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Abstract

We assess the applicability of several popular learning
methods for the problem of recognizing generic visual cat-
egories with invariance to pose, lighting, and surrounding
clutter. A large dataset comprising stereo image pairs of
50 uniform-colored toys under 36 angles, 9 azimuths, and 6
lighting conditions was collected (for a total of 194,400 in-
dividual images). The objects were 10 instances of 5 generic
categories: four-legged animals, human figures, airplanes,
trucks, and cars. Five instances of each category were used
for training, and the other five for testing. Low-resolution
grayscale images of the objects with various amounts of
variability and surrounding clutter were used for training
and testing. Nearest Neighbor methods, Support Vector Ma-
chines, and Convolutional Networks, operating on raw pix-
els or on PCA-derived features were tested. Test error rates
for unseen object instances placed on uniform backgrounds
were around 13% for SVM and 7% for Convolutional Nets.
On a segmentation/recognition task with highly cluttered
images, SVM proved impractical, while Convolutional nets
yielded 14% error. A real-time version of the system was
implemented that can detect and classify objects in natural
scenes at around 10 frames per second.

1 Introduction

The recognition of generic object categories with invariance
to pose, lighting, diverse backgrounds, and the presence of
clutter is one of the major challenges of Computer Vision.
While there have been attempts to detect and recognize ob-
jects in natural scenes using a variety of clues, such as color,
texture, the detection of distinctive local features, and the
use of separately acquired 3D models, very few authors
have attacked the problem of detecting and recognizing 3D
objects in images primarily from the shape information.

Even fewer authors have attacked the problem of recog-
nizing generic categories, such as cars, trucks, airplanes,
human figures, or four-legged animals purely from shape
information. The dearth of work in this area is due in part
to the difficulty of the problem, and in large part to the non-
availability of a dataset with sufficient size and diversity to
carry out meaningful experiments.

The first part of this paper describes the NORB dataset,
a large image dataset comprising 97,200 stereo image pairs

of 50 objects belonging to 5 generic catagories (four-legged
animals, human figures, airplanes, trucks, and cars) under
9 different azimuths, 36 angles, and 6 lighting conditions.
The raw images were used to generate very large sets of
greyscale stereo pairs where the objects appear at variable
location, scale, image-plane angles, birghtness, and con-
trast, on top of background clutter, and distractor objects.

The second part of the paper reports results of generic
shape recognition using popular image classification meth-
ods operating on various input representations. The clas-
sifiers were trained on five instances of each category (for
all azimuths, angles, and lightings) and tested on the five
remaining instances. Results of simultaneous detection and
recognition with Convolutional Nets are also reported.

The main purpose of this paper is not to introduce new
recognition methods, but rather to (1) describe the largest
publicly available dataset for generic object recognition;
(2) report baseline performance with standard method on
this dataset; (3) explore how different classes of methods
fare when the number of input variables is in the tens of
thousands, and the number of examples in the hundreds of
thousands; (4) compare the performance of methods based
on global template matching such as K-Nearest Neighbors
and Support Vector Machines, and those based on local fea-
ture extraction such as Convolutional Nets, when intra-class
variabilities involve highly complex transformations (pose
and lighting); (5) assess the performance of template-based
methods when the size of the problem is at the upper limit
of their practicality; (6) measure to what extent the vari-
ous learning acrhitectures can learn invariance to 3D pose
and lighting, and can deal with the variabilities of natural
images (7) determine whether trainable classifiers can take
advantage of binocular inputs.

2 The NORB Dataset

Many object detection and recognition systems described
in the literature have (wisely) relied on many different non-
shape related clues and various assumptions to achieve their
goal. Authors have advocated the use of color, texture,
and contours for image indexing applications [8], the de-
tection of distinctive local features [20, 26, 25, 23], the
use of global appearance templates [11, 10, 19], the extrac-
tion of silhouettes and edge information [14, 22, 8, 4, 19]
and the use of pose-invariant feature histograms [9, 5, 1].
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Conversely, learning-based methods operating on raw pix-
els or low-level local features have been quite succesful for
such applications as face detection [24, 18, 12, 7, 25, 21],
but they have yet to be applied succesfully to shape-based,
pose-invariant object recognition. One of the central ques-
tions addressed in this paper is how methods based on
global templates and methods based on local features com-
pare on invariant shape classification tasks.

In the NORB dataset, the only useful and reliable clue
is the shape of the object, while all the other parameters
that affect the appearence are subject to variation, or are de-
signed to contain no useful clue. Parameters that are subject
to variation are: viewing angles (pose), lighting condition,
position in the image plane, scale, image-plane rotation,
surrounding objects, background texture, contrast, lumi-
nance, and camera settings (gain and white balance). Poten-
tial clues whose impact was eliminated include: color (all
images were grayscale), and object texture (objects were
painted with a uniform color). For specific object recogni-
tion tasks, the color and texture information may be helpful,
but for generic shape recognition tasks the color and texture
information are distractions rather than useful clues. The
image acquisition setup was deliberately designed to reflect
real imaging situations. By preserving natural variabilities
and eliminating irrelevant clues and systematic biases, our
aim was to produce a benchmark in which no hidden reg-
ularity can be used, which would unfairly advantage some
methods over others.

While several datasets of object images have been made
available in the past [11, 22, 19], NORB is considerably
larger than those datasets, and offers more variability, stereo
pairs, and the ability to composite the objects and their cast
shadows onto diverse backgrounds.

Ultimately, practical object recognition systems will
have to be trained on natural images. The value of the
present approach is to allow systematic objective compar-
isons shape classification methods, as well as a way of as-
sessing their invariant properties, and the number of exam-
ples required to train them.

2.1 Data Collection

The image acquisition system was composed of a turntable
on which object were placed, two Hitachi KP-D20AU CCD
cameras mounted on a swiveling arm, and four studio lights
with bounce umbrellas. The angle of the turntable, the az-
imuth of the camera arm, and the intensity of the lights were
all under computer control. The cameras were 41cm away
from the objects (roughly arm length) and 7.5cm apart from
each other (roughly the distance between the two eyes in hu-
mans). The lenses’ focal length was set around 16mm. The
turntable was 70cm in diameter and had a uniform medium
gray color. The lights were placed at various fixed locations
and distances around the object.

We collected images of 50 different toys shown in fig-
ure 1. The collection consists of 10 instances of 5 generic
categories: four-legged animals, human figures, airplanes,
trucks, and cars. All the objects were painted with a uni-
form bright green. The uniform color ensured that all irrel-
evant color and texture information was eliminated. 1,944

stereo pairs were collected for each object instance: 9 az-
imuths (30, 35, 40, 45, 50, 55, 60, 65, and 70 degrees from
the horizontal), 36 angles (from 0 to 350◦ every 10◦), and 6
lighting conditions (various on-off conbinations of the four
lights). A total of 194,400 RGB images at 640×480 reso-
lution were collected (5 categories, 10 instances, 9 azimuth,
36 angles, 6 lightings, 2 cameras) for a total of 179GB of
raw data. Note that each object instance was placed in a
different initial pose, therefore “0 degree angle” may mean
“facing left” for one instance of an animal, and “facing 30
degree right” for another instance.

2.2 Processing

Training and testing samples were generated so as to care-
fully remove (or avoid) any potential bias in the data that
might make the task easier than it would be in realistic sit-
uations. The object masks and their cast shadows were ex-
tracted from the raw images. A scaling factor was deter-
mined for each of the 50 object instances by computing the
bounding box of the union of all the object masks for all the
images of that instance. The scaling factor was chosen such
that the largest dimension of the bounding box was 80 pix-
els. This removed the most obvious systematic bias caused
by the variety of sizes of the objects (e.g. most airplanes
were larger than most human figures in absolute terms).
The segmented and normalized objects were then compos-
ited (with their cast shadows) in the center of various 96x96
pixel background images. In some experiments, the loca-
tions, scales, image-plane angle, brightness, and contrast
were randomly perturbed during the compositing process.

2.3 Datasets

Experiments were conducted with four datasets generated
from the normalized object images. The first two datasets
were for pure categorization experiments (a somewhat un-
realistic task), while the last two were for simultaneous de-
tection/segmentation/recognition experiments.

All datasets used 5 instances of each category for train-
ing and the 5 remaining instances for testing. In the nor-
malized dataset, 972 images of each instance were used: 9
azimuths, 18 angles (0 to 360◦ every 20◦), and 6 illumi-
nations, for a total of 24,300 training samples and 24,300
test samples. In the various jittered datasets, each of the
972 images of each instance were used to generate addi-
tional examples by randomly perturbing the position ([-3,
+3] pixels), scale (ratio in [0.8, 1.1]), image-plane angle ([-
5, 5] degrees), brightness ([-20, 20] shifts of gray levels),
contrast ([0.8, 1.3] gain) of the objects during the composit-
ing process. Ten drawings of these random parameters were
drawn to generate training sets, and one or two drawings to
generate test sets.

In the textured and cluttered datasets, the objects were
placed on randomly picked background images. In those
experiments, a 6-th category was added: background im-
ages with no objects (results are reported for this 6-way
classification). In the textured set, the backgrounds were
placed at a fixed disparity, akin to a back wall orthogonal to
the camera axis at a fixed distance. In the cluttered datasets,
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Figure 1: The 50 object instances in the NORB dataset. The left side contains the training instances and the right side the
testing instances for each of the 5 categories.

the disparities were adjusted and randomly picked so that
the objects appeared placed on highly textured horizontal
surfaces at small random distance from that surface. In ad-
dition, a randomly picked “distractor” object from the train-
ing set was placed at the periphery of the image.

• normalized-uniform set: 5 classes, centered, unper-
turbed objects on uniform backgrounds. 24,300 train-
ing samples, 24,300 testing samples. See figure 1.

• jittered-uniform set: 5 classes, random perturbations,
uniform backgrounds. 243,000 training samples (10
drawings) and 24,300 test samples (1 drawing)

• jittered-textured set: 6 classes (including one back-
ground class) random perturbation, natural back-
ground textures at fixed disparity. 291,600 train-
ing samples (10 drawings), 58,320 testing samples (2
drawings). See figure 2.

• jittered-cluttered set: 6 classes (including one back-
ground class), random perturbation, highly cluttered
background images at random disparities, and ran-
domly placed distractor objects around the periphery.
291,600 training samples (10 drawings), 58,320 test-
ing samples (2 drawings). See figure 3.

Occlusions of the central object by the distractor occur oc-
casionally, as can be seen in figure 3. Most experiments
were performed in binocular mode (using left and right im-
ages), but some were performed in monocular mode. In
monocular experiments, the training set and test set were
composed of all left and right images used in the corre-
sponding binocular experiment. Therefore, while the num-
ber of training samples was twice higher, the total amount
of training data was identical. Examples from the jittered-
textured and jittered-cluttered training set are shown in fig-
ures 2 and 3.

3 Experiments

The following classifiers were tested on raw image pairs
from the normalized-uniform dataset: linear classifier, K-
Nearest Neighbor (Euclidean distance), pairwise Support
Vector Machines with Gaussian kernels, and Convolutional
Networks [7]. With 18,432 input variables and 24,300 sam-
ples, this dataset is at the upper limit of practicality for
template-matching-based methods such as K-NN and SVM
(in fact, special algorithms had to be implemented to make
them practical). The K-Nearest Neighbor and SVM meth-
ods were also applied to 95-dimensional vectors of PCA
coefficients extracted from the 2x96x96 binocular training
images. All the methods were also applied to Laplacian-
filtered versions of the images, but the results were uni-
formly worse than with raw images and are not reported.

The Convolutional Network was trained and tested on
the normalized-uniform dataset, as well as on the jittered-
uniform and jittered-textured datasets. The jittered training
sets were much too large to be handled by the K-NN and
SVM methods within reasonable limits of CPU time and
memory requirements. In the following sections, we give
brief descriptions of the methods employed.

Computing the Principal Components of the dataset for
the PCA-based K-NN and SVM was a major challenge
because it was impossible to manipulate (let alone diag-
onalize) the 18,432×18,432 covariance matrix (2x96x96
squared). Fortunately, following [13], we can compute the
principal direction of a centered cloud of points (xi) by
finding two cluster centroids that are symmetric with re-
spect to the origin: we must find a vector u that minimizes
∑

i
min

(

(xi − u)2, (xi + u)2
)

. A quick solution is ob-
tained with online (stochastic) algorithms as discussed in
[2] in the context of the K-Means algorithm. Repeated ap-
plications of this method, with projections on the comple-
mentary space spanned by the previously obtained direc-
tions, yield the first 100 principal components in a few CPU
hours. The first 29 components thus obtained (the left cam-
era portion) are shown in figure 4. The first 95 principal
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Figure 2: Some of the 291,600 examples from the jittered-textured training set (left camera images).

Figure 3: Some of the 291,600 examples from the jittered-cluttered training set (left camera images).

components were used in the experiments.

3.1 K-Nearest Neighbors (with Euclidean
Distance)

Because running the K-Nearest Neighbors algorithm with
24,300 reference images in dimension 18,432 is pro-
hibitively expensive, we precomputed the distances of a few
representative images Ak to all the other reference images
Xi. By triangular inequality, the distances between a query
image X and all the reference image Xi is bounded be-
low by Maxk |d(X, Ak) − d(Ak, Xi)|. These can be used
to choose which distances should be computed first, and to
avoid computing distances that are known to be higher than
those of the currently selected reference points [17]. Exper-
iments were conducted for values of K up to 18, but the best
results were obtained for K = 1. We also applied K-NN to
the 95-dimensional PCA-derived feature vectors.

3.2 Pairwise Support Vector Machine (SVM)

We applied the SVM method with Gaussian kernels to
the raw images of the normalized-uniform dataset, but
failed to obtain convergence in manageable time due to

the overwhelming dimension, the number of training sam-
ples, and the task complexity. We resorted to using the 95-
dimensional, PCA-derived feature vectors, as well as sub-
sampled, monocular versions of the images at 48×48 pixels
and 32×32 resolutions.

Ten SVMs were independently trained to classify one
class versus one other class (pairwise classifiers). This
greatly reduces the number of samples that must be exam-
ined by each SVM over the more traditional approach of
classifying one class versus all others. During testing, the
sample is sent to all 10 classifiers. Each classifier “votes”
for one of its attributed categories. The category with the
largest number of votes wins. The number of support vec-
tors per classifier were between 800 and 2000 on PCA-
derived inputs (roughly 2 × 106 flops to classify one sam-
ple), and between 2000 and 3000 on 32x32 raw images
(roughly 30 × 106 flops to classify one sample). SVMs
could not be trained on the jittered datasets because of the
prohibitive size of the training set.

3.3 Convolutional Network

Convolutional Networks [7] have been used with great suc-
cess in various image recognition applications, such as
handwriting recognition and face detection. The reader is
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Figure 4: The average image and the first 29 principal
eigenvectors of the normalized-uniform training set (only
the left camera portions of the vectors are shown).

Classification

exp# Classifier Input Dataset Test Error

1.0 Linear raw 2x96x96 norm-unif 30.2%
1.1 K-NN (K=1) raw 2x96x96 norm-unif 18.4 %
1.2 K-NN (K=1) PCA 95 norm-unif 16.6%
1.3 SVM Gauss raw 2x96x96 norm-unif N.C.
1.4 SVM Gauss raw 1x48x48 norm-unif 13.9%
1.5 SVM Gauss raw 1x32x32 norm-unif 12.6%
1.6 SVM Gauss PCA 95 norm-unif 13.3%
1.7 Conv Net 80 raw 2x96x96 norm-unif 6.6%
1.8 Conv Net 100 raw 2x96x96 norm-unif 6.8%
2.0 Linear raw 2x96x96 jitt-unif 30.6%
2.1 Conv Net 100 raw 2x96x96 jitt-unif 7.1%

Detection/Segmentation/Recognition

exp# Classifier Input Dataset Test Error

5.1 Conv Net 100 raw 2x96x96 jitt-text 10.6%
6.0 Conv Net 100 raw 2x96x96 jitt-clutt 16.7%
6.2 Conv Net 100 raw 1x96x96 jitt-clutt 39.9%

Table 1: Recognition results. “raw 2x96x96” indicates raw
binocular images, “raw 1x96x96” indicates raw monocu-
lar images, “PCA-95” indicates a vector of 95 PCA-derived
features. “norm-unif” refers to the normalized-uniform
dataset, “jitt-unif” to the jittered-uniform dataset, “jitt-text”
to the jittered-textured dataset, and “jitt-clutt” to the jittered-
cluttered dataset.

refered to the above reference for a general discussion of
Convolutional Nets. Convolutional Nets use a succession
of layers of trainable convolutions and spatial subsampling
interspersed with sigmoid non-linearities to extract features
of increasingly large receptive fields, increasing complex-
ity, and increasing robustness to irrelevant variabilities of
the inputs.

A six-layer net, shown in figure 6, was used in the ex-
periments reported here. The layers are respectively named
C1, S2, C3, S4, C5, and output. The C letter indicates a
convolutional layer, and the S layer a subsampling layer.
C1 has 8 feature maps and uses 5×5 convolution kernels.
The first 2 maps take input from the left image, the next
two from the right image, and the last 4 from both. S2 is
a 4×4 subsampling layer. C3 has 24 feature maps that use
96 convolutiona kernels of size 6×6. Each C3 map takes
input from 2 monocular maps and 2 binocular maps on S2,
each with a different combination. S4 is a 3×3 subsampling
layer. C5 has a variable number of maps (80 and 100 in the

reported results) that combine inputs from all map in S4
through 6×6 kernels. Finally the output layer takes inputs
from all C5 maps. The network has a total of 90,575 train-
able parameters. A full propagation through the network
requires 3,896,920 multiply-adds.

The network was trained to mininize the mean squared
error with a set of target outputs. For 5-class recognition
tasks, we used a traditional place code (one unit active, the
other inactive), for 6-class detection/recognition tasks, we
added a 6-th target configuration with all output units inac-
tive for the background class (no object in the center of the
image).

We used a stochastic version of the Levenberg-
Marquardt algorithm with diagonal approximation of the
Hessian [7], for approximately 250,000 online updates. No
significant over-training was observed, and no early stop-
ping was performed. For experiments with monocular data,
the left image was duplicated into the right image, or vice
versa with equal probability.

4 Results and Discussion

4.1 Results on the normalized-uniform and
jittered-uniform datasets

The results are shown in table 1. To our knowledge, these
are the first systematic experiments that apply machine
learning to shape-based generic object recognition with in-
variance to pose and lighting. These results are intended as
a baseline for future work with the NORB datasets.

The first section of the table gives results on the
normalized-uniform database, a somewhat unrealistic set-
ting that assumes that objects can be isolated from their sur-
roundings and have been size-normalized prior to recogni-
tion.

The biggest surprise is that brute-force Nearest Neighbor
with Euclidean distance on raw pixels works at all, despite
the complex variabilities in the data (see lines 1.1 and 1.2 in
the table). Naturally, the classification is horribly expensive
in memory and CPU time.

Another important lesson is that Gaussian SVM becomes
impractical with very large and complex datasets such as
NORB. The Gaussian SVM architecture consists of a layer
of template matchers, whose prototypes are a subset of the
training samples (i.e. a Gaussian bump is placed around
each training sample), followed by a layer of linear combi-
nations with learned weights. Since the supervised learning
only takes place in the linear layer, the objective function
can be made convex (quadratic with box constraints in the
case of traditional SVMs). In fact, an often-stated advantage
of SVMs is the convexity of their objective function. That
property seems to be of little help in our case because of the
difficulty of the task (which increases the number of support
vectors), the large number of training samples, and the fact
that the size of the quadratic program to be solved grows
with the square of the number of training samples. We did
not obtain convergence on the raw binocular data after sev-
eral days of CPU time using one of the fastest known imple-
mentations of SVMs (Torch [6]). Experiments with reduced
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resolution monocular images yielded decent results around
13% (see lines 1.4 and 1.5 in table 1). Working from the
PCA features yielded similar results (see line 1.6).

Unfortunately, those complexity reductions were still in-
sufficient to allow us experiments with the much larger
jittered-textured and jittered-cluttered trainings set. The
performance of SVMs on the jittered test set after training
on the unjittered training set was predictably abysmal (48%
error on PCA features and 34% on raw 1x48x48) PCA-
derived features, which has met with some success in face
recognition, only brought marginal improvements over us-
ing raw pixels with K-NN (from 18.4 to 16.6% error), and
no improvement with SVM.

One should not be misled by the surprisingly good per-
formance of template-based methods on the normalized-
uniform dataset. This dataset is unrealistically favorable
to template-based methods because the lighting conditions
are in small numbers (6) and are exactly identical in the
training set and the test set. Furthermore, the perfectly uni-
form backgrounds, perfect object registration, and perfect
size normalization are not likely to be possible in realistic
object recognition settings.

On the normalized-uniform set, convolutional nets
reached error rates below 7% with binocular inputs (lines
1.7, and 1.8). The error rate was only mildly affected by jit-
tering the training and test samples (7.1% versus 6.8% for
non-jittered). The size of the jittered database was too large
to carry out experiments with the template-based methods
that would result in meaningful comparisons.

4.2 Results on the jittered-textured and
jittered-cluttered datasets

The most challenging task by far was the jittered-cluttered
dataset, and the less challenging jittered-textured dataset,
where the classifier must simultaneously detect and rec-
ognize objects. The shear size and complexity of these
datasets place them above the practical limits of template-
based methods, therefore we only report results with Con-
volutional Nets (lines 5.x and 6.x).

A test error rate of 10.6% on the 6 classes (5 objects plus
background) was obtained on the jittered-textured dataset.
A large proportion of errors were objects classified as back-
ground, and cars and space shuttles classified as trucks. A
test error rate of 16.7% was obtained on the highly challeng-
ing jittered-cluttered dataset in binocular mode. An exam-
ple of the internal state of this network is shown in figure 6.
Typical examples of images from the test set and the cor-
responding answers produced by the system are shown in
figure 7.

One significant surprise is the comparatively poor perfor-
mance of Convolutional Net on the jittered-cluttered dataset
with monocular inputs (line 6.2): the error rate is 39.9%
compared with 16.7% for binocular inputs. This suggests
that the binocular network is able to take advantage of the
disparity information to help locate the outline of the object
and disambiguate the segmentation/classification. In fact,
it can be observed on figure 6 that the last 4 feature maps
in the first and second layers, which take inputs from both
cameras, seem to be estimating features akin to disparity.

class animal human plane truck car junk
animal 0.85 0.02 0.01 0.00 0.00 0.11
human 0.01 0.89 0.00 0.00 0.00 0.10
plane 0.01 0.00 0.77 0.02 0.06 0.14
truck 0.03 0.00 0.00 0.84 0.05 0.07
car 0.00 0.00 0.01 0.20 0.69 0.09
junk 0.01 0.02 0.00 0.00 0.00 0.96

Table 2: Confusion matrix on the test set for the binocu-
lar convolutional net on the jittered-cluttered database (line
6.0 in the results table). Each row indicates the probability
that the system will classify an object of the given category
into each of the 6 categories. Most errors are false nega-
tives (objects classified as junk), or cars being classified as
trucks.

5 Conclusion and Outlook

An important goal of this work is to point out the limitations
of popular template-based approaches (including SVMs)
for classification over very large datasets with complex vari-
abilities. Our results emphasize the crucial importance of
trainable local feature extractors for robust and invariant
recognition.

A real-time portable demo system was implemented us-
ing USB cameras connected to a laptop computer. Convo-
lutional Nets can be scanned over large images very effi-
ciently [7]. Taking advantage of this property, the network
is scanned over input images at multiple scales producing
likelihood maps for each category. The system can spot and
recognize animals, human figures, planes, cars and trucks
in natural scenes with high accuracy at a rate of several
frames per second. By presenting the input image at mul-
tiple scales, the system can detect those object over a wide
range of scales. Examples of output of this system with nat-
ural images are shown in figure 5. This figure was generated
using the monocular convolutional net trained on the jitterd-
cluttered database (line 6.2 on the results table). Although
the raw performance of this network on the database was
quite poor, and despite the fact that it was trained only with
semi-artificial data, the system can spot most objects in the
scenes. The network is applied to the image at two different
scales, and is scanned over multiple positions at the large
scale. The scores for each class at all scales and positions
are combined to produce an overall likelihood of finding an
object of the class anywhere in the image. The list of classes
whose likelihood exceeds a threshold are shown above each
image in the figure. The gray level of the label word is in-
dicative of the likelihood.

The NORB dataset opens the door to large-scale exper-
iments with learning-based approaches to invariant object
recognition. This is the first installment in what promises to
be a long series of works on the subject. Future work will
use trainable classifiers that incorporate explicit models of
image formation and geometry.
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Figure 5: Examples of results on natural images. The list of objects found by the monocular convolutional net is displayed
above each sample.
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Figure 6: Internal state of the Convolutional Network for
an image pair from the jittered-textured dataset. From left
to right: input (left and right images), C1, S2, C3, S4, and
output. layer C5 was omitted. The 4 topmost feature maps
of C1 and S2 are monocular, while the 4 bottom ones are
binocular.

Figure 7: Examples from the jittered-cluttered test set with
labels produced by the binocular convolutional net (line
6.0). The labels above each image indicate the system’s
first choice and second choice (“junk” means no object was
found). If the first choice is erroneous, the correct class la-
bel is displayed in brackets. This is a typical set of examples
where most confusions occur between trucks and cars.
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