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Abstract
TheSGD-QN algorithm described in (Bordes et al., 2009) contains a subtle flaw that prevents it
from reaching its design goals. Yet the flawedSGD-QN algorithm has worked well enough to
be a winner of the first Pascal Large Scale Learning Challenge(Sonnenburg et al., 2008). This
document clarifies the situation, proposes a corrected algorithm, and evaluates its performance.
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1. Introduction

Bordes et al. (2009) propose to improve the practical speed of stochastic gradient descent by effi-
ciently estimating a diagonal matrix for rescaling the gradient estimates. The proposed algorithm,
SGD-QN, works well enough to be a winner of the first Pascal Large Scale Learning Challenge
(Sonnenburg et al., 2008). A couple months after the publication of the paper, Jonathan Chang and
S. Alex Smith contacted Léon Bottou regarding some curious aspects of the algorithm mathematics
(see section 4.1). This initial observation was then traced back to a more subtle flaw that prevents
the proposed algorithm to truly reach is design objectives.

We first explain the flaw and present experimental results describing its consequences. Then we
present a corrected algorithm and evaluate its performance for training both linear Support Vector
Machines (SVMs) and Conditional Random Fields (CRFs). Finally we drawupdated conclusions.

2. Setup

Consider a binary classification problem with examples(x, y) ∈ R
d × {−1, +1}. Given a set of

examples{(x1, y1) . . . (xn, yn)}, we obtain a linear SVM classifier by minimizing the cost

Pn(w) =
λ

2
‖w‖2 +

1

n

n
∑

i=1

ℓ(yiw
⊤xi) =

1

n

n
∑

i=1

(

λ

2
‖w‖2 + ℓ(yiw

⊤xi)

)

. (1)
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Each iteration of theSGD-QN algorithm consists of drawing an independent random example
(xt, yt) from the training set and computing an updated parameter vector

wt+1 = wt −
1

t + t0
B gt(wt) with gt(wt) = λwt + ℓ′(ytw

⊤

txt) yt xt (2)

whereB is a diagonal scaling matrix estimated on-the-fly.
In the following, expectations and probabilities refer to the discrete distribution describing the

training examples randomly picked from the finite training set at each iteration.Let Ft denote the
examples{(x1, y1) . . . (xt−1, yt−1)} picked before reaching thet-th iteration.

We would like to findB such that

wt+1 −wt = B
(

P ′
n(wt+1)− P

′
n(wt) + ξt

)

, (3)

with an error termξt verifying E [ξt| Ft] = 0. Following Schraudolph et al. (2007), we replace the
computationally expensive gradientsP ′

n by the cheap stochastic estimatesgτ (wt) andgτ (wt+1)
computed on a same single example(xτ , yτ ) ,

wt+1 −wt = B
(

gτ (wt+1)− gτ (wt) + ζt + ξt

)

, (4)

whereζt represents the additional error term introduced by this substitution. EstimatingB with (3)
or (4) leads to the same solution if we make sure thatE [ζt| Ft] = 0 as well.

TheSGD-QN algorithm updates the diagonal elements of matrixB on-the-fly on the basis of
the term-by-term ratios of the observed differenceswt+1−wt andgτ (wt+1)−gτ (wt). The obvious
choicesτ = t andτ = t + 1 only require one additional gradient evaluation because the parameter
update formula (2) demands the computation of all the gradientsgt(wt) anyway.

3. The Flaw

Let us now evaluate

E [ζt| Ft] = E
[

P ′
n(wt+1)− P

′
n(wt)− gτ (wt+1) + gτ (wt)

∣

∣Ft

]

.

Let us first consider the caseτ = t + 1. Sincegt+1(wt+1) is a function of(xt+1, yt+1,xt, yt,Ft),

E [gτ (wt+1)| Ft] =

∫

gt+1(wt+1) dP (xt+1, yt+1,xt, yt | Ft)

=

∫
[
∫

gt+1(wt+1) dP (xt+1, yt+1)

]

dP (xt, yt | Ft) .

Since the variableswt+1 and(xt+1, yt+1) are independent, the inner integral above is simply the
average ofgt+1(wt+1) for all possible(xt+1, yt+1) picked from the training set. Therefore

E [gτ (wt+1)| Ft] =

∫

P ′
n(wt+1) dP (xt, yt | Ft) = E

[

P ′
n(wt+1)

∣

∣Ft

]

.

Using a similar derivation forE [gτ (wt)| Ft] with τ = t+1, we can easily establish thatE [ζt| Ft] =
0. Therefore estimatingB on the basis of (4) leads to the same solution as estimatingB on the basis
of (3), albeit with a higher noise level.

Such a derivation is impossible whenτ = t because(xt, yt) andwt+1 are not independent.
Therefore we cannot ensure that estimatingB with (3) or (4) leads to the same result. Unfortunately,
theSGD-QN paper (see Section 5.3 of (Bordes et al., 2009)) describes the algorithmwith τ = t.
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4. The Consequences

In order to take maximal advantage of sparse datasets, theFlawed SGD-QN algorithm (see Figure 2
in the original paper) splits the stochastic parameter update (2) in two halves inorder to schedule
them separately. The first half involves only the gradient of the loss,

w← w − (t + t0)
−1B ℓ′(yt w⊤xt) yt xt .

The second half involves only the gradient of the regularization term,

w←

{

w most of the time,
w − skip λ (t + t0)

−1B w once everyskip iterations.

The Flawed SGD-QN algorithm measures the differenceswt+1 − wt andgt(wt+1) − gt(wt)
during iterations for which the second half does nothing. Therefore, using notations[x]i for thei-th
coefficient of vectorx, andBii for the terms of the diagonal matrixB, we always have

[gt(wt+1)− gt(wt)]i
[wt+1 −wt]i

= λ−

(

ℓ′(ytw
⊤

t+1xt)− ℓ′(ytw
⊤

txt)
)

yt [xt]i
Bii (t + t0)−1ℓ′(ytw⊤xt) yt [xt]i

.

• When[xt]i is nonzero, we can simplify this expression as

[gt(wt+1)− gt(wt)]i
[wt+1 −wt]i

= λ−
ℓ′(ytw

⊤

t+1xt)− ℓ′(ytw
⊤

txt)

Bii (t + t0)−1ℓ′(ytw
⊤

txt)
. (5)

This ratio is always greater thanλ because of the loss functionℓ is convex. As explained in
the original paper, the coefficientsBii then remain smaller thanλ−1.

• When[xt]i is zero, the original paper uses a continuity argument to justify the equality

[gt(wt+1)− gt(wt)]i
[wt+1 −wt]i

= λ . (6)

4.1 Impact on Dense Datasets

The coefficients[xt]i for dense datasets are rarely zero. Assume all theBii are equal before being
updated. All the ratios (5) will then be equal. Therefore all theBii coefficients will be updated in
exactly the same way and therefore remain equal. Since theBii coefficients are initially equal, they
remain equal all the time, except maybe when encountering an occasional zero in the patternsxt.
This observation led to the discovery of the flaw.

Since the scaling matrix reduces to a scalar gain, similar results could in principlebe obtained
using the ordinary stochastic gradient descent with a better gain schedule. This clearly defeats the
purpose of theSGD-QN algorithm design.

Figure 1 compares the evolutions of the training cost and the test misclassification error for the
SVMSGD2 and theFlawed SGD-QN algorithms for selected values of the parametert0 instead
of the usual heuristic defaults. We observe that there is almost always a choice oft0 in SVMSGD2
that performs as well as the best choice oft0 for theFlawed SGD-QN. Both algorithms perform
identically poorly for excessive values oft0. On the other hand, whent0 is too small, the perfor-
mance ofFlawed SGD-QN degrades much more gracefully than the performance ofSVMSGD2.
In some cases,Flawed SGD-QN can even slightly outperformsSVMSGD2 because, despite the
flaw, it can still update its learning rate on the course of learning. This explains partially why we
have consistently obtained better results with the flawed algorithm.
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Figure 1: Plots of the training cost and test misclassification percentage versus the number of
epochs forSVMSGD2 (red) andFlawed SGD-QN (green) for various values oft0 on
the dense Delta dataset. TheFlawed SGD-QN algorithm never outperforms the best
SVMSGD2.

4.2 Impact on Sparse Datasets

The situation is more complex in the case of sparse datasets because there is special case for updating
the Bii coefficients when dealing with zero coefficients (6). As a result, theFlawed SGD-QN
algorithm gives higher values to the scaling coefficientsBii when thei-th feature is more likely to
be zero. Since this is a sensible scaling for such datasets, theFlawed SGD-QN algorithm works
relatively well in the presence of sparse features.

Figure 2 compares theSVMSGD2 and Flawed SGD-QN algorithms for many choices for
the t0 parameter on the Reuters RCV1 dataset. Unfortunately there is nothing to seethere. Both
algorithms reach optimal performance after processing only one half of thetraining set.

In order to find a more challenging sparse dataset, we have adapted both theSVMSGD2 and the
Flawed SGD-QN algorithms for the optimization of Conditional Random Fields (Lafferty et al.,
2001). This is an interesting case where preconditioning is difficult because the features are gener-
ated on the fly on the basis of position-independent templates.

Figure 3 compares the algorithms on the CoNLL 2000 “chunking” task (Sangand Buchholz,
2000) using the template setup provided as an example with the CRF++ code (Kudo, 2007). The
Flawed SGD-QN algorithm reaches the best test performance after less epochs than theSVMSGD2
algorithm, but this does not translate into a large improvement in terms of training time.

5. Correcting SGD-QN

At first glance, correcting SGD-QN simply involves computing the differencegτ (wt+1)− gτ (wt)
with τ = t + 1 instead ofτ = t. In fact, during the weeks preceding the Pascal challenge deadline,
we tried both versions and found that pickingτ = t + 1 performs significantly worse!
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Figure 2: Plots of the training cost and test misclassification error versus the number of epochs
for bothSVMSGD2 (red) andFlawed SGD-QN (green) running on the RCV1 dataset.
Both algorithms reach optimal performance after seeing half the training set.
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Flawed SGD-QN Corrected SGD-QN

Require: λ , t0 , T , skip
1: t← 0 , w← 0 , count← skip , r ← 2
2: v← 0 , updateB← false , ∀i Bii ← (λ)−1

3: while t ≤ T do
4: w← w − yt ℓ′(ytw

⊤xt) (t + t0)
−1 B xt

5: if updateB then
6: ∀i ri ← [gt(w)− gt(v)]

i
/ [w − v]

i

7: ∀i ri ← min{ri, 100λ}}
8: ∀i Bii ← Bii + 2

r
(r−1

i
− Bii)

9: updateB← false , r ← r + 1
10: end if
11:
12: count← count− 1
13: if count ≤ 0 then
14: count← skip , updateB← true

15: w← w − skip λ (t + t0)
−1 B w

16: v← w

17: end if
18:
19: t← t + 1
20: end while

21: return w

Require: λ , t0 , T , skip
1: t← 0 , w← 0 , count← skip

2: v← 0 , updateB← false , ∀i Bii ← (λt0)
−1

3: while t ≤ T do
4:
5: if updateB then
6: ∀i ri ← [gt(w)− gt(v)]

i
/ [w − v]

i

7: ∀i ri ← max{λ, min{100λ, ri}}
8: ∀i Bii ← Bii(1 + skipBii ri)

−1

9: updateB← false

10: end if
11: z ← ytw

⊤xt

12: count← count− 1
13: if count ≤ 0 then
14: count← skip , updateB← true

15: v← w

16: w← w − skip λ B w

17: end if
18: w← w − yt ℓ′(z) B xt

19: t← t + 1
20: end while

21: return w

Figure 4: Pseudo-codes for theFlawed SGD-QN andCorrected SGD-QN algorithms. The main
changes have been colored: each color stands for a particular change.

5.1 The Failure of the Straightforward Fix

When experimenting with theoLBFGS algorithm (Schraudolph et al., 2007), we observed and
reported that setting the global learning gain was very difficult. We encounter the same difficulty
when we modify theSGD-QN algorithm to useτ = t + 1.

In order to form an intuition about the learning rate, we must pay attention to its influence on
the stochastic noise. Stochastic gradient descent with a constant learningrate generates a cloud of
parameter estimateswt covering a zone whose extent is defined by the learning rate and by the
curvature of the cost function. When the rates decrease with an appropriate speed, this zone shrinks
around the solution. Rewriting (2) term-by-term gives

[wt+1]i = [wt]i − ηflawQN

i,t [gt(wt)]i with ηflawQN

i,t =
Bii

t0 + t
. (7)

Since the algorithm periodically adaptsBii on the basis of the observed differenceswt+1 −wt and
gt+1(wt+1)− gt+1(wt), the sequence of learning ratesηflawQN

i,t can occasionally increase. This is

confirmed by the middle plot of Figure 5 which displays the evolution of the learning rates Bii

t0+t
for

SGD-QN implementing this straightforward fix. Such fluctuations are the source of the difficulty.
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Figure 5: Plots of the learning rates corresponding to each feature on thecourse of learning on the
Delta dataset. All rates are equal forFlawed SGD-QN (left plot). As explained in Sec-
tion 5.1, implementing the straightforward fix (middle plot) causes rates to alternatively
increase or decrease very fast. TheCorrected SGD-QN (right plot) proposes learning
rates nicely decreasing at different speeds for each feature.

5.2 Managing the Speed of the Learning Rate Decrease

The schedule with which the learning rate decreases during training appears to be a key factor, so we
propose to fixSGD-QN by using the second-order information to manage this diminution. Hence,
we use learning rates of the form

ηcorQN

i,t =

(

λt0 +
t−1
∑

k=1

ri,k

)−1

where ri,t =
[gt+1(wt+1)− gt+1(wt)]i

[wt+1 −wt]i
. (8)

Whent becomes large, we recover an expression comparable to the original formulation (7),

ηcorQN

i,t =
r̄

−1

i

λt0r̄
−1

i
+ t

+ o
(

1

t

)

, wherer̄i denotes the average value of the ratiosri,t and can be viewed

as the coefficient of a diagonal matrixR such thatR
(

wt+1 −wt

)

= gτ (wt+1)− gτ (wt) + ζt + ξt.

It is also interesting to compare the formulaηcorQN

i,t with the first order versionηSGD

i,t = 1

λt0+
P

t

k=1
λ

which decreases the learning rate after each iteration by addingλ to the denominator. Instead of
adding a lower bound of the curvature, the proposed learning rate formula adds a stochastic estimate
of the curvature.

Interestingly, Equation (8) leads to a convenient recursive formula

ηcorQN

i,t =

(

1

ηcorQN

i,t−1

+ ri,t−1

)−1

=
ηcorQN

i,t−1

1 + ri,t−1 ηcorQN

i,t−1

. (9)

Figure 4 describes theCorrected SGD-QN algorithm and compares it with a slightly reor-
ganized version of theFlawed SGD-QN algorithm. The diagonal matrixB is used to store the
gains (8). The algorithm schedules a gain update (line 14) whenever it performs a regularization
update (line 16). During the next iteration, the algorithm computesri,t−1 (line 6) and implements
the learning rate update (9) with an additional multiplicative factor (line 8) because this only hap-
pens everyskip iterations. The effect on the learning rates of usingCorrected SGD-QN instead
of Flawed SGD-QN is illustrated by Figure 5 if we compare the left and the right plots.
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Figure 6: Plots of the training cost and test misclassification error versus the number of epochs for
SVMSGD2 (red) andFlawed SGD-QN (green) with their optimalt0 parameter, and
Corrected SGD-QN (brown) running on the Delta dataset. Bothnormalized(top) and
deconditioned(bottom) cases are considered; see the text for details. All methods can
perform roughly identically well on normalized examples but only theCorrected SGD-
QN algorithm is able to handle ill-conditioned data.

5.3 Performances on Dense Datasets

Figure 6 (top row) compares the performances ofCorrected SGD-QN with the best results of
Flawed SGD-QN andSVMSGD2 on the Delta dataset. We must recognize that the improvement
is minimal. Before running the SGD algorithms, we always precondition the dense datasets by
centering all the features, normalizing their variances, and rescaling every example to ensure that
‖xk‖ = 1. This operation in fact steals all the improvementsSGD-QN can bring. With its adaptive
learning rates, theCorrected SGD-QN does not perform worse than the first orderSVMSGD2
algorithm. Yet, implementing a strategy involving a single learning rate for all the features appears

8



ERRATUM: SGD-QN

already very rewarding and, for such cases, theFlawed SGD-QN algorithm is a strong choice
because of its capacity to adapt its learning rate.

Corrected SGD-QN should be more efficient for ill-conditioned data. To illustrate this asser-
tion, we created a “deconditioned” version of Delta by applying the usual normalization procedures
and then multiplying every tenth feature by twelve. Figure 6 (bottom row) compares the perfor-
mances ofSVMSGD2, Flawed SGD-QN andCorrected SGD-QN on this deconditioned data.
TheFlawed SGD-QN algorithm clearly suffers from the deconditioning operation because it can
not assign a different learning rate per feature. TheCorrected SGD-QN works much better. We
also verified that the estimated learning rates replicate the deconditioning pattern.

In conclusion, ondense datasets, theCorrected SGD-QN bring little improvement over those
associated with agood preconditioning technique. Preconditioning was probably the main reason
of the goodSGD-QN results on dense datasets in the Pascal Large Scale Challenge. This doesnot
mean that SGD algorithms cannot be improved. Xu (2010) reports impressive results on Linear
SVMs using a well sorted Averaged SGD algorithm (Polyak and Juditsky, 1992).

5.4 Performances on Sparse Datasets

Preconditioning sparse datasets is much more difficult because it is impossibleto center sparse fea-
tures and keep them sparse. In addition, normalizing the variance of veryrare features generates a
small number of coefficients with high values. This fat tail distribution usually has very negative
impact on the test performance. Figure 7 compares theSVMSGD2, Flawed SGD-QN andCor-
rected SGD-QN algorithms on the Reuters RCV1 dataset, but, as we explained for Figure 2, this
task is too easy to draw any conclusions.

Figure 8 then compares the adaptations ofSVMSGD2, Flawed SGD-QN (with their best pa-
rameters) andCorrected SGD-QN for Conditional Random Fields on the CoNLL 2000 “chunking”
task with the setup described in Section 4.2. TheCorrected SGD-QN algorithm achieves its opti-
mal test performance after only 75 seconds whileSVMSGD2 andFlawed SGD-QN need around
twice this time. For comparison, the CRF++ LBFGS optimizer needs 4300 seconds on a slightly
faster machine.

6. Conclusion

Despite its flaw, the originalSGD-QN algorithm works well enough to be a winner of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008) because it benefits from our careful
preconditioning and handles sparse examples efficiently. However, as explained in this document,
this original version often does not achieve the full benefits of a diagonal scaling approach.

This paper proposes a correction. Unlike the originalSGD-QN algorithm, theCorrected SGD-
QN algorithm discovers sensible diagonal scaling coefficients. However, experiments on dense
data sets of intermediate dimensionality show that similar speed improvements can beachieved
by simple preconditioning techniques such as normalizing the means and the variances of each
feature and normalizing the length of each example. On the other hand, normalization is not always
an attractive strategy. TheCorrected SGD-QN algorithm then becomes interesting because it
can adapt automatically to skewed feature distributions (see Section 5.3) or very sparse data (see
Section 5.4.)
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