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Abstract
The need to understand cell developmental processes has spawned a plethora of computational methods for discovering

hierarchies from scRNAseq data. However, existing techniques are based on Euclidean geometry which is not an optimal
choice for modeling complex cell trajectories with multiple branches. To overcome this fundamental representation issue we
propose Poincaré maps, a method harnessing the power of hyperbolic geometry into the realm of single-cell data analysis.
Often understood as a continuous extension of trees, hyperbolic geometry enables the embedding of complex hierarchical data
in as few as two dimensions and well-preserves distances between points in the hierarchy. This enables direct exploratory
analysis and the use of our embeddings in a wide variety of downstream data analysis tasks, such as visualization, clustering,
lineage detection and pseudotime inference. In contrast to existing methods – which are not able to cover all those important
aspects in a single embedding – we show that Poincaré maps produce state-of-the-art two-dimensional representations of
cell trajectories on multiple scRNAseq datasets. Specifically, we demonstrate that Poincaré maps allow in a straightforward
manner to formulate new hypotheses about biological processes which were not visible with the methods introduced before.
Moreover, we show that our embeddings can be used to learn predictive models that estimate gene expressions of unseen cell
populations in intermediate developmental stages.

Significance statement
The discovery of hierarchies in biological processes is central to developmental biology. We propose Poincaré maps, a new method
based on hyperbolic geometry to infer continuous hierarchies from pairwise similarities. We demonstrate the efficacy of our method
on multiple single-cell analysis tasks such as visualization, clustering, lineage identification, and pseudotime inference. Moreover, we
show that our metric representation of hierarchies enables the prediction of unknown gene expressions along the discovered lineages.

Introduction
Understanding cellular differentiation, e.g., the transition of immature cells into specialized types, is a central task in modern
developmental biology. Recent advances in single-cell technologies, such as single-cell RNA-sequencing and mass cytometry, have
led to important insights into these processes based on high-throughput cell measurements1–4. Computational methods to accurately
discover and represent cell development processes from large datasets and noisy measurements are therefore in great demand. However,
this is a challenging task since methods are required to reveal the progression of cells along continuous trajectories with tree-like
structure and multiple branches (e.g., as in Waddington’s classic epigenetic landscape5). Multiple advances have been made towards
this goal of discovering and analyzing hierarchical structures from single-cell measurements6. In particular, methods that exploit
hierarchies for visualization7;8, clustering9, and pseudotime inference10;11 have fueled unprecedented successes in developmental
biology. To discover hierarchical relationships in the development of cells, many state-of-the-art methods rely on distances in
low-dimensional Euclidean embeddings of cell measurements7;8;12;13. However, this approach is limited when modeling complex
hierarchies as low-dimensional Euclidean embeddings can cause substantial distortions of distances in these cases. This is not only
problematic for visualization but also for clustering and the identification of lineages.

To overcome this issue, we propose Poincaré maps, a novel method to compute embeddings for hierarchy discovery not in
Euclidean but in hyperbolic space. This allows us to combine multiple advantages: First, hyperbolic space can be thought of as a
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Figure 1 | Poincaré maps discover hierarchies and branching processes. (a) Our goal is to recover cell developmental processes,
depicted here on the Waddington landscape. (b) Poincaré disks provide a natural geometry to preserve hierarchical structures and
pairwise similarities in two dimensions. Poincaré disks grow as we approach their boundary: all the triangles depicted here are of equal
size. (c) Poincaré maps first embed the data into RFA similarities, computed from a connected k-nearest neighbor graph. Second, they
compute two-dimensional hyperbolic embeddings that preserve these similarities. (d) Poincaré maps are a tool to perform standard
single-cell RNA sequencing analysis tasks. (e) In addition, Poincaré disks provide meaningful geodesics for hierarchies. Interpolating
along hyperbolic geodesics allow the prediction of gene expression of unseen cell populations.

continuous analogue to trees and enables low-distortion embeddings of hierarchical structures in as few as two dimensions14. Second,
the metric structure of hyperbolic space retains the ability to model continuous trajectories via distances and allows to employ the
obtained embeddings for tasks such as clustering, lineage detection, pseudotime inference, and gene expression prediction for unseen
cell types. Third, the Riemannian structure of hyperbolic manifolds enables the use of gradient-based optimization methods what
is essential to compute embeddings of large-scale measurements. Fourth, by following Nickel et al. 15 and embedding similarities
into the two-dimensional Poincaré disk (Supplementary Note 1), we can obtain a direct and intuitive visualization of the discovered
hierarchies.

Results
Our method, called Poincaré maps, is guided by ideas from manifold learning and pseudotemporal ordering16;17. Given feature
representations of cells such as their gene expressions, we aim to estimate the structure of the underlying tree-like manifold in three
main steps (Fig. 1a–c and Online Methods): First, we compute a connected k-nearest neighbor graph (kNNG)18 where each node
corresponds to an individual cell and where each edge is weighted proportional to the Euclidean distance between the features of
the connected cells. The purpose of this first step is to estimate the local nearest neighbor structure of the underlying manifold for
which distances in the feature space are a good approximation. Second, we compute global geodesic distances from the kNN graph
by moving along its weighted edges. This step can be computed efficiently using all pairs shortest paths or related measures such
as the “Relative Forest Accessibilities” (RFA) index19. The purpose of this second step is to estimate the intrinsic geometry of the
underlying manifold. Both, step one and two, are commonly used in manifold learning to approximate the structure of an unknown
manifold from similarities in the feature space11;18;20;21. In the third step, we compute a two-dimensional embedding per cell in the
Poincaré disk such that their hyperbolic distances reflect the inferred geodesic distances. The geometry of the Poincaré disk allows us
to model continuous hierarchies efficiently: embeddings that are close to the origin of the disk have a relatively small distance to all
other points and are thus well-suited to represent the root of a hierarchy or the beginning of a developmental process. On the other
hand, embeddings that are close to the boundary of the disk, have a relatively large distance to all other points and are well-suited to
represent leaf nodes. In our embedding, we expect therefore that nodes with small distances to many other nodes will be placed close
to the origin of the disk. While such cells are likely from an early developmental stage, they do not necessarily belong to the root of
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the hierarchy (Supplementary Fig. 1-3). When a cell belonging to the root stage is known, we perform therefore a global translation
on the Poincaré disk, to center this node and ease the visualization of the hierarchy (see Methods).
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Monocle 2

Poincaré map

Figure 2 | Comparison of various embeddings for the mouse myeloid progenitors dataset (Paul et al.). Only Poincaré maps and tSNE
show that lymphoid cluster is an outlier. However, as tSNE doesn’t preserve hierarchy, therefore it is not possible to notice from it and
is straightforward to read from Poincaré maps that the original labels of the populations don’t correspond to the known biology: it is
very surprising that monocytes are progenitors of neutrophils. Wolf et al. with additional analysis of gene expression showed that the
labels of the original paper should be re-annotated.

All-in-one: visualization, clustering, lineage detection and pseudotime inference
In the following, we compare the embedding quality of Poincaré maps to state-of-the-art methods on various single-cell analysis
tasks: visualization and lineage detection (Monocle 210, PAGA22, diffusion maps7, t-SNE12, UMAP13, and ForceAtlas223), clustering
(Louvain24, agglomerative, k-means) and pseudotime inference (diffusion pseudotime11) (Fig.1 (d)).

An important property of Poincaré maps is that it allows to approach all these different tasks in a single embedding by combining
the identification of clusters, trajectory, and hierarchy in an unsupervised manner. To the best of our knowledge, this is not possible
with existing methods. For instance, t-SNE is a state-of-the-art visualization method that facilitates local similarities to achieve visual
separation of the clusters in the data. However, t-SNE does not preserve global similarities between the clusters and therefore there
are no guarantees that the global hierarchical structure will be preserved. UMAP computes a low-dimensional representation of data
in Euclidean space that preserves the topological structure. However, there are no guarantees that there exists a low-dimensional
representation of complex tree topologies in two-dimensional Euclidean space. Diffusion maps specifically tackle the problem of
capturing diffusion-like dynamics and continuous branching in the data. However, it only allows to visualize a very simple branching
structure in two dimensions. Graph abstractions (PAGA) and Monocle 2 are another class of methods that try to capture and visualize
the hierarchical relationships in the data. PAGA produce an "abstracted graph" with nodes corresponding to partitions of the data and
the edges representing the relationships of these nodes. PAGA doesn’t represent the relationships inside each partition. Monocle 2
forces a tree-like topology on the data using “reversed graph embedding” in a low-dimensional Euclidean space. However, as in the
case of UMAP, such a representation might not exist for complex trees.

To evaluate the performance of Poincaré maps, we perform separate comparisons to the state-of-the-art methods for each task. For
this purpose, we employ multiple synthetic datasets generated from known dynamical systems, and three single-cell RNA sequencing
datasets2;3;25, where we compare Poincaré maps with the canonical hematopoetic cell lineage tree26, and various state-of-the-art
embeddings (Supplementary Note 2).
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Additionally we compare Poincaré maps to the visualization of k-NN graph with force-directed layout (ForceAtlas2) guided by
PAGA. Despite the fact that ForceAtlas2 produces a good visual layout of a tree topology, it doesn’t preserve the hierarchical distances.
The limitation of this approach we demonstrate in the section below.

An important result from our experiments is that Poincaré maps was the only method that demonstrated the ability to visualize
the correct branching structure of developmental processes for all datasets (Supplementary Fig. 1-7). For example, on the dataset
Paul et al. 2 only Poincaré maps and t-SNE identify the lymphoid cluster while this important population would not be visible during
exploratory data analysis using UMAP or ForceAtlas2 (Fig. 2). Although t-SNE visualizes separate clusters well for Paul et al. dataset
it completely disregards the hierarchical structure between clusters (see also example in Supplementary Fig. 7). Knowledge of the
position of a newly identified cluster in the developmental hierarchy could be further exploited for assigning labels (e.g. "lymphoid
population") or, when the population was not known, for designing experiments to test morphological properties. Finally, Poincaré
maps places the 16Neu cluster downstream of 15Mo in the hierarchy – in contrast to the canonical hierarchy where neutrophils and
monocytes are located at the same level. This result is in line with the analysis of Wolf et al., and indicates the inconsistency is due to a
faulty labeling of the clusters.

In addition to these results, we demonstrate in Supplementary tables 1-2 that Poincaré maps could be directly applied to achieve
state-of-the art results on clustering and pseudotime inference.
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Figure 3 | (a) We obtain a Poincaré map of a dataset (not containing intermediate cell type we want to predict). We train a neural
network to perform the mapping from the Poincaré map back to gene expression space. (b) Poincaré map visualization of embedded
dataset on the synthetic example of myeloid progenitors. Removed neutrophil progenitors were not used to obtain the embedding. Grey
line represents a geodesic between a pair of randomly selected points in the populations of interest. (c) We sample points uniformly
along the geodesics. d) We use the pre-trained neural network from (a) to predict gene expression values of interpolated points in (c).

Poincaré maps robustly predict values on unseen intermediate cell types
The ability of two-dimensional Poincaré maps to preserve pairwise similarities unlocks important opportunities to expand the standard
biological analysis toolkit. The main reason for this is that geodesics in the Poincaré disk are well-suited to model shortest paths
in tree-like structures. We demonstrate this advantage on a prediction task: we remove an intermediate population from a dataset,
and predict its gene expression from the computed embeddings (Fig.1 (e)). For this purpose, we first estimate a low dimensional
embedding of the dataset and then learn a function that maps from these embeddings back into the original gene expression space
(Fig.3 (a)). If this mapping is performed on a space providing us with meaningful geodesics about the hierarchy (such as the hyperbolic
spaces that we propose), it should be able to predict the gene expression values of unseen cells. This could be useful for scenarios
where intermediate cell types are not observed.
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We demonstrate the performance of interpolations by artificially removing one cell type on several of the datasets described before.
In the synthetic example of myeloid progenitors we remove the majority of neutrophil progenitors, in Olsson et al. we remove the
HSPC-2 population, and in the Planaria dataset of Plass et al. we remove a part of parenchymal progenitors.

As a first step, we obtain embeddings for each of the datasets (after “shrinking” the dataset by having removed the unseen cell
type) using several methods: Poincaré maps, ForceAtlas2 and UMAP. As a second step, we train a neural network to predict gene
expression values from the corresponding embeddings, by minimizing the mean squared error between the original gene expression
values of “shrinked” dataset and the corresponding predictions (Fig.3 (b)). We use the same architecture and training parameters of the
neural network for all the embeddings. As a third step, we randomly sample a pair (or multiple pairs) of points that we will consider
the end-points of our interpolation. This step relies on some prior knowledge about the developmental hierarchy of the data, yet we
consider it to be reasonable for our demonstration purposes, as well as for real case scenarios. Finally, we use the same end-points to
construct an uniform interpolation along geodesic in either Poincaré (for Poincaré maps) or Euclidean (for ForceAtlas2 and UMAP)
space (Fig.3 (c)). We use the previously trained neural network to predict the gene expression for all the unobserved cells that would
lie in the chosen interpolation (Fig.3 (d)).

In our experiments, we found Poincaré maps to perform this task 1.3-3 times better than other embedding methods on a variety of
datasets (Myeloid progenitors, Olsson, Plass). For instance, Poincaré maps recover a faithful two-dimensional hierarchical embedding
of the entire Planaria system. By preserving hierarchies and pairwise similarities, these same embeddings are useful for downstream
analyses. In particular, Poincaré maps could faithfully reconstruct first 50 principal components of the removed population (Fig.4 (a) –
(c)).

a

PC1 PC2 PC3

Scaled PC componentsb

c

Poincaré map of whole planaria 
without a part of 

parenchymal progenitors

interpolated cells

Figure 4 | (a) Poincaré map of Plass et al. dataset after removing the parenchymal progenitors cluster. Grey points depict interpolated
values along the geodesic in the Poincaré disk. (b) Comparison of first 15 normalized features for interpolated points and original
values. Interpolated values predict well the gene expression of the removed cluster (parenchymal progenitors). (c) Comparison of first
3 features (largest PCA components) in terms of pseudotime for various embeddings used for interpolation.

Poincaré maps generate new hypothesis about early blood development in mice
As a deeper case study of Poincaré maps, we analyze the dataset of early blood development in mice, previously studied by Moignard
et al. 1. This dataset contains measurements of cells captured in vivo with qRT-PCR at different development stages: primitive streak
(PS), neural plate (NP), head fold (HF), four somite GFP (Runx1) negative (4SG-) and four somite GFP positive (4SG+) (Fig. 5 (a)).
The stages correspond to different physical times of the experiment between embryonic day 7 and day 8.25. We compare our results
obtained with Poincaré maps to Moignard’s diffusion maps study1, and to Haghverdi’s reconstruction of diffusion pseudotime11.
Poincaré maps provide a qualitatively different visualization of the developmental process, where we are able to visualize the whole
spectrum of the heterogeneity arising from the onset of the process. Neither PCA, nor diffusion maps are able to provide a visualization
of this process. While Moignard’s and Haghverdi’s analyses suspected an asynchrony in the developmental process, neither their
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application of PCA or diffusion maps were able to reveal this. In particular, previous studies suggest that the split into endothelial
and erythroid sub-populations happens in the head fold. Our analysis using Poincaré maps indicates that the sub-population fate of
the cells is already predefined at primitive strike. Additionally, Poincaré maps reveal a separate cluster consisting of a mixture of
cells at different developmental stages (Supplementary Fig. 12). This cluster is referred to as “mesodermal” cells by Moignard et
al., while by Haghverdi et al. considers it as the root of the developmental process. However, as we demonstrate in Supplementary
Fig. 12 – 13, assigning this cluster as the root of the hierarchy would lead to a contradiction with the physical direction of time. By
virtue of the Poincaré visualization, we reassigned the root of the developmental process to the furthest PS cell not belonging to
the “mesodermal” cluster. Given our reassigned root, we separate the dataset into five potential lineages (see Methods), to find the
asynchrony in the developmental process in terms of marker expressions (Fig. 5 (b)). Analysis of the composition of cells belonging
to each lineage (Fig. 5 (c)) indicates that erythroid cells belong only to lineage 0 and this lineage contains no endothelial cells. Fig. 5
(d) shows a substantially improved agreement of Poincaré pseudotime (with the newly reassigned root) with the experimental time
(stages) compared to the pseudotime ordering proposed by Haghverdi et al. The analysis of gene expressions of main endothelial and
hemogenic markers agrees with the known pattern of gene activation for endothelial and erythroid branches (Supplementary Fig. 14
– 15). Fig. 5 (e) also demonstrates that the main hemogenic genes for the erythroid population are already expressed at the PS stage
(details in Supplementary Note 3) and that the differences in gene expression aparent at all the stages between the lineages. Our
analysis using Poincaré maps suggests therefore that the fate of erythroid and endothelial cells could already be defined at primitive
streak.

Discussion
The rapid onset of popularity and accessibility of single-cell RNA sequencing technologies facilitated the development of new
computational approaches to analyze these data. While many computational methods exist, their results often don’t agree between
each other. The choice of the right computational approach at a very early stage of exploratory data analysis, will dictate the generated
hypotheses about the underlying biology. Here we demonstrated, that Poincaré maps without strong assumptions on the data and just
by leveraging advantages of hyperbolic geometry for hierarchical structures, reveal complex cell developmental processes that would
remain undiscovered by other methods. While any hypothesis generated via computational analysis should be validated in the lab
before being converted into strong statements, a properly chosen computational approach will facilitate the selection of appropriate
experiments and right conclusions.

For this purpose, Poincaré maps aids the discovery of complex hierarchies from single-cell data by embedding large-scale cell
measurements in a two-dimensional Poincaré disk. The resulting embeddings are easy to interpret during exploratory analysis and
provide a faithful representation of similarities in hierarchies due to the underlying geometry. This property make Poincaré maps to
stand out among other embeddings as it allows to simultaneously handle visualization, clustering, lineage detection, and pseudotime
inference. In our experiments, we showed that our embeddings can not only be used for reading out hierarchical relations between
cell types and for identifying the presence the outliers, but also to predict gene expression values of unseen intermediate populations.
Moreover, Poincaré maps are able to capture average dynamics of the unseen population and not only an average expression values.

With Poincaré maps, we also hope to bring interest about hyperbolic embeddings in general to the biology community. Due to
their advantageous properties for modeling hierarchical data, they could provide substantial benefits for a wide variety of problems
such as studying transcriptional heterogeneity and lineage development in cancer from single-cell RNA and DNA sequencing data,
reconstructing the developmental hierarchy of blood development, and reconstructing embryogenesis branching trajectories.

Methods
In the following we discuss the main stages of our method, i.e., estimating proximities that are informative about hierarchical structure
and embedding these proximities into the Poincare disk.

Let X = {xi}ni=1 be a high-dimensional dataset of n samples xi 2 Rp (e.g., individual cells) with p features (e.g., gene expression
measurements).

Local Connectivity We first estimate local connectivity structures as typically done in manifold learning.18;20;21 In particular,
let N (i, k) denote the k nearest neighbors of xi in X \ xi according to the Euclidean distance. We then create a symmetric k-
nearest-neighbor graph G = (V,E,w), where the set of vertices V = {v}ni=1 represents the samples in X and the set of edges
E = {vi ⇠ vj : i 2 N (j, k) ^ j 2 N (i, k)} represent the nearest neighbor relations. Furthermore, each nearest neighbor relation is
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Figure 5 | (a) Developmental hierarchy proposed by Moignard et al. and Haghverdi et al. (b) Rotated Poincaré map with respect to
reassigned root. Grey cluster represent a cluster of potential outliers or “mesodermal” cells as suggested by Moignard et al. Lineage
slices were obtained with Poincaré maps (see Methods). (c) Composition of detected lineages in terms of the presence of cells
from different developmental stages. (d) New ordering of cells proposed by Poincaré maps here has a much better agreement with
developmental stages than ordering originally proposed by Haghverdi et al.: we see a very clear correlation of Poincaré pseudotime
with actual developmental time. (e) Gene expression of main hemogenic genes. Hemogenic genes of erythroid lineage are already
expressed at the PS and NP stages.

weighted using the Gaussian kernel over distances

w(i, j) =

8
<

:
exp

✓
�kxi � xjk22

2�2

◆
if i ⇠ j 2 E,

0 otherwise.
(1)

where � is a hyperparameter that controls the kernel width. By enforcing connectivity of G, we preserve finite distances between all
measurements.

Global Proximites To estimate the underlying manifold structure from distances on the kNN graph G, we can employ all-pairs
shortest paths or related methods such as the Relative Forest Accessibility (RFA) index, which is defined as follows: Let L = D �A
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denote the graph Laplacian of the graph G, where Aij = w(i, j) is the corresponding adjacency matrix and Dii =
P

j w(i, j) is the
degree matrix. The RFA matrix P is then given as19

P = (I + L)�1. (2)

P is a doubly stochastic matrix where each entry pij corresponds to the probability that a spanning forest of G includes a tree
rooted at i which also includes j (i.e., where j is accessible from i)19;27 Compared to shortest-paths, the RFA index has the advantage to
increase the similarity between nodes that belong to many shortest paths. This can provide an important signal to discover hierarchical
structures as nodes that participate in many shortest paths are likely close to the root of the hierarchy. In all experiments, we use the
RFA index to estimate global proximities.

Hyperbolic Embedding Given P , we aim at finding an embedding yi of each xi that highlights the hierarchical relationships
between the samples. For this purpose, we embed P into two-dimensional hyperbolic space.

The Poincaré disk is the Riemannian manifold P = (B, dp), where B = {y 2 R2 : kyk < 1} is the open n-dimensional unit ball.
The distance function on P is then defined as

dp(yi,yj) = acosh

✓
1 + 2

kyi � yjk2

(1� kyik2)(1� kyjk2)

◆
(3)

It can be seen from Equation (3), that the Euclidean distance within B is amplified smoothly with respect to the norm of yi and yj .
This property of the distance is key for learning continuous embeddings of hierarchies. For instance, by placing the root node of a tree
at the origin of B, it would have relatively small distance to all other nodes, as its norm is zero. On the other hand, leaf nodes can be
placed close to the boundary of the ball, as the distance between points grows quickly with a norm close to one.

To compute the embedding we use an approach similar to t-SNE12 and approximate the RFA probabilities in P via distances in the
embedding space. In particular, we define the similarity qij between the embeddings vi and vj as:

qij =
exp(�dp(yi,yj)/�)P
k exp(�dp(yi,yk)/�)

, (4)

where yi,yj 2 P . A natural measure for the quality of the embedding is then the symmetric Kullback-Leibler divergence between
both probability distributions:

L(P ;Y) =
X

i

KL(Pi||Qi) + KL(Qi||Pi) (5)

Details on the optimization To compute the embeddings, we minimize Equation (5) via Riemannian Stochastic Gradient Descent
(RSGD).28 In particular, we update the embedding of yi in epoch t using

yt+1
i  Ryt

i
(�⌘ grad(L,yt

i)), (6)

where grad(L,yt
i) denotes the Riemannian gradient of Equation (5) with respect to yt

i , Ryt
i

denotes a retraction (or the exponential
map) from the tangent space of yt

i onto P , and ⌘ > 0 denotes the learning rate. The optimization can be performed directly in the
Poincaré ball or, alternatively, in the Lorentz model of hyperbolic space which provides improved the numerical properties and efficient
computation of the exponential map.29

Translation in P Equation (5) favors embeddings where nodes with short distances to all other nodes are placed close to the origin
of the disk. While such nodes correspond often to nodes that are close to the root of the underlying tree, it is not guaranteed that the
root is the closest embedding to the origin. However, when the root node is known, we can perform an isometric transformation of the
entire embedding that places this node at the origin and preserves all distances between the points. In particular, to translate the disk
such that the origin of the Poincaré disk is translated to v, x is translated to

⌧(x,v) =
(1 + 2hv,xi+ kxk2)v + (1� kvk2)x

1 + 2hv,xi+ kvk2kxk2 (7)

Since the spatial resolution is amplified close to the origin of the disk, provides also a method to “zoom” into different parts of the
embedding by moving the area of interest to the origin.

Clustering Hyperbolic space is a metric space and thus allows us to compute distances between any pair of points. This makes
Poincaré maps straightforwardly applicable to clustering techniques that rely only on pairwise (dis)similarity measurements such as
spectral clustering, agglomerative clustering and kmedoids.
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Lineages As a naive approach for lineage detection we suggest to use agglomerative clustering by the angle between a pair of points
in the Poincaré disk after the rotation with respect to the root node.

Poincaré pseudotime "Pseudotime" is typically reffered as "a measure of how much progress an individual cell has made through a
process such as cell differentiation"17. As Poincaré pseudotime we propose to use the distance from the root node in the Poincaré ball.

Interpolation with Poincaré maps Given two classes, interpolation predicts the gene expression values for an intermediate
population. For a given dataset, we obtain its Poincaré map and train a neural network to map elements in the Poincaré disk back to the
gene expression space. Then, we sample pairs of points from the two classes, as well as points along the Poincaré geodesic between
them. We use the trained neural network to predict the gene expression values for the interpolated points. Since temporal dynamics
are very important for developmental processes, we compare the reconstruction using dynamic time warping between the diffusion
pseudotime series for the removed population and the prediction provided by the different embeddings.

Choice of Hyperparameters In the following, we discuss the function of different hyperparameters in Poincaré maps and propose
typical value ranges. The number of nearest neighbors k reflects the average connectivity of the clusters and is typically set to
k 2 [15, 30]. The Gaussian kernel width � is responsible for the weights for the k-NN graph in the original space and is typically set
to � 2 [1.0, 2.0]. The softmax temperature � controls the scattering of embeddings and is typically set to � 2 [1.0, 2.0].

Code availability The code to reproduce our analyses is available at https://github.com/klanita/Poincare-maps/
tree/master/release.

Data availability Several public datasets were used in this study: three synthetic datasets generated with Scanpy, Olsson et al.
(synapse ID syn4975060), Paul et al. (accession code GSE72857), Moignard et al. (accession code GSE61470), and Plass et al.
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Supplementary Notes for: Poincaré Maps for

Analyzing Complex Hierarchies in Single-Cell Data

June 28, 2019

Supplementary Note 1: Poincaré maps for learning hierarchi-
cal representations
Hyperbolic space is a Riemannian manifold whose structure is well-suited to represent hierarchical
and tree-like relationships. For our work, this combines two important advantages: First, the
metric structure of hyperbolic space allows us to capture continuous hierarchical relationships and
interpolate between points. Second – and in contrast to other metric spaces – hierarchies can
already be represented in two-dimensional hyperbolic space with small distortion [1, 2, 3, 4].

Poincaré disk model
There exist multiple, equivalent models of hyperbolic space, such as the Beltrami-Klein, the
Lorentz, and the Poincaré half-plane model. In this work, we base our approach on the Poincaré
disk model, as it is best suited for visual analysis. The Poincare disk is defined as follows:
P = {x 2 R2

| kxk < 1} be the open unit disk, where k · k denotes the Euclidean norm. The
Poincaré disk corresponds then to the Riemannian manifold (P, gx), i.e., the open unit disk
equipped with the Riemannian metric tensor

gx =

✓
2

1� kxk2

◆2

gE ,

where x 2 P and gE denotes the Euclidean metric tensor. Furthermore, the distance between
points u,v 2 P is given as

d(u,v) = acosh

✓
1 + 2

ku� vk2

(1� kuk2)(1� kvk2)

◆
. (1)

p1

p2

p3

p4

p5

(a) Geodesics in the Poincaré disk (b) Tree Embedding (c) Lorentz model

Supplementary Figure 1. a) Geodesics in the Poincaré disk model of hyperbolic space. Due
to the negative curvature of the space, geodesics between points are arc that are perpendicular
to the boundary of the disk. For curved arcs, midpoints are closer to the origin of the disk (p1)
than the associated points, e.g. (p3, p5). c) Points (p,q) lie on the surface of the upper sheet of a
two-sheeted hyperboloid. Mapping of points on the hyperboloid (p, q) onto the Poincaré disk.
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The boundary of the disk is denoted by @B and is not part of the manifold, but represents infinitely
distant points. Geodesics in P are then arcs that are orthogonal to @B (as well as all diameters).
See Figure 1a for an illustration.

It can be seen from Equation (1) that the Euclidean distance of two points in the Poincaré disk
is amplified with respect to their distance to the origin of the disk. This locality property of the
Poincaré distance is key for continuous embeddings of hierarchies. For instance, by placing the root
node of a tree at the origin of Bd it would have a relatively small distance to all other nodes as its
Euclidean norm is zero. On the other hand, leaf nodes can be placed close to the boundary of the
Poincaré disk as the distance grows fast between points with a norm close to one. Furthermore,
Equation (1) is symmetric and the hierarchical organization of the space is solely determined by the
distance of points to the origin. Due to this property, Equation (1) is applicable in an unsupervised
setting where the hierarchical order of objects is not specified in advance. Importantly, this allows
us to learn embeddings that simultaneously capture the hierarchy of objects (through their norm)
as well a their similarity (through their distance).

The Riemannian manifold structure of hyperbolic space enables the use Riemannian Stochastic
Gradient Descent (RSGD) [5] to compute the embeddings. In RSGD, parameter updates are
performed via

yt+1 = Ryt(�⌘ grad(L,yt))

where Ry denotes a retraction from the tangent space at y onto the manifold, grad(L,yt) denotes
the Riemannian gradient of the scalar function L, and ⌘ > 0 denotes the learning rate. The
embeddings can be learned directly in the Poincaré disk P or, alternatively, in the Lorentz model
of hyperbolic space H which has advantageous properties for stochastic optimization. We refer to [2]
and [4] for the detailed optimization procedure on both hyperbolic manifolds. When optimization
is performed in the Lorentz model, we can map the learned embeddings into the Poincaré disk via
the diffeomorphism p : H ! P

p(x0, x1, . . . , xn) =
(x1, . . . , xn)

x0 + 1

which preserves all geometric properties including isometry (see also Supplementary Figure 1).

Supplementary Note 2: Benchmarks on datasets with known
hierarchy

Visualization
We compare Poincaré maps to several methods frequently used for visualization: tSNE [6], UMAP
[7], diffusion maps [8], graph abstractions (PAGA) [9], ForceAtlas2 [10] and Monocle 2 [11]. For
all competing methods, we used the default parameters provided by the authors. If no parameters
were provided, we performed a parameter search to achieve the best performance for each method.

While methods such as diffusion maps, PAGA and Monocle 2 can be used by a knowledgeable
user to infer the correct structure form data with several post-processing iterations, here we would
like to demonstrate how Poincaré maps extracts meaningful insights from data without further
post-processing. The ability to recover hidden hierarchies automatically and in one shot makes
Poincaré maps an attractive tool for the analysis of branching processes and complex hierarchical
structures.

Synthetic datasets

To demonstrate the performance of Poincaré maps we used several synthetic datasets available
as Jupyter notebooks with Scanpy [12]: a simple toggle switch, myeloid progenitors and myeloid
progenitors with Gaussian blobs. These datasets were previously used to demonstrate the perfor-
mance of diffusion maps and graph abstractions, and constitute great examples of manifolds with
a hierarchical structure of increasing levels of complexity. All models consist of Boolean equations,
which were translated into ordinary differential equations and simulated with Scanpy as stochastic
differential equations with Gaussian noise [13].

A simple toggle switch model [14, 15] is a process with two branches, which are defined by the
expression of two markers. Supplementary Figure 2 demonstrates that all competing methods
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produce rather correct results for this simple problem. However, Poincaré maps gives a more
clear separation of the intermediate states of terminal fates (inter1 vs inter2). In this example,
only tSNE, diffusion maps, and Poincaré maps produce embeddings with meaningful pairwise
distances.

A synthetic dataset for myeloid differentiation [16] represents cell differentiation progresses of a
common myeloid progenitor state towards one of four different branches: erythrocyte, neutrophil,
monocyte and megakaryocyte. Supplementary Figure 3 shows the provided embeddings for all
methods. Poincaré maps produce an embedding which is visually similar to the other methods,
but has neither discontinuities, nor overlaps in the trajectories, since it preserves all the pairwise
distances. Given the known root, the rotation of the Poincaré map (by means of translation)
allows to easily read out the hierarchy. Diffusion maps produce embeddings consistent with one
main branch, but more Euclidean dimensions would be necessary to separate the rest. Monocle
2 produce a tree layout consistent with the hierarchical structure of the data, but is not able to
reconstruct the temporal connection (trajectory) of the cell differentiation process.

The third dataset shows the stability of Poincaré maps with respect to the existence of clus-
ters not related to the main cell development process. To this end we use the synthetic dataset of
myeloid differentiation with two Gaussian blobs, added as proposed by Wolf et al. [9] (Supplementary

Figure 4). None of the benchmark methods except ForceAtlas2 is able to capture the hierarchy.

Mouse myelopoesis dataset (single-cell RNA seq)

To demonstrate the performance of Poincaré maps on single-cell RNA seq data, we used the mouse
myelopoesis dataset (wild type only) from Olsson et al. [17]. The data was downloaded and
preprocessed according to the pipeline from Qiu et al. [11]. The processed dataset contained
532 features for 382 cells. Nine cell types were annotated corresponding to the original study:
HSCP-1 (haematopoietic stem cell progenitor), HSCP-2, megakaryocytic, erythrocytic, Multi-Lin*
(multi-lineage primed), MDP (monocyte-dendritic cell precursor), monocytic, granulocytic and
myelocyte (myelocytes and metamyelocytes). In order to obtain best results for Monocle 2, we
used the analysis pipeline provided by the authors (https://github.com/cole-trapnell-lab/
monocle2-rge-paper). As the reference hierarchy, we used canonical hematopoetic cell lineage
tree [18] (Supplementary Figure 5 (a)).

Poincaré maps, after rotation (Supplementary Figure 5 (b)), reveal the known hierarchy
and suggest that part of HSPC-2 cluster actually corresponds to the megakaryocyte/erythrocyte
progenitor (MEP), and that the cluster named Multi-Lin corresponds to the granylocyte/monocyte
progenitor (GMP). Also according to Poincaré maps, the cluster annotated as myelocyte does not
belong to the hierarchy, or constitutes a mature state of granulocytes. However, the validation of
these hypotheses requires a detailed differential expression analysis.

Supplementary Figure 5 (c) shows how widely used methods such as tSNE distort the
pairwise distances, therefore making more difficult to draw conclusions about hierarchies. Simi-
larly, two dimensions of diffusion maps are not enough to represent the branching. UMAP and
ForceAtlas2 results overall agree with the Poincaré maps, but don’t allow to reason about the subtle
hierarchical relations between HSCP-1/2 clusters and MDP. Monocle 2 captures the global branch-
ing, but fails to depict more fine-grained relations: between erythrocytytes and megakaryocytes or
granulocytes and myelocytes.

Mouse myeloid progenitors dataset (MARS-Seq)

As an example of a dataset with multiple intermediate populations, we use a dataset provided by
Paul et al. [19]. Myeloid progenitor cells were separated by sorting the c-Kit+ Sca1 lineage from
mouse bone marrow and sequenced with MARS-seq. We followed the data preprocessing procedure
recipe_zheng17 (Scanpy-recipe [20]), which selects the 1000 most highly-variable genes for 2730
cells. In the original study, the authors identify 19 clusters. We use these labels and canonical
hematopoetic cell lineage tree (Supplementary Figure 6 (a)) to compare the performance of
all methods. We run all methods except Monocle 2 on the 20 top principal components of the
preprocessed data. For Monocle 2, we used the Jupyter notebook provided by the authors (the
lymphoid cluster was separated as described in the original study).

Supplementary Figure 6 (b) shows the embeddings provided by Poincaré maps. For this
dataset, the root is supposed to be at CMP cluster, which is not observed. We chose the root
as the medoid (with respect to Poincaré distances) of the MEP and GMP clusters combined.
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Supplementary Figure 6 (c) shows the hierarchy that could be read out from the Poincaré map.
We would like to point out that Poincaré maps clearly separate lymphoid cells and dendritic cells
as outliers, which agrees with the canonical tree as they are part of lymphoid lineage. None of the
other methods (Supplementary Figure 6 (d)) were able to capture this fact. Poincaré maps also
suggest that some of the clusters (13-15) could be relabeled to better reflect the canonical hierarchy.
After the removal of the lymphoid cluster, Monocle 2 captures the main lineage branching between
the MEP and GMP lineages, but it does not separate dendritic cells, and destroys the eosonphils
cluster. Wolf et al. demonstrated that Monocle 2 results without the removal of the lymphoid
cluster only worsen.

Finally, Poincaré maps places the 16Neu cluster downstream of 15Mo in the hierarchy. However,
the canonical hierarchy shows neutrophils and monocytes at the same level. As noted by Wolf et
al., we suppose that this inconsistency is due to a faulty labeling of the clusters.

Planaria dataset (Drop-seq)

To demonstrate scalability of Poincaré maps to large datasets, we analyzed the entire Planaria
dataset of Plass et al. [21]. The dataset comprises 11 individual experiments capturing a total
of 21,612 cells with droplet-based single-cell transcriptomics (Drop-seq). To obtain the Poincaré
maps we used the pre-processed data provided by the authors: https://nbviewer.jupyter.org/
github/rajewsky-lab/planarian_lineages/blob/master/paga/planaria.ipynb. The prepro-
cessed dataset comes in the form of 50 principal components, which were used by the authors to
apply tSNE, PAGA and ForceAtlas2. (Supplementary Figure 7) illustrates that Poincaré maps
agree with tSNE and ForceAtlas2 embeddings, significantly outperforms PCA and UMAP, and
agrees with the PAGA hierarchy annotation (Figure 4 in Plass et al.).

Clustering
Poincaré maps provide embeddings useful beyond visualization. Since Poincaré maps preserve
pairwise similarities, their embeddings are suitable for downstream tasks, such as clustering. We
compared several clustering approached using Poincaré maps and benchmark embeddings. We
additionally provided Louvain clustering and clustering in the original gene expression space. Since
the datasets comprise several continuous trajectories and there is no true separation for progenitor
populations of different branches, we used the Adjusted Rand Index (ARI) and Fowlkes-Mallows
scores (FMS) to measure cluster quality.

Adjusted Rand Index. The Adjusted Rand Index (ARI) is a function that measures the sim-
ilarity between two cluster assignments. ARI is bonded bewteen [�1, 1], where negative values
correspond to independent labelings, similar clusterings have a positive ARI, and 1.0 is the perfect
match score. Lets denote C a ground truth class assignment and K the clustering. Adjusted Rand
Index is defined through raw Rand Index (RI):

RI =
a+ b

C
nsamples

2

, (2)

where a is the number of pairs of elements that are in the same set in C and in the same set in
K, b is the number of pairs of elements that are in different sets in C and in different sets in K,
and C

nsamples

2 is the total number of possible pairs in the dataset (without ordering). ARI is after
adjusting for random labelings:

ARI =
RI � E[RI]

max(RI)� E[RI]
, (3)

where a is the number of pairs of elements belonging to the same cluster in predicted and true
labels, b is the number of pairs of elements belonging to different clusters in predicted and true
labels, and C

nsamples

2 is the number of all possible combinations of pairs of elements in the dataset.

Fowlkes-Mallows scores. The Fowlkes-Mallows score FMI is defined as the geometric mean of
the pairwise precision and recall:

FMI =
TPp

(TP + FP )(TP + FN)
, (4)

4

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/689547doi: bioRxiv preprint first posted online Jul. 2, 2019; 

https://nbviewer.jupyter.org/github/rajewsky-lab/planarian_lineages/blob/master/paga/planaria.ipynb
https://nbviewer.jupyter.org/github/rajewsky-lab/planarian_lineages/blob/master/paga/planaria.ipynb
http://dx.doi.org/10.1101/689547
http://creativecommons.org/licenses/by-nc-nd/4.0/


where TP is the number of pairs of points that belong to the same cluster in both the true labels
and the predicted labels (true positives), FP is the number of pairs of points that belong to the
same clusters in the true labels but not in the predicted labels (false positives), and FN is the
number of pairs of points that belong in the same clusters in the predicted labels but not in the
true labels (false negatives). The FMI ranges from 0 to 1. A high value indicates a good similarity
between two clusterings.

More details on these metrics can be found at : https://scikit-learn.org/stable/modules/
clustering.html#clustering-evaluation

Supplementary Table 1 shows the clustering results on synthetic datasets. Poincaré maps
achieve very similar score to louvain clustering and significantly outperform clustering approaches
using other embedding methods except tSNE embedding, which combined with spectral clustering
allows to achieve the best scores. However, as we demonstrated before, tSNE is not preserving the
hierarchy and therefore would be less useful for other downstream tasks.

Pseudotime
We demonstrated Poincaré pseudotime performance by comparison with real time and diffusion
pseudotime on synthetic datasets. Supplementary Table 2 demonstrates that Poincaré pseu-
dotime as well as diffusion pseudotime achieve high correlation scores with the actual time on all
synthetic datasets. This is unsurprising, since these two measures are related in their nature. The
performance of both pseudotime approaches is probably bounded by the construction of kNNG.

Interpolation
We demonstrate the advantage of Poincaré maps in one interpolation task. Our goal is to predict
values of unseen intermediate cell types. This could be useful for scenarios where intermediate
cell type are not observed. We demonstrate the performance of interpolations on several of the
datasets described before by artificially removing one cell type. In the synthetic example of myeloid
progenitors we remove the majority of neutrophil progenitors, in Olsson et al. we remove the
HSPC-2 population, and in the Planaria dataset of Plass et al. we remove a part of parenchymal
progenitors.

As a first step, we obtain embeddings for each of the datasets (after “shrinking” the dataset
by having removed the unseen cell type) using several methods: Poincaré maps, ForceAtlas2 and
UMAP. As as second step, we train a neural network to predict gene expression values from
the corresponding embeddings, by minimizing the mean squared error between the original gene
expression values of “shrinked” dataset and the corresponding predictions Supplementary Figure

8 (a), (b), 10 (a), 11 (a). We use the same architecture and training parameters of the neural
network for all the embeddings. As a third step, we randomly sample a pair (or multiple pairs)
of points that we will consider the end-points of our interpolation (Supplementary Figure 8

(c)). This step relies on some prior knowledge about the developmental hierarchy of the data, yet
we consider it to be reasonable for our demonstration purposes, as well as for real case scenarios.
Finally, we use the same end-points to construct an uniform interpolation along geodesic in either
Poincaré (for Poincaré maps) or Euclidean (for ForceAtlas2) space (Supplementary Figure 8

(d), (e)). We use the previously trained neural network to predict the gene expression for all the
unobserved cells that would lie in the chosen interpolation (Supplementary Figure 8 (f), 10

(b), 11 (b).
Since temporal dynamics are very important for developmental processes, we compare the

reconstruction using dynamic time warping between the diffusion pseudotime series for the removed
population and the prediction provided by the different embeddings. Supplementary Table 3

demonstrates that Poincaré maps provide twice better prediction performance in datasets with a
complex hierarchy, such as myeloid progenitors and Olsson datasets. In the case of Planaria, the
hierarchy is rather shallow, so the advantage of Poincaré maps is less pronounced.

Technical details. In the myeloid progenitors dataset, to obtain a pair of points between which
to draw the interpolation, we first perform a Louvain clustering of the shrinked dataset. Afterwards,
we select two clusters from which we sample a corresponding pair: one cluster corresponding to
mature neutrophils, and another cluster corresponding to early neutrophil progenitors.
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In the Olsson et al. dataset, we use the previously annotated clusters, and randomly sample
several pairs of points belonging to "HSPC-1" cluster, and to either the "Multi-lin", "Eryth" and
"Meg" clusters. This corresponds to a potential position of "HSPC-2" cluster in the hierarchy.

In the Plass et al. Planaria dataset, we removed parenchymal progenitors. We interpolate
between the original cluster of parenchymal progenitors and either the "psap+ parenchymal cells",
"pgrn+ parenchymal cells", or "ldlrr-1+ parenchymal cells".

As for the network architecture, we used 5 fully connected layers with ReLU non-linearities.
For UMAP and ForceAtlas2, we added batch normalization, as it showed better performance.

Supplementary Note 3: Reconstructing developmental trajec-
tories of asynchronous process: early blood development in
mice (qPCR)
We analyze the single cell qPCR dataset of early blood development in mice [22] using Poincaré
maps. We followed the data preprocessing procedure described in Haghverdi et al. [8].

First, we visualized the dataset with a Poincaré map using the labels corresponding to different
stages of differentiation [22]: primitive streak (PS), neural plate (NP), head fold (HF), four somite
GFP negative (4SG-) and four somite GFP positive (4SG+) (Supplementary Figure 12 (a)).
We see one cluster standing out. Therefore, we perform spectral clustering with Poincaré distances
to break down this cluster for further analysis (Supplementary Figure 12(b),(c)). Then, cluster
4 mainly consists of Flk1-Runx1- cells (see Supplementary Figure 12 (d)). Moignard et al.
[22] refer to this cluster as “mesodermal cells at primitive strike” and suggest that these cells give
rise to blood and endothelial cells.

The cell that Haghverdi et al. choose as root of the differentiation for the diffusion pseudotime
analysis belongs to the “mesodermal” cluster in our analysis. We visualize (Supplementary

Figure 13) the diffusion pseudotime and Poincaré pseudotime with the roots (a) suggested by
Haghverdi et al., and (b) the most dissimilar point in the PS cluster in terms of Poincaré distance.
Undesiredly, the distances from (a) grow orthogonal to the actual developmental stages. It agrees
with the conclusion in Haghverdi et al. that such a choice of embedding does not allow to see the
asynchronous development. Therefore, cluster 4 may not correspond to cells leading to endothelial
and blood cells, but rather to early mesodermal cells, which in their turn lead to some other
population (Supplementary Figure 4 in Moignard et al.). We will further refer to the cluster 4 as
“mesodermal”.

As pointed out by Moignard et al., blood development is a highly asynchronous process, which
is hard to capture with PCA or diffusion maps. In Supplementary Figure 14 we further
demonstrate how Poincaré maps could be used to reveal the developmental structure in this process.
First, we apply the rotation to the Poincaré map to place the root cell defined above to the center
of the disk. Then, we apply our lineage detection procedure and demonstrate that inside of each
lineage, the order of the developmental stages is on average preserved. However, if we look at all
lineages combined, then the populations from PS, NP, HF stages appear to be a homogeneous
mixture. Therefore, the angular information in Poincaré maps adds the additional amount of
information crucial to understand asynchronous processes.

Finally, we analyzed the expression profiles of main endothelial and hematopoetic markers for
different lineages (Supplementary Figure 15). Poincaré maps suggest that cells make an early
decision about which branch to become. In particular, we suggest that cells commit to their future
branch as early as in the PS stage.
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Supplementary Figure 2. Comparison of various embeddings for the simple toggle

switch model. There are 2 distinct branches. We additionally labeled intermediate states from
the simulations. (a) Raw Poincaré map. (b) Rotation of the Poincaré map with respect to the
known root. (c) Benchmark methods.
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Supplementary Figure 3. Comparison of various embeddings for a synthetic model of

myeloid progenitors differentiation. There are 4 distinct branches. We additionally labeled
intermediate states from the simulations. (a) Raw Poincaré map. (b) Rotation of the Poincaré
map with respect to the known root. (c) Benchmark methods.
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Supplementary Figure 4. Comparison of various embeddings for a synthetic model of

myeloid progenitors differentiation (4 distinct branches) with two additional Gaussian

clusters. We additionally labeled intermediate states from the simulations. (a) Raw Poincaré
map. (b) Rotation of the Poincaré map with respect to the known root. (c) Benchmark methods.
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Myelocyte

Supplementary Figure 5. Comparison of various embeddings for the scRNAseq

dataset of mouse myelopoesis (Olsson et al.). (a) Canonical hematopoetic cell lineage
tree. Colored circles correspond to the population colors from the dataset. (b) Poincaré map
rotated with respect to the root. (c) Benchmark methods.
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Supplementary Figure 6. Comparison of various embeddings for the mouse myeloid

progenitors MARS-seq dataset (Paul et al.). (a) Canonical hematopoetic cell lineage tree.
Colored nodes correspond to the population colors from the dataset. White nodes correspond
to intermediate annotated states. (b) Rotated Poincaré map with respect to the root (medoids
of MEP and GMP cluster). (c) Hierarchical relationships suggested by the Poincaré map. (d)

Benchmark methods. To reproduce the Monocle 2 tree, the lymphoid cluster was removed.
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Supplementary Figure 7. Comparison of various embeddings for the planaria Drop-

seq dataset (Plass et al.). (a) Poincaré map rotated with respect to the root (medoids of
neoblast 1 cluster). (b) Benchmark methods.
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Supplementary Figure 8. Tutorial on the interpolation using Poincaré maps on a

simple example of a synthetic dataset of Myeloid progenitors. We remove the majority of
neutrophil progenitors “branchNe” with the goal of predicting their gene expression values. (a) The
perturbed dataset was embedded into the Poincaré disk. We train a neural network to reconstruct
the original features from their position in the Poincaré map. (b) Poincaré map of the perturbed
dataset. (c) Louvain clustering of the perturbed dataset. (d) Geodesic between two closest points
in clusters 1 and 3. (e) Points sampled along the geodesic. (f) We use the trained neural network
to predict values in the original gene expression space for the interpolated cluster.
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pseudotime

Supplementary Figure 9. Demonstration of interpolation using embeddings on syn-

thetic dataset of myeloid progenitors. The majority of “branchNe” cells were removed with
the goal of predicting their values. We predict the cell states interpolating along Poincaré or Eu-
clidean geodesics. The values for the unseen “branchNe” cells were predicted using neural network
mapping from the corresponding embedding space to the original gene expression space. We com-
pare the reconstruction of the trajectories using average dynamic time warping measure among
individual genes. The ordering of the interpolated lineage is obtained using diffusion pseudotime,
and then compared to the diffusion pseudotime of the original dataset.
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Supplementary Figure 10. Demonstration of interpolation using embeddings on Ols-

son et al. dataset. The “HSPC-2” cluster was removed completely with the goal of predicting its
values. (a) We predict the cell states interpolating along the geodesic in Poincaré map, ForceAt-
las2 and UMAP. (b) We compare the reconstruction of trajectories using average dynamic time
warping measure among individual genes. The ordering of the interpolated lineage is obtained
using diffusion pseudotime, and then compared to the diffusion pseudotime of the original dataset.
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Supplementary Figure 11. Demonstration of interpolation using embeddings on Plass

et al. dataset. Part (more developed) of the “parenchymal progenitors” cluster was removed
with the goal of predicting its values. We used the preprocessed data provided by the authors.
Instead of the original gene expression data, the preprocessed dataset is in the form of 50 principal
components, which values we attempt to predict in the interpolation task. (a) We predict the cell
states interpolating along the geodesic in Poincaré map, ForceAtlas2 and UMAP. (b) Comparison
of the reconstruction of original features in terms of normalized average expression inside each
cluster.
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Supplementary Figure 12. (a) Poincare map of the Moignard dataset. (b) Spectral clustering
with Poincaré distances. (c) Analysis of stage-composition of the defined clusters. Clusters 1
and 3 most likely represent development of blood cells. Clusters 0 and 4 potentially correspond to
endothelial development. Cluster 2 corresponds to the cluster named “mesodermal cells at primitive
strike” in the original paper. (d) Comparison of the median expression of markers at PS stage for
cluster 2 against the rest of PS cells. Cluster 4 consists mostly of Flk1-Runx1-.
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Supplementary Figure 13. Rotation of the Poincaré map, and corresponding pseudotimes with
root chosen according to (a) Haghverdi et al. (b) proposed new root.

Dataset ToggleSwitch Myeloid progenitors MP with blobs
name ARS FMS ARS FMS ARS FMS
louvain 0.46 0.59 0.58 0.63 0.89 0.91
spectral Poincaré 0.39 0.54 0.63 0.67 0.89 0.91
agglomerative Poincaré 0.49 0.61 0.59 0.64 0.89 0.91
kmedoids Poincaré 0.38 0.53 0.52 0.59 0.54 0.61
spectral raw 0.18 0.39 0.52 0.58 0.28 0.46
agglomerative raw 0.12 0.42 0.54 0.60 0.46 0.64
kmedoids raw 0.19 0.41 0.55 0.61 0.17 0.36
spectral PCA 0.18 0.39 0.53 0.59 0.29 0.41
agglomerative PCA 0.12 0.42 0.48 0.55 0.43 0.60
kmedoids PCA 0.20 0.42 0.49 0.56 0.65 0.70
spectral tSNE 0.47 0.60 0.59 0.64 0.85 0.88
agglomerative tSNE 0.36 0.51 0.49 0.56 0.89 0.90
kmedoids tSNE 0.43 0.57 0.43 0.51 0.71 0.76
spectral UMAP 0.37 0.52 0.42 0.50 0.89 0.91
agglomerative UMAP 0.37 0.52 0.52 0.58 0.89 0.91
kmedoids UMAP 0.31 0.48 0.58 0.63 0.66 0.71
spectral DiffusionMaps 0.55 0.66 0.52 0.58 0.76 0.81
agglomerative DiffusionMaps 0.04 0.39 0.11 0.31 0.12 0.44
kmedoids DiffusionMaps 0.06 0.36 0.42 0.50 0.33 0.50
spectral ForceAtlas2 0.00 0.53 -0.00 0.30 0.00 0.39
agglomerative ForceAtlas2 0.48 0.61 0.56 0.61 0.89 0.91
kmedoids ForceAtlas2 0.42 0.56 0.55 0.61 0.53 0.60

Supplementary Table 1. Comparison of various clustering approaches on the synthetic datasets.
Higher values mean better result.
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Supplementary Figure 14. Analysis of stage ordering in different lineages. (a) Poincaré map
with developmental stages. (b) Detected lineages with clustering by angle in the Poincaré disk.
(c) Lineage composition per stage. (d) Average diffusion (from Haghverdi et al.) and Poincaré
pseudotime per stage for the whole dataset. (e) Average Poincaré pseudotime per stage for in the
individual lineage.
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Supplementary Figure 15. Expression of main endothelial and hemogenic markers visualized
on the Poincaré disk.

20

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/689547doi: bioRxiv preprint first posted online Jul. 2, 2019; 

http://dx.doi.org/10.1101/689547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dataset dpt pmpt dpt-
pmpt

ToggleSwitch: branch1 0.99 0.99 0.99
ToggleSwitch: branch2 0.98 0.98 0.99
ToggleSwitch: avg 0.99 0.98 0.99
MyeloidProgenitors: erythrocyt 0.89 0.94 0.91
MyeloidProgenitors: megakaryoc 0.94 0.95 0.93
MyeloidProgenitors: monocyte 0.93 0.89 0.98
MyeloidProgenitors: neutrophil 0.91 0.91 0.99
MyeloidProgenitors: avg 0.92 0.92 0.95
MyeloidProgenitors with blobs: Ery 0.89 0.94 0.90
MyeloidProgenitors with blobs: Mk 0.94 0.96 0.93
MyeloidProgenitors with blobs: Mo 0.93 0.89 0.97
MyeloidProgenitors with blobs: Neu 0.91 0.91 0.99
MyeloidProgenitors with blobs: avg 0.92 0.92 0.95

Supplementary Table 2. Comparison of diffusion pseudotime (dpt) and Poincaré pseudtotime
(pmpt) against real time on synthetic datasets using Pearson correlation coefficient between. The
last column corresponds to the correlation coefficient between diffusion pseudotime and Poincaré
pseudtotime. Higher values are better.

Dataset Myeloid progenitors Olsson Plass
method no w=5 w=15 no w=5 w=15 no w=5 w=15
Poincaré 0.5 0.3 0.4 301.2 138.8 84.6 482.4 239.3 165.0
ForceAtlas2 3.3 1.8 1.3 440.3 198.0 142.8 584.6 273.2 220.0
UMAP 1.6 1.2 0.8 428.8 206.1 153.6 880.9 456.4 368.9

Supplementary Table 3. Dynamic time warping of interpolations using various embeddings.
Smaller values are better.
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