guaranties that the TDNN trained in a
first step on the IWR problem will provide a preprocessing which fits the classifier used
afterwards. In order to get an optimal algorithm, the two modules should be trained together.

5 OPTIMAL COOPERATION WITH DYNAMIC PROGRAMMING

Encouraged by the good results given by the sub-optimal cooperation methods, we have
worked on a familly of optimal cooperation algorithms, based on the frame to frame
matching operated by DP. We are going to build an optimal two module architecture
combining TDNN and DP. Like in §4, the first module will be the first layers of a TDNN and
the second a DP. These two modules will now be trained together using an adaptive gradient
algorithm. For purpose of simplicity, we introduce and detail these algorithms for isolated
word recognition only. We first describe an algorithm for training the DP module and then
discuss the global architecture.

5.1 Gradient Back-Propagation through a DP Module

Dynamic Programming computes a dissimilarity measure between two sequences of frames.
By the way, a path is found in the grid of frame to frame matching. This path is a sequence of
frame to frame correspondance. We can then build a K-Means-DP: given a training word, the
closest DP reference W among the set of references Q can be adapted by applying an attraction
(like k-means) from each frame of the training word on each corresponding frame of W.

Actually, this system is an original application of gradient back-propagation. Let us call Q the
measure of dissimilarity between a training example X = x1,..., xPx and its most similar
reference. We call W = wi1,..., wpPw a reference and ¢1...cM the frames of all reference words
together: cw1 = w1, ... ,cwP = wp are the frames of word W. A path which matches X to W is

written: pxw = (lxw , Oxw . wa), where Ixw is the length of the path and oxw(i) (resp. ewx(i))
the coordinates of X (resp. W) for the ith step of the path. We can write Q as follows:

lXW
QX,C1,e2,.... M )= Min Min d( x, 3, W @)) 1)
wordsW | paths pxw (xw . Oxw » S .zl Oxwli) » WOwx(d
in set Q which match X to W 1=

Equation (1) means that the dissimilarity is the addition of all frame-to-frame distances along
the best path generated while matching X to its most similar reference W.

Actually, we use Q as the cost function (error) back propagated. Given the closest reference W
and the best path pxyw which matches W to X, we can write the gradient of Q, using twice the

property: [Vy Min Z = Vy Z 1. We obtain:

VgQ = z Vi) A€ XGywli) » WSyy(i) ) ; Teminding that for any j: Wwj= G- 2)

i such that: GyxG) = wj



We can remark a consequence of equation (2):

ch Q=0 for je {wl,..., wp},ie. only the frames of the closest reference W will be modified. (3)

Equation (2) means that the components ch Q of the gradient V Q are themselves the sum of
gradients of the frame-to-frame distance computed on all couples (j,wwj) in the best path
generated while matching X to its most similar reference W.

The same method works to build a LVQ2-DP; compared to K-Means-DP, we must make two
modifications. First, nothing happens when the classification is good. Second, when a
classification is bad, the frames of closest reference word W are repulsed, while the frames of
closest good reference V are attracted by the corresponding frames of training exemple X.

We can notice that this DP training algorithm allows to build artificial references, when it is
used alone.

52  Global Gradient Systems integrating DP

Our two module TDNN-DP architecture can now be trained in an optimal way. Input speech
is first processed sequentially by the two modules. We then compute the output error
function Q (1) and back propagate the gradient through the DP module using (2), these values
can then be used to compute the gradient for the weights of the TDNN module. The resulting
adaptative systems are then called TDNN-K-Means-DP and TDNN-LVQ2-DP.

6 CONCLUSION

We have compared many popular methods of speech recognition on a real-size simple
problem. We have tested a sub-optimal cooperation method between TDNN and other
classifiers, and found that cooperation between Dynamic Programming and Time Delay
Neural Network was especially efficient. We have introduced a familly of optimal
algorithms, based on error back-propagation and which makes DP cooperate with K-Means,
LVQ and TDNN.
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