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Abstract

The SGD-QN algorithm described in (Bordes et al., 2009) contains alsulaw that prevents it
from reaching its design goals. Yet the flaw8@&D-QN algorithm has worked well enough to
be a winner of the first Pascal Large Scale Learning Challé8gaenenburg et al., 2008). This
document clarifies the situation, proposes a correcteditiigng and evaluates its performance.
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1. Introduction

Bordes et al. (2009) propose to improve the practical speed of stachesdient descent by effi-
ciently estimating a diagonal matrix for rescaling the gradient estimates. Theg&o algorithm,
SGD-QN, works well enough to be a winner of the first Pascal Large ScalenirgpiChallenge
(Sonnenburg et al., 2008). A couple months after the publication of therpégnathan Chang and
S. Alex Smith contacted Léon Bottou regarding some curious aspects of tritalgmathematics
(see section 4.1). This initial observation was then traced back to a mdte Baly that prevents
the proposed algorithm to truly reach is design objectives.

We first explain the flaw and present experimental results describingiseqaences. Then we
present a corrected algorithm and evaluate its performance for trainthdibear Support Vector
Machines (SVMs) and Conditional Random Fields (CRFs). Finally we diadated conclusions.

2. Setup

Consider a binary classification problem with examglesy) € R? x {—1,+1}. Given a set of
examples (x1,41) ... (Xxn,yn)}, we obtain a linear SVM classifier by minimizing the cost

A 1 1 <& /A
Paw) = SIWE+ IS i) = L3 (FIwP ). @
i=1 i=1
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Each iteration of theSGD-QN algorithm consists of drawing an independent random example
(x¢, y:) from the training set and computing an updated parameter vector

1 .
Wil = Wi — m Bgi(wy) with gi(wy) = wy + 0 (yewixe) ye Xt 2)

whereB is a diagonal scaling matrix estimated on-the-fly.

In the following, expectations and probabilities refer to the discrete distribaiéscribing the
training examples randomly picked from the finite training set at each iterdtemn?,; denote the
examples{(x1,y1) ... (x¢—1,y:—1)} picked before reaching theth iteration.

We would like to findB such that

w1 — wy = B (P (wig1) — P(we) + &), 3)

with an error ternt; verifying E [¢;| 7;] = 0. Following Schraudolph et al. (2007), we replace the
computationally expensive gradierf® by the cheap stochastic estimagggw;) andg, (w;+1)
computed on a same single exampte, v, ) ,

Wiyl — W = B (g (Wi1) — 8- (We) + G + &), (4)

where(; represents the additional error term introduced by this substitution. Estinfatmith (3)
or (4) leads to the same solution if we make sure g | 7;| = 0 as well.

The SGD-QN algorithm updates the diagonal elements of maBiwn-the-fly on the basis of
the term-by-term ratios of the observed differenegs; —w, andg, (w+1)—g,(w;). The obvious
choicesr = t andr = t + 1 only require one additional gradient evaluation because the parameter
update formula (2) demands the computation of all the gradigitg;) anyway.

3. The Flaw
Let us now evaluate

E[G] F) =E [P (Wis1) — Ph(we) — gr(wig1) + g-(we)| 7] -

Let us first consider the case= t + 1. Sinceg;1(w1) is a function of(x¢1, yet1, Xt, ye, Ft)s

Elg:(wer1)| F] = /gt+1(Wt+1) AP(X¢ 41, Yt 1, X6, Yt | Fi)

= /{/gt+1(wt+1)dP(Xt+1ayt+1) dP(x¢,ye | Fr) -

Since the variabless, 1 and (x;1,y:+1) are independent, the inner integral above is simply the
average of;.1(wy1) for all possible(x;+1, y¢+1) picked from the training set. Therefore

E (g (wii1)| Al = / Pl (wir) dP(xi, e | ) = E[Phiwrin)| 7]

Using a similar derivation foE [g, (w;)| F;] with 7 = t+1, we can easily establish tha{ (;| 7;] =
0. Therefore estimatin® on the basis of (4) leads to the same solution as estimBtiog the basis
of (3), albeit with a higher noise level.

Such a derivation is impossible when= ¢ becausex;,y;) andw,; are not independent.
Therefore we cannot ensure that estimaihgith (3) or (4) leads to the same result. Unfortunately,
the SGD-QN paper (see Section 5.3 of (Bordes et al., 2009)) describes the algavithm = ¢.
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4. The Consequences

In order to take maximal advantage of sparse datasetSldaived SGD-QN algorithm (see Figure 2
in the original paper) splits the stochastic parameter update (2) in two haleedento schedule
them separately. The first half involves only the gradient of the loss,

W W — (t+ 1) B (y; W' x¢) yr Xz
The second half involves only the gradient of the regularization term,

W e most of the time,
w — skip A (t +to)"'Bw once evengki p iterations.

The Flawed SGD-QN algorithm measures the differences;; — w; andg;(wyy1) — gi(wy)
during iterations for which the second half does nothing. Therefonegumtationgx|, for thei-th
coefficient of vecto, andB;; for the terms of the diagonal matrR, we always have

lge(wery) —gi(we)l, _ ) (£ (yewipaxe) = ' (yewixe)) ye [xi;
(Wit — Wil Bii (t +to) "M (yrw'xe) yr [x4];
e When[x;], is nonzero, we can simplify this expression as

[gt(Wig1) — gt(wt)]i — fl(yth—i-lxt) — U (yswixy) (5)
[Wip1 — Wy, Bii (t +to) 10 (yewix;)

This ratio is always greater thanbecause of the loss functidris convex. As explained in
the original paper, the coefficients; then remain smaller thax .

e When[x,], is zero, the original paper uses a continuity argument to justify the equality

[gt(Wir1) — (W),
(W1 — Wt]i

=\ (6)

4.1 Impact on Dense Datasets

The coefficientsx,|, for dense datasets are rarely zero. Assume alBheare equal before being
updated. All the ratios (5) will then be equal. Therefore all (hecoefficients will be updated in
exactly the same way and therefore remain equal. SincBthepefficients are initially equal, they
remain equal all the timeexcept maybe when encountering an occasional zero in the patierns
This observation led to the discovery of the flaw.

Since the scaling matrix reduces to a scalar gain, similar results could in pribeigbtained
using the ordinary stochastic gradient descent with a better gain sch&tseclearly defeats the
purpose of th&sGD-QN algorithm design.

Figure 1 compares the evolutions of the training cost and the test misclagsifieeror for the
SVMSGD?2 and theFlawed SGD-QN algorithms for selected values of the paramegeinstead
of the usual heuristic defaults. We observe that there is almost alwd@@®ft, in SVMSGD2
that performs as well as the best choicepfor the Flawed SGD-QN. Both algorithms perform
identically poorly for excessive values tf. On the other hand, whef is too small, the perfor-
mance ofFlawed SGD-QN degrades much more gracefully than the performan@SGD2.

In some cased;lawed SGD-QN can even slightly outperform8VMSGD?2 because, despite the
flaw, it can still update its learning rate on the course of learning. This ieppaartially why we
have consistently obtained better results with the flawed algorithm.
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Figure 1: Plots of the training cost and test misclassification percentagasvéte number of
epochs folSVMSGD2 (red) andFlawed SGD-QN (green) for various values @f, on

the dense Delta dataset. Thiawed SGD-QN algorithm never outperforms the best
SVMSGD?2.

4.2 Impact on Sparse Datasets

The situation is more complex in the case of sparse datasets because thecaiase for updating
the B;; coefficients when dealing with zero coefficients (6). As a result,Rlaeved SGD-QN
algorithm gives higher values to the scaling coefficieBiswhen thei-th feature is more likely to
be zero. Since this is a sensible scaling for such datasetBJahved SGD-QN algorithm works
relatively well in the presence of sparse features.

Figure 2 compares th8VMSGD2 and Flawed SGD-QN algorithms for many choices for
thety parameter on the Reuters RCV1 dataset. Unfortunately there is nothing tisesee Both
algorithms reach optimal performance after processing only one half tifdiming set.

In order to find a more challenging sparse dataset, we have adaptedd®i¥MTSGD2 and the
Flawed SGD-QN algorithms for the optimization of Conditional Random Fields (Lafferty et al.,
2001). This is an interesting case where preconditioning is difficult Isectne features are gener-
ated on the fly on the basis of position-independent templates.

Figure 3 compares the algorithms on the CoNLL 2000 “chunking” task (@adgBuchholz,
2000) using the template setup provided as an example with the CRF++ code, (Q07). The
Flawed SGD-QN algorithm reaches the best test performance after less epochs tiRaAMISG D2
algorithm, but this does not translate into a large improvement in terms of training time

5. Correcting SGD-QN

At first glance, correcting SGD-QN simply involves computing the diffeeaidw;11) — g-(w¢)
with 7 = t + 1 instead ofr = ¢. In fact, during the weeks preceding the Pascal challenge deadline,
we tried both versions and found that picking= ¢ + 1 performs significantly worse!
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Figure 2: Plots of the training cost and test misclassification error vergusuimber of epochs
for bothSVMSGD?2 (red) andFlawed SGD-QN (green) running on the RCV1 dataset.
Both algorithms reach optimal performance after seeing half the training set.
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Flawed SGD-QN Corrected SGD-QN
Require: A\, to, T, skip Require: A, to, T, skip
1: t<—0, w0, count « skip, r « 2 1: t<— 0, w+«+ 0, count « skip
2: v+ 0, updateB <« false, Vi B;; «— (/\)_1 2. v+ 0, updateB « false, Vi B;; «— (/\150)_1

3: whilet <Tdo 3: whilet < T do
4: w—w—y U (yw'xy) (L‘—i—150)71 B x; 4.
5 if updateB then 5 if updateB then

6 Vi [g(w) - (V)] /W], 6 Vi [g(w) — (V)] / [w—v],
7 Vi 1 «— min{r;, 100A}} 7 Vi r; < max{\, min{100\,r;}}

9: updateB «— false, r «—r+1 9: updateB « false

10: end if 10: end if

11: 11: 24— YW Xy

12: count < count — 1 12: count < count — 1

13: if count < 0then 13: if count < 0then

14: count «— skip, updateB « true 14: count «— skip, updateB « true
15: W w—skip (t+to) ' Bw 15: Ve w

16: V—w 16: w+«— w —skipABw
17: end if 17: end if

18: 18: wew—yl'(2) Bxs
19: t—t+1 19: t—t+1

20: end while 20: end while

21: return w 21: return w

Figure 4: Pseudo-codes for thtawed SGD-QN andCorrected SGD-QN algorithms. The main
changes have been colored: each color stands for a particularechang

5.1 The Failure of the Straightforward Fix

When experimenting with theLBFGS algorithm (Schraudolph et al., 2007), we observed and
reported that setting the global learning gain was very difficult. We erteotime same difficulty
when we modify thesGD-QN algorithm to use- = ¢ + 1.

In order to form an intuition about the learning rate, we must pay attention toflince on
the stochastic noise. Stochastic gradient descent with a constant leatg@rgenerates a cloud of
parameter estimates; covering a zone whose extent is defined by the learning rate and by the
curvature of the cost function. When the rates decrease with an ajgteogpeed, this zone shrinks
around the solution. Rewriting (2) term-by-term gives

, Bi;
[Wt-i-l]i = [Wt]i - 772'1""”” [gt(Wt)]z' with nZ'ZWQN = ; - (7)
) ) 0 + t
Since the algorithm periodically adaps; on the basis of the observed differenees ; — w; and
gi+1(wit1) — gy1(wy), the sequence of learning ratg§*®" can occasionally increase. This is

confirmed by the middle plot of Figure 5 which displays the evolution of the Iagmatestfjjt for

SGD-QN implementing this straightforward fix. Such fluctuations are the source offfiwtty.
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Figure 5: Plots of the learning rates corresponding to each feature anuhge of learning on the
Delta dataset. All rates are equal felawed SGD-QN (left plot). As explained in Sec-
tion 5.1, implementing the straightforward fix (middle plot) causes rates to altezlyati
increase or decrease very fast. T®errected SGD-QN (right plot) proposes learning
rates nicely decreasing at different speeds for each feature.

5.2 Managing the Speed of the Learning Rate Decrease

The schedule with which the learning rate decreases during trainingrapgpde a key factor, so we
propose to fixSGD-QN by using the second-order information to manage this diminution. Hence,
we use learning rates of the form

t—1 -1
W — W .
nee = ( Mo+ 3 ri where r, , = [ger1(Wer1) —ger1(we)l; (8)
’ 1 (Wip1 — Wt]i
Whent becomes large, we recover an expression comparable to the origimall&ion (7),
p—
0o = ﬁ + 0 (1), wherer; denotes the average value of the ratigsand can be viewed

as the coefficient of a diagonal matisuch thaR (w1 — w;) = g (Wit1) — 8- (We) + G + &

Itis also interesting to compare the formw;ggQ” with the first order version; 3> = W
which decreases the learning rate after each iteration by addinghe denominator. Insl'fééd of
adding a lower bound of the curvature, the proposed learning rate fadds a stochastic estimate
of the curvature.

Interestingly, Equation (8) leads to a convenient recursive formula

-1

QN

1 U/

corQN . _ 4,t—1

T’i,t - corQN +T2>t_1 - 1+ 7 corQN * (9)
Mit—1 it—1 1511

Figure 4 describes th€orrected SGD-QN algorithm and compares it with a slightly reor-
ganized version of th€lawed SGD-QN algorithm. The diagonal matriB is used to store the
gains (8). The algorithm schedules a gain update (line 14) wheneverférpes a regularization
update (line 16). During the next iteration, the algorithm computes; (line 6) and implements
the learning rate update (9) with an additional multiplicative factor (line 8) dmxéhis only hap-
pens evenski p iterations. The effect on the learning rates of ustagrected SGD-QN instead
of Flawed SGD-QN is illustrated by Figure 5 if we compare the left and the right plots.
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Figure 6:

Plots of the training cost and test misclassification error versusitnber of epochs for
SVMSGD?2 (red) andFlawed SGD-QN (green) with their optimat, parameter, and
Corrected SGD-QN (brown) running on the Delta dataset. Batbrmalized(top) and
deconditionedbottom) cases are considered; see the text for details. All methods can

perform roughly identically well on normalized examples but only@erected SGD-
QN algorithm is able to handle ill-conditioned data.

5.3 Performances on Dense Datasets

Figure 6 (top row) compares the performancegCofrected SGD-QN with the best results of
Flawed SGD-QN andSVMSGD2 on the Delta dataset. We must recognize that the improvement
is minimal. Before running the SGD algorithms, we always precondition theedéatasets by
centering all the features, normalizing their variances, and rescalimg example to ensure that

|lxx|| = 1. This operation in fact steals all the improveme®@&D-QN can bring. With its adaptive
learning rates, th€orrected SGD-QN does not perform worse than the first ord&YMSGD2

algorithm. Yet, implementing a strategy involving a single learning rate for all tieifes appears
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already very rewarding and, for such cases, Flewved SGD-QN algorithm is a strong choice
because of its capacity to adapt its learning rate.

Corrected SGD-QN should be more efficient for ill-conditioned data. To illustrate this asser-
tion, we created a “deconditioned” version of Delta by applying the usarahalization procedures
and then multiplying every tenth feature by twelve. Figure 6 (bottom row) coespe perfor-
mances oSVMSGD2, Flawed SGD-QN andCorrected SGD-QN on this deconditioned data.
The Flawed SGD-QN algorithm clearly suffers from the deconditioning operation becausenit ca
not assign a different learning rate per feature. Toerected SGD-QN works much better. We
also verified that the estimated learning rates replicate the deconditioningipatter

In conclusion, ordense datasetshe Corrected SGD-QN bring little improvement over those
associated with good preconditioning techniqudreconditioning was probably the main reason
of the goodSGD-QN results on dense datasets in the Pascal Large Scale Challenge. Thi®does
mean that SGD algorithms cannot be improved. Xu (2010) reports impeessults on Linear
SVMs using a well sorted Averaged SGD algorithm (Polyak and Judit€82)

5.4 Performances on Sparse Datasets

Preconditioning sparse datasets is much more difficult because it is impdssiklater sparse fea-
tures and keep them sparse. In addition, normalizing the variance ofarerjeatures generates a
small number of coefficients with high values. This fat tail distribution usuadly Very negative
impact on the test performance. Figure 7 compareSWeISGD2, Flawed SGD-QN andCor-
rected SGD-QN algorithms on the Reuters RCV1 dataset, but, as we explained for Figurie 2, th
task is too easy to draw any conclusions.

Figure 8 then compares the adaptationSU¥MSGD2, Flawed SGD-QN (with their best pa-
rameters) an@orrected SGD-QN for Conditional Random Fields on the CoNLL 2000 “chunking”
task with the setup described in Section 4.2. Twerected SGD-QN algorithm achieves its opti-
mal test performance after only 75 seconds wBNEMSGD2 andFlawed SGD-QN need around
twice this time. For comparison, the CRF++ LBFGS optimizer needs 4300 seoond slightly
faster machine.

6. Conclusion

Despite its flaw, the origindGD-QN algorithm works well enough to be a winner of the first PAS-
CAL Large Scale Learning Challenge (Sonnenburg et al., 2008) bedtlenefits from our careful
preconditioning and handles sparse examples efficiently. Howevexpksred in this document,
this original version often does not achieve the full benefits of a didguading approach.

This paper proposes a correction. Unlike the origB@D-QN algorithm, theCorrected SGD-
QN algorithm discovers sensible diagonal scaling coefficients. Howexperienents on dense
data sets of intermediate dimensionality show that similar speed improvements eahi&ecd
by simple preconditioning techniques such as normalizing the means and thecearof each
feature and normalizing the length of each example. On the other hand,lizatioa is not always
an attractive strategy. Th€orrected SGD-QN algorithm then becomes interesting because it
can adapt automatically to skewed feature distributions (see Section 5.8)yosparse data (see
Section 5.4.)
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