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This short contribution presents the first paper in which Vapnik and Chervonenkis
describe the foundations of the Statistical Learning Theory [10]. The original paper
was published in the Doklady, the Proceedings of the USSR Academy of Sciences,
in 1968. An English translation was published the same year in Soviet Mathematics,
a journal from the American Mathematical Society publishing translations of the
mathematical section of the Doklady.! The importance of the work of Vapnik and
Chervonenkis was noticed immediately. Dudley begins his 1969 review for Mathe-
matical Reviews [3] with the simple sentence “the following very interesting results
are announced.”

This concise paper is historically more interesting than the celebrated 1971 paper
[11] because its three page limit forced its authors to reveal what they consider es-
sential. Every word in this paper counts. In particular, the introduction explains that
a uniform law of large numbers “is necessary in the construction of learning algo-
rithms.” The mention of learning algorithms in 1968 seems to be an anachronism. In
fact, learning machines were a popular subject in the sixties at the Institute of Au-
tomation and Remote Control in Moscow. The trend possibly started with the works
of Aizerman and collaborators on pattern recognition [1] and the work of Fel’dbaum
on dual control [4]. Tsypkin then wrote two monographs [7, 8] that clearly define
machine learning as a topic for both research and engineering.

These early works on machine learning are supported by diverse mathematical
arguments suggesting that learning takes place. The uniform convergence results
introduced in the 1968 paper provide powerful tools to construct such arguments.
In fact, in their following works [12, 9], Vapnik and Chervonenkis show how the
uniform convergence concept splits such arguments in three clearly defined parts:
the approximation properties of the model, the estimation properties of the induc-
tion principle, and the computational properties of the learning algorithm. Instead
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1A reproduction of this English translation of the 1968 paper follows this brief introduction.
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of simply establishing proofs for specific cases, the work of Vapnik and Chervo-
nenkis reveals the structure of the space of all learning algorithms. This is a higher
achievement in mathematics.

Whereas the law of large numbers tells how to estimate the probability of a sin-
gle event, the uniform law of large numbers explains how to simultaneously estimate
the probabilities of an infinite family of events. The passage from the simple law to
the uniform law relies on a remarkable combinatorial result (theorem 1 in the 1968
paper). This result was given without proof, most likely because the paper would
have exceeded the three page limit. The independent discovery of this combinato-
rial result is usually attributed to Vapnik and Chervonenkis [11], Sauer [5], or Shelah
[6]. Although this cannot be established with certainty, several details suggest that
the 1968 paper and its review by Dudley attracted the attention of eminent mathe-
maticians and diffused into the work of their collaborators.> However, Sauer gives a
better bound in his 1972 paper than Vapnik and Chervonenkis in their 1971 paper.?

The combinatorial result of the first theorem directly leads to the best know
Vapnik-Chervonenkis theorem, namely, the distribution—-independent sufficient con-
dition for uniform convergence. A detailled sketch of the proof supports this second
theorem. Although the paper mentions the connection with the Glivenko-Cantelli
theorem [2], the paper does not spell out the notion of capacity, now known as the
Vapnik-Chervonenkis dimension. However, the definition of the growth function is
followed by its expression for three simple families of events, including the family
of half-spaces associated with linear classifiers.

The third and final theorem states the distribution—dependent necessary and suf-
ficient condition for uniform convergence. The paper provides a minimal proof
sketch. The proof takes in fact seven pages in [11] and twenty-three pages in [9].

In conclusion, this concise paper deserves recognition because it contains the
true beginnings of Statistical Learning Theory. The work is clearly motivated by the
design of learning algorithms and its results have provided a new foundation for
statistics in the computer age.

2 Sauer motivates his work with a single sentence, “P. Erdos transmitted to me in Nice the following
question: is it true that (insert result here)”, without attributing the conjecture to anyone. Sauer
kindly replied to my questions with interesting details: “When I proved that Lemma, I was very
young, and have since moved my interest more towards model theoretic type questions. Erdos
visited Calgary and told me at that occasion that this question had come up. But I do not remember
the context in which he claimed that it did come up. I then produced a proof and submitted it as
a paper. I did not know about that question before the visit by Erdds.” and “the only thing I can
contribute is that, I believe Weiss in Israel, told me that Shelah had asked Perles to prove such a
Lemma, which he did, and subsequently both forgot about it and Shelah then asked Perles again to
prove that Lemma.”.

3 In fact, Sauer gives the optimal bound (Dudley, personal communication.)
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UNIFORM CONYERGENCE OF FREQUENCIES OF OCCURRENCE

OF EVENTS TO THEIR PROBABILITIES
UDC 519.21
V. N. VAPNIK AND A, Ja. CERVONENKIS

1. Introduction. According to the classical theorem of Bernoulli, the frequency of occurrence of
and event 4 coaverges (in probability, in a sequence of independent trials to the probability of this
event). In many applications, however, it is necessary to estimate the probabilities of the events of
an entire class S from one and the same sample. (In particular, this is necessary in the construction
of learning algofithms.) Here it is important to know if the frequencies converge to the probabilities
uniformly on the entire class of eveats S. More precisely, it is important to know if the probability
that the maximal deviation of frequency over the class S from the corresponding probability exceeds
a given small number approaches zero in an unbounded number of trials. It turas out that even in the
simplest examples such uniform convergence may not take place. Thergfore we would like to have
criteria by which we can decide if there is such convergence or not.

In this note we consider sufficient conditions for such uniform convergence which do not depend
on the properties of the distribution but are related only to the internal properties of the class S and
we give bounds for the rate of convergence also not depending on the distribution, and finally we find
necessary and sufficient conditions for uniform convergence of the frequencies to the probabilities
over the class of eveats S. )

2. Statement of the problem. Let X be a set of elementary events on which the probability
measure p is defined. Let S be a collection of random events, i.e., of subsets of the spaée X,
measurable relative to the measure p (the system S belongs to a Borel system but does not necessarily
coincide with it).

Let X7 denote the space of sequences of length I of elements of X. On the space XD e
define the probabilistic product measure from the condition P(Y, .Y, -+ - %) =P(¥))- P(Y)."..
+«+ « P(Y), where Y, are measurable subsets of X. This formalizes the fact that the sample is repeated,
i.e., the elements are chosen independently with a fixed distribution.

For every sample %, -+, x, and an event A we define the fréqugncy qu =v,lx, oov, %)) of
occurrence of the event 4, equal to the ratio of the number n , of those elements of the sample which

belong to A to the overall size [ of the sample:

VA(xi,...,xl) =nA/l.

Bernoulli’s theorem asserts that
lim P (| v}y — Pa{>e) =0.
[
We are interested in the maximal deviation of the frequency from the probability ‘in the clgss

()

al = sup | vl — Pal.
Ass
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The quantity 7 isa point fuanction on the space X0,

We assume that this function is measurable relative to the measure on X(l), i.e., that 7 isa
random variable. - If 7 approaches zero in probability with unbounded increase of the sample size
l, then we say that the frequencies of the events 4, € S approach the probabilities of these events
uniformly over the class S in probability.

The theorems below are concerned with estimating the probability of the event

» 70 0
and finding conditions when ¢

P (a0 — 0)=1.

3. Some additional definitions. Let X =, -+, x_be a finite sample of elements from X.
Every set A from S determines a subsample XrA =%, ***, %;;, on this sample consisting of those
terms of the sample Xr which are in A. We say that the set 4 induces the subsample Xf on the
sample Xr.

We denote the set of all distinct subsamples induced by sets from S on the sample X, by
S(xl, cee, xr) The number of distinct subsamples of the sample X induced by sets from S (the
number of elements of the set S(xl, cee, xr)) is called the index of the system S relative to the
sample X, and is denoted by As(xl, e, %)

Obviously we always have
As(xi, Yoy .’E,-) < 2r.

The function m5(r) = maxxl‘....xrAs(xl, -+, %), where the maximum is taken over all samples
of length r, is called the growth function of the class S.

Example 1. Let X be a straight line and S the set of all rays of the form x < a; m3() =7+ 1.

Example 2. X is the segment [0, 1]; S consists of all open sets; m5(r) = 2".

Example 3. Let X be n-dimensional Euclidean space. The set of events S consists of those
half-spaces of the form (x¢) > ¢, where ¢ is a vector and ¢ a constant; m3() < (> n).

Along with the growth function m3(r) 'we consider the function

M5 (r)= S InAS(z;, ..., z,)dp(X");
x(1) :

M35(?) is the mathematical expectation of the logarithm of the index AS(x, ---, x) of the system S.
4. Nature of the growth function. The basic nature of the growth function of the class § is
established by the following theorem. .
Theorem 1. The growth function mS(r) is either identically equal to 2" or majorized by the
function ™ where n is the first value of r for which mS(n) £ 2",
5. Sufficient conditions for uniform convergence not depending on properties of the distribution.
Sufficieat conditions for uniform convergence (with probability one) of frequencies to probabilities
are established by the following theorem.

Theorem 2. If m5(r) < 1", then _
| P —+ 0) = 1.
(=00

To prove this theorem, we establish the following lemma.

Suppo;e we have taken a sample of size 2: « TR

o *++, %, and computed the
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. and the second half-

We denote the corresponding frequencies by V/Il and Vlf and consider
()

frequeacies of occurrence of the event A on the first half-sample Appore, %
sample Xpogo 0t Xy

p(l) IVA - VA| We are interested. in the maximal deviation of p, D

over all events of S, i.e., p

SUP 4 esPA :
Lemma 1. For every ¢ with [ > 2/e® we have the inequality

P(n0>¢) <2P(p!>e/2).

We further establish for the proof of Theorem 2 that

P (pm > 8/2) < 2mS (2Uy e-eths,
whence

P(a® > g) << 4mS(2l)e~es, (=}

In the case in which m5(r) <", the inequality (+) implies uniform convergence in probability.
Using a well-known lemma [1] in probability theory, we establish that under the hypotheses of the
theorem we also have convergence thh probability one.

According to Theorem 2 there is uniform convergence in Examples 1 and 3 of §3. The fact that
there is uniform convergence in Example 1 coincides with the assertion of Glivenko’s theorem.

In many applications it is necessary to know that the sample size must be so that we can assert
with probability not less than 1 - 7. that the maximal deviation of the frequency from the probability
over the class of events S does not exceed ¢. )

In the case in which the growth function m3(0) <I™ for the class S, the inequality (*) easily

yields

32n 32n n
I> __<1 2 in T).
6. Necessary and sufficient conditions for uniform convergence of frequencies to probabilities.
Theorem 3. For uniform convergence (with probability one) of frequencies to probabilities over
the class of events S it is necessary and sufficient to satisfy the condition
s ' '
lim 220 0, 1/ (1) = & (In A5 (g, . .., 22))
100
(here we assume measurability of the function AS (my »ony 1))
For the proof of Theorem 3 we consider a lemma.
Lemma 2. The sequence MS(1)/l has a limit as | — w.
In the case where this limit is equal to zero, sufficiency of the condition is proved analogously
to Theorem 2. For the proof of necessity we first establish that
P (s > &) > 1P (o > 2e).
We further establish that if liml_,mMs(l)/l =t#£0, then there is a & such that
lim P (p¥ > 28) = 1,

l—00 .

whence liml__wp(n(l) > 8) £0.

The theorem is proved.
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