
Nonconvex Online Support Vector Machines
Şeyda Ertekin, Léon Bottou, and C. Lee Giles, Fellow, IEEE

Abstract—In this paper, we propose a nonconvex online Support Vector Machine (SVM) algorithm (LASVM-NC) based on the Ramp

Loss, which has the strong ability of suppressing the influence of outliers. Then, again in the online learning setting, we propose an

outlier filtering mechanism (LASVM-I) based on approximating nonconvex behavior in convex optimization. These two algorithms are

built upon another novel SVM algorithm (LASVM-G) that is capable of generating accurate intermediate models in its iterative steps by

leveraging the duality gap. We present experimental results that demonstrate the merit of our frameworks in achieving significant

robustness to outliers in noisy data classification where mislabeled training instances are in abundance. Experimental evaluation

shows that the proposed approaches yield a more scalable online SVM algorithm with sparser models and less computational running

time, both in the training and recognition phases, without sacrificing generalization performance. We also point out the relation between

nonconvex optimization and min-margin active learning.

Index Terms—Online learning, nonconvex optimization, support vector machines, active learning.

Ç

1 INTRODUCTION

IN supervised learning systems, the generalization perfor-
mance of classification algorithms is known to be greatly

improved with large margin training. Large margin classi-
fiers find the maximal margin hyperplane that separates the
training data in the appropriately chosen kernel-induced
feature space. It is well established that if a large margin is
obtained, the separating hyperplane is likely to have a small
misclassification rate during recognition (or prediction) [1],
[2], [3]. However, requiring that all instances be correctly
classified with the specified margin often leads to overfitting,
especially when the data set is noisy. Support Vector
Machines [4] address this problem by using a soft margin
criterion, which allows some examples to appear on the
wrong side of the hyperplane (i.e., misclassified examples) in
the training phase to achieve higher generalization accuracy.
With the soft margin criterion, patterns are allowed to be
misclassified for a certain cost, and consequently, the
outliers—the instances that are misclassified outside of
the margin—start to play a dominant role in determining
the decision hyperplane,since they tend to have the largest
margin loss according to the Hinge Loss. Nonetheless, due to
its convex property and practicality, Hinge Loss has become
a commonly used loss function in SVMs.

Convexity is viewed as a virtue in the machine learning
literature both from a theoretical and experimental point
of view. Convex methods can be easily analyzed mathema-
tically and bounds can be produced. Additionally, convex

solutions are guaranteed to reach global optima and are not
sensitive to initial conditions. The popularity of convexity
further increased after the success of convex algorithms,
particularly with SVMs, which yield good generalization
performance and have strong theoretical foundations.
However, in convex SVM solvers, all misclassified examples
become support vectors, which may limit the scalability of
the algorithm to learning from large-scale data sets. In this
paper, we show that nonconvexity can be very effective for
achieving sparse and scalable solutions, particularly when
the data consist of abundant label noise. We present herein
experimental results that show how a nonconvex loss
function, Ramp Loss, can be integrated into an online SVM
algorithm in order to suppress the influence of misclassified
examples.

Various works in the history of machine learning research
focused on using nonconvex loss functions as an alternate to
convex Hinge Loss in large margin classifiers. While Mason
et al. [5] and Krause and Singer [6] applied it to Boosting,
Perez-Cruz et al. [7] and Xu and Cramer [8] proposed
training algorithms for SVMs with the Ramp Loss and solved
the nonconvex optimization by utilizing semidefinite pro-
gramming and convex relaxation techniques. On the other
hand, some previous works of Liu et al. [9] and Wang et al.
[10] used the Concave-Convex Procedure (CCCP) [11] for
nonconvex optimization as the work presented here. Those
studies are worthwhile in the endeavor of achieving sparse
models or competitive generalization performance; never-
theless, none of them are efficient in terms of computational
running time and scalability for real-world data mining
applications, and yet the improvement in classification
accuracy is only marginal. Collobert et al. [12] pointed out
the scalability advantages of nonconvex approaches and
used CCCP for nonconvex optimization in order to achieve
faster batch SVMs and Transductive SVMs. In this paper, we
focus on bringing the scalability advantages of nonconvexity
to the online learning setting by using an online SVM
algorithm, LASVM [13]. We also highlight and discuss the
connection between the nonconvex loss and traditional min-
margin active learners.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011 1

. Ş. Ertekin is with the Massachusetts Institute of Technology, Sloan School
of Management, Cambridge, MA 02139. E-mail: seyda@mit.edu.

. L. Bottou is with the NEC Laboratories America, 4 Independence Way,
Suite 200, Princeton, NJ 08540. E-mail: leon@bottou.org.

. C.L. Giles is with the College of Information Sciences and Technology, The
Pennsylvania State University, University Park, PA 16802.
E-mail: giles@ist.psu.edu.

Manuscript received 15 Mar. 2009; revised 11 Dec. 2009; accepted 30 Mar.
2010; published online 24 May 2010.
Recommended for acceptance by O. Chapelle.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2009-03-0168.
Digital Object Identifier no. 10.1109/TPAMI.2010.109.

0162-8828/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Online learning offers significant computational advan-
tages over batch learning algorithms and the benefits of
online learning become more evident when dealing with
streaming or very large-scale data. Online learners incorpo-
rate the information of recently observed training data into
the model via incremental model updates and without the
need for retraining it with previously seen entire training
data. Since these learners process the data one at a time in
the training phase, selective sampling can be applied and
evaluation of the informativeness of the data prior to the
processing by the learner becomes possible. The computa-
tional benefits of avoiding periodic batch optimizations,
however, necessitate the online learner fulfilling two critical
requirements, namely, the intermediate models need to be
well enough trained in order to capture the characteristics
of the training data, but, on the other hand, should not be
overoptimized since only part of the entire training data is
seen at that point in time. In this paper, we present an
online SVM algorithm, LASVM-G, that maintains a balance
between these conditions by leveraging the duality gap
between the primal and dual functions throughout the
online optimization steps. Based on the online training
scheme of LASVM-G, we then present LASVM-NC, an online
SVM algorithm with nonconvex loss function, which yields
a significant speed improvement in training and builds a
sparser model, hence resulting in faster recognition than its
convex version as well. Finally, we propose an SVM
algorithm (LASVM-I) that utilizes the selective sampling
heuristic by ignoring the instances that lie in the flat region
of the Ramp Loss in advance, before they are processed by
the learner. Although this approach may appear like an
overaggressive training sample elimination process, we
point out that these instances do not play a large role in
determining the decision hyperplane according to the Ramp
Loss anyway. We show that for a particular case of sample
elimination scenario, misclassified instances according to
the most recent model are not taken into account in the
training process. For another case, only the instances in the
margin pass the barrier of elimination and are processed in
the training, hence leading to an extreme case of small pool
active learning framework [14] in online SVMs. The
proposed nonconvex implementation and selective sample
ignoring policy yields sparser models with fewer support
vectors and faster training with less computational time and
kernel computations, which overall leads to a more scalable
online SVM algorithm. The benefits of the proposed
methods are fully realized for kernel SVMs and their
advantages become more pronounced in noisy data
classification, where mislabeled samples are in abundance.

In the next section, we present a background on Support
Vector Machines. Section 3 gives a brief overview of the
online SVM solver, LASVM [13]. We then present the
proposed online SVM algorithms, LASVM-G, LASVM-NC,
and LASVM-I. The paper continues with the experimental
analysis presented in Section 8, followed by concluding
remarks.

2 SUPPORT VECTOR MACHINES

Support Vector Machines [4] are well known for their strong
theoretical foundations, generalization performance, and
ability to handle high-dimensional data. In the binary
classification setting, let ððx1; y1Þ � � � ðxn; ynÞÞ be the training

data set where xi are the feature vectors representing the
instances and yi 2 f�1;þ1g are the labels of those instances.
Using the training set, SVM builds an optimum hyperplane—
a linear discriminant in a higher dimensional feature
space—that separates the two classes by the largest margin.
The SVM solution is obtained by minimizing the following
primal objective function:

min
ww;b

Jðw; bÞ ¼ 1

2
kwwk2 þ C

Xn
i¼1

�i; ð1Þ

with 8i yiðww � �ðxiÞ þ bÞ � 1� �i;
�i � 0;

�

where w is the normal vector of the hyperplane, b is the
offset, yi are the labels, �ð�Þ is the mapping from input space
to feature space, and �i are the slack variables that permit
the nonseparable case by allowing misclassification of
training instances.

In practice, the convex quadratic programming (QP)
problem in (1) is solved by optimizing the dual cost function:

max
��

Gð��Þ �
XN
i¼1

�iyi �
1

2

X
i;j

�i�jKðxi; xjÞ; ð2Þ

subject to

P
i �i ¼ 0;

Ai � �i � Bi;

Ai ¼ minð0; CyiÞ;
Bi ¼ maxð0; CyiÞ;

8>>><
>>>:

ð3Þ

where Kðxi; xjÞ ¼ h�ðxiÞ;�ðxjÞi is the kernel matrix repre-
senting the dot products �ðxiÞ � �ðxjÞ in feature space. We
adopt a slight deviation of the coefficients �i from the
standard representation and let them inherit the signs of the
labels yi, permitting the �i to take on negative values. After
solving the QP problem, the norm of the hyperplane ww can
be represented as a linear combination of the vectors in the
training set

ww ¼
X
i

�i�ðxiÞ: ð4Þ

Once a model is trained, a soft margin SVM classifies a
pattern x according to the sign of a decision function, which
can be represented as a kernel expansion

ŷðxÞ ¼
Xn
i¼1

�iKðx; xiÞ þ b; ð5Þ

where the sign of ŷðxÞ represents the predicted classification
of x.

A widely popular methodology for solving the SVM QP
problem is Sequential Minimal Optimization (SMO) [15].
SMO works by making successive direction searches,
which involves finding a pair of instances that violate the
KKT conditions and taking an optimization step along that
feasible direction. The �� coefficients of these instances are
modified by opposite amounts, so SMO makes sure that
the constraint

P
i �i ¼ 0 is not violated. Practical imple-

mentations of SMO select working sets based on finding a
pair of instances that violate the KKT conditions more than
�-precision, also known as �-violating pairs [13]:

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

ði; jÞ is a �-violating pair()
�i < Bi;
�j > Aj;
gi � gj > �;

8<
:

where g denotes the gradient of an instance and � is a small
positive threshold. The algorithm terminates when all KKT
violations are below the desired precision.

The effect of the bias term. Note that the equality
constraint on the sum of �i in (3) appears in the SVM
formulation only when we allow the offset (bias) term b to
be nonzero. While there is a single “optimal” b, different
SVM implementations may choose separate ways of
adjusting the offset. For instance, it is sometimes beneficial
to change b in order to adjust the number of false positives
and false negatives [2, page 203], or even disallow the bias
term completely (i.e., b ¼ 0) [16] for computational simpli-
city. In SVM implementations that disallow the offset term,
the constraint

P
i �i ¼ 0 is removed from the SVM problem.

The online algorithms proposed in this paper also adopt the
strategy of setting b ¼ 0. This strategy gives the algorithms
the flexibility to update a single �i at a time at each
optimization step, bringing computational simplicity and
efficiency to the solution of the SVM problem without
adversely affecting the classification accuracy.

3 LASVM

LASVM [13] is an efficient online SVM solver that uses less
memory resources and trains significantly faster than other
state-of-the-art SVM solvers while yielding competitive
misclassification rates after a single pass over the training
examples. LASVM realizes these benefits due to its novel
optimization steps that have been inspired by SMO. LASVM

applies the same pairwise optimization principle to online
learning by defining two direction search operations. The
first operation, PROCESS, attempts to insert a new example
into the set of current support vectors (SVs) by searching for
an existing SV that forms a �-violating pair with maximal
gradient. Once such an SV is found, LASVM performs a
direction search that can potentially change the coefficient of
the new example and make it a support vector. The second
operation, REPROCESS, attempts to reduce the current
number of SVs by finding two SVs that are �-violating SVs
with maximal gradient. A direction search can zero the
coefficient of one or both SVs, removing them from the set of
current support vectors of the model. In short, PROCESS adds
new instances to the working set and REPROCESS removes
the ones that the learner does not benefit from anymore. In
the online iterations, LASVM alternates between running
single PROCESS and REPROCESS operations. Finally, LASVM

simplifies the kernel expansion by running REPROCESS to
remove all �-violating pairs from the kernel expansion, a step
known as FINISHING. The optimizations performed in the
FINISHING step reduce the number of support vectors in the
SVM model.

4 LASVM WITH GAP-BASED OPTIMIZATION—
LASVM-G

In this section, we present LASVM-G—an efficient online
SVM algorithm that brings performance enhancements to
LASVM. Instead of running a single REPROCESS operation

after each PROCESS step, LASVM-G adjusts the number of
REPROCESS operations at each online iteration by lever-
aging the gap between the primal and the dual functions.
Further, LASVM-G replaces LASVM’s one time FINISHING

optimization and cleaning stage with the optimizations
performed in each REPROCESS cycle at each iteration and
the periodic non-SV removal steps. These improvements
enable LASVM-G to generate more reliable intermediate
models than LASVM, which lead to sparser SVM solutions
that can potentially have better generalization performance.
For further computational efficiency, the algorithms that we
present in the rest of the paper use the SVM formulation
with b ¼ 0. As we pointed out in Section 2, the bias term b
acts as a hyperparameter that can be used to adjust the
number of false positives and false negatives for varying
settings of b, or to achieve algorithmic efficiency due to
computational simplicity when b ¼ 0. In the rest of the
paper, all formulations are based on setting the bias b ¼ 0
and thus optimizing a single � at a time.

4.1 Leveraging the Duality Gap

One question regarding the optimization scheme in the
original LASVM formulation is the rate at which to perform
REPROCESS operations. A straightforward approach would
be to perform one REPROCESS operation after each PROCESS

step, which is the default behavior of LASVM. However, this
heuristic approach may result in underoptimization of the
objective function in the intermediate steps if this rate is
smaller than the optimal proportion. Another option would
be to run REPROCESS until a small predefined threshold "
exceeds the L1 norm of the projection of the gradient
ð@Gð�Þ=@�iÞ, but little work has been done to determine the
correct value of the threshold ". A geometrical argument
relates this norm to the position of the support vectors
relative to the margins [17]. As a consequence, one usually
chooses a relatively small threshold, typically in the range
10�4-10�2. Using such a small threshold to determine the rate
of REPROCESS operations results in many REPROCESS steps
after each PROCESS operation. This will not only increase the
training time and computational complexity, but can
potentially overoptimize the objective function at each
iteration. Since nonconvex iterations work toward suppres-
sing some training instances (outliers), the intermediate
learned models should be well enough trained in order to
capture the characteristics of the training data, but, on the
other hand, should not be overoptimized since only part of
the entire training data is seen at that point in time. Therefore,
it is necessary to employ a criteria to determine an accurate
rate of REPROCESS operations after each PROCESS. We define
this policy as the minimization of the gap between the primal and
the dual [2].

Optimization of the duality gap. From the formulations
of the primal and dual functions in (1) and (2), respectively,
it can be shown that the optimal values of the primal and
dual are same [18]. Furthermore, at any nonoptimal point,
the primal function is guaranteed to lie above the dual curve.
In formal terms, let �̂ and �̂ be solutions of problems (1) and
(2), respectively. The strong duality asserts that for any
feasible � and �,

Gð�Þ � Gð�̂Þ ¼ Jð�̂Þ � Jð�Þ with �̂ ¼
X
i

�̂i�ðxiÞ: ð6Þ

ERTEKIN ET AL.: NONCONVEX ONLINE SUPPORT VECTOR MACHINES 3

That is, at any time during the optimization, the value of the
primal Jð�Þ is higher than the dual Gð�Þ. Using the equality
w ¼

P
l �l�ðxlÞ and b ¼ 0, we show that this holds as follows:

Jð�Þ �Gð�Þ ¼ 1

2
kwk2 þ C

X
l

j1� ylðw � �ðxlÞÞjþ

�
X
l

�lyl þ
1

2
kwk2

¼ kwk2 �
X
l

�lyl þ C
X
l

j1� ylðw � �ðxlÞÞjþ

¼ w
X
l

�l�ðxlÞ �
X
l

�lyl

þ C
X
l

j1� ylðw � �ðxlÞÞjþ

¼ �
X
l

yl�lj1� ylðw � �ðxlÞ þ bÞjþ

þ C
X
l

j1� ylðw � �ðxlÞ þ bÞjþ

¼
X
l

ðC � �lyl|fflfflfflfflffl{zfflfflfflfflffl}
�0

Þ j1� ylðw � �ðxlÞÞjþ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

� 0;

where C � �lyl � 0 is satisfied by the constraint of the dual
function in (3). Then, the SVM solution is obtained when
one reaches ��; �� such that

" > Jð��Þ �Gð��Þ where �� ¼
X
i

��i�ðxiÞ: ð7Þ

The strong duality in (6) then guarantees thatJð��Þ < Jð�̂Þ þ ".
Few solvers implement this criterion since it requires the
additional calculation of the gap Jð�Þ �Gð�Þ. In this paper,
we advocate using criterion (7) using a threshold value " that
grows sublinearly with the number of examples. Letting "
grow makes the optimization coarser when the number of
examples increases. As a consequence, the asymptotic
complexity of optimizations in online setting can be smaller
than that of the exact optimization.

Most SVM solvers use the dual formulation of the QP
problem. However, increasing the dual does not necessarily
reduce the duality gap. The dual function follows a nice
monotonically increasing pattern at each optimization step,
whereas the primal shows significant up and down fluctua-
tions. In order to keep the size of the duality gap in check,
before each PROCESS operation, we compute the standard
deviation of the primal, which we call the Gap Target ĜG:

ĜG ¼

ffiXn
i¼1

h2
i �

Pn
i¼1 hi

� �2

l

vuut ; ð8Þ

where l is the number of support vectors and hi ¼ Cyigi
with C and gi denoting the misclassification penalty and the
gradient of instance i, respectively. After computing the gap
target, we run a PROCESS step and check the new Gap G
between the primal and the dual. After an easy derivation,
the gap is computed as

G ¼ �
Xn
i¼1

ð�igi þmaxð0; CgiÞÞ: ð9Þ

Note that, as we have indicated earlier, the bias term b is set to
zero in all of the formulations. In the online iterations, we
cycle between running REPROCESS and computing the gap G
until the termination criteria G � maxðC; ĜGÞ is reached.
That is, we require the duality gap after the REPROCESS

operations to be not greater than the initial gap target ĜG.
The C parameter is part of the equation in order to prevent
the algorithm from specifying a too narrow gap target
and therefore prevent making excessive number of optimi-
zation steps. The heuristic upper bound on the gap is
developed based on the oscillating characteristics of the
primal function during the optimization steps and these
oscillations are related to the successive choice of examples
to REPROCESS. Viewing these oscillations as noise, the gap
target enables us to stop the REPROCESS operations when
the difference is within the noise. After this point, the
learner continues with computing the new Gap Target and
running PROCESS and REPROCESS operation on the next
fresh instance from the unseen example pool.

4.2 Building Blocks

The implementation of LASVM-G maintains the following
pieces of information as its key building blocks: the
coefficients �i of the current kernel expansion S, the bounds
for each �, and the partial derivatives of the instances in the
expansion, given as

gk ¼
@Wð�Þ
@�k

¼ yk �
X
i

�iKðxi; xkÞ ¼ yk � ŷðxkÞ: ð10Þ

The kernel expansion here maintains all of the training
instances in the learner’s active set, both the support vectors
and the instances with � ¼ 0.

In the online iterations of LASVM-G, the optimization is
driven by two kinds of direction searches. The first operation,
PROCESS, inserts an instance into the kernel expansion and
initializes the�i and gradient gi of this instance (Step 1). After
computing the step size (Step 2), it performs a direction
search (Step 3). We set the offset term for kernel expansion b
to zero for computational simplicity. As discussed in the
SVM section regarding the offset term, disallowing b
removes the necessity of satisfying the constraintP

i2S �i ¼ 0, enabling the algorithm to update a single � at
a time, both in PROCESS and REPROCESS operations.

LASVM-G PROCESS(i)

1) �i 0; gi yk �
P

s2S �sKis

2) If gi < 0 then

� ¼ max
�
Ai � �i; giKii

�
Else

� ¼ max
�
Bi � �i; giKii

�
3) �i �i þ �
gs gs � �Kis 8s in kernel expansion

The second operation, REPROCESS, searches all of the
instances in the kernel expansion and selects the instance
with the maximal gradient (Steps 1-3). Once an instance is
selected, LASVM-G computes a step size (Step 4) and
performs a direction search (Step 5).

LASVM-G REPROCESS()

1) i arg mins2Sgs with �s > As

j arg maxs2Sgs with �s < Bs

4 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

2) Bail out if ði; jÞ is not a �-violating pair.
3) If gi þ gj < 0 then g gi; t i

Else g gj; t j

4) If g < 0 then

� ¼ max
�
At � �t; gKtt

�
Else

� ¼ min
�
Bt � �t; gKtt

�
5) �k �k þ �
gs gs � �Kts 8s in kernel expansion

Both PROCESS and REPROCESS operate on the instances in
the kernel expansion, but neither of them remove any
instances from it. A removal step is necessary for improved
efficiency because, as the learner evolves, the instances that
were admitted to the kernel expansion in earlier iterations as
support vectors may not serve as support vectors anymore.
Keeping such instances in the kernel expansion slows down
the optimization steps without serving much benefit to the
learner and increases the application’s requirement for
computational resources. A straightforward approach to
address this inefficiency would be to remove all of the
instances with �i ¼ 0, namely, all nonsupport vectors in the
kernel expansion. One concern with this approach is that once
an instance is removed, it will not be seen by the learner again,
and thus it will no longer be eligible to become a support
vector in the later stages of training. It is important to find a
balance between maintaining the efficiency of a small-sized
kernel expansion and not aggressively removing instances
from the kernel expansion. Therefore, the cleaning policy
needs to preserve the instances that can potentially become
SVs at a later stage of training while removing instances that
have the lowest possibility of becoming SVs in the future.

Our cleaning procedure periodically checks the number of
non-SVs in the kernel expansion. If the number of non-SVs n
is more than the number of instances that is permitted in the
expansion m by the algorithm, CLEAN selects the extra non-
SV instances with the highest gradients for removal. It
follows from (10) that this heuristic predominantly selects the
most misclassified instances that are farther away from the
hyperplane for deletion from the kernel expansion. This
policy suppresses the influence of the outliers on the model to
yield sparse and scalable SVM solutions.

CLEAN

n: number of non-SVs in the kernel expansion.

m: maximum number of allowed non-SVs.

~v: Array of partial derivatives.

1) If n < m return

2) ~v ~v [jgijþ, 8i with �i ¼ 0

3) Sort the gradients in ~v in ascending order.

gthreshold v½m�
4) If jgijþ � gthreshold then remove xi, 8i with �i ¼ 0

We want to point out that it is immaterial to distinguish
whether an instance has not been an SV for many iterations
or it has just become a non-SV. In either case, these examples
do not currently contribute to the classifier and are treated
equally from a cleaning point of view.

Note that these algorithmic components are geared
toward designing and online SVM solver with nonlinear
kernels. Even though it is possible to apply these principles

to linear SVMs as well, the algorithmic aspects for linear
SVMs will be different. For instance, for linear SVMs, it is
possible to store the normal vector w of the hyperplane
directly instead of manipulating the support vector expan-
sions. In this regard, the focus of the paper is more about
kernel SVMs.

4.3 Online Iterations in LASVM-G

LASVM-G exhibits the same learning principle as LASVM,
but in a more systematic way. Both algorithms make one
pass (epoch) over the training set. Empirical evidence
suggests that a single epoch over the entire training set
yields a classifier as good as the SVM solution.

Upon initialization, LASVM-G alternates between PRO-

CESS and REPROCESS steps during the epoch like LASVM, but
distributes LASVM’s one time FINISHING step to the
optimizations performed in each REPROCESS cycle at each
iteration and the periodic CLEAN operations. Another
important property of LASVM-G is that it leverages the gap
between the primal and the dual functions to determine the
number of REPROCESS steps after each PROCESS (the -G
suffix emphasizes this distinction). Reducing the duality gap
too fast can cause overoptimization in early stages without
yet observing sufficient training data. Conversely, reducing
the gap too slowly can result in underoptimization in the
intermediate iterations. Fig. 1 shows that as the learner sees
more training examples, the duality gap gets smaller.

ERTEKIN ET AL.: NONCONVEX ONLINE SUPPORT VECTOR MACHINES 5

Fig. 1. The duality gap (Jð�Þ �Gð�Þ), normalized by the number of
training instances.

The major enhancements that are introduced to LASVM

enable LASVM-G to achieve higher prediction accuracies
than LASVM in the intermediate stages of training. Fig. 2
presents a comparative analysis of LASVM-G versus LASVM

for the Adult data set (Table 2). Results on other data sets
are provided in Section 8.

While both algorithms report the same generalization
performance in the end of training, LASVM-G reaches a
better classification accuracy at an earlier point in training
than LASVM and is able to maintain its performance
relatively stable with a more reliable model over the course
of training. Furthermore, LASVM-G maintains fewer number
of support vectors in the intermediate training steps, as
evidenced in Fig. 2b.

LASVM-G

1) Initialization:

Set � 0

2) Online Iterations:

Pick an example xi
Compute Gap Target ĜG

Threshold maxðC; ĜGÞ
Run PROCESS(xi)

while Gap G > Threshold

Run REPROCESS

end

Periodically run CLEAN

In the next sections, we further introduce three SVM
algorithms that are implemented based on LASVM-G, namely,
LASVM-NC, LASVM-I, and FULL SVM. While these SVM
algorithms share the main building blocks of LASVM-G, each
algorithm exhibits a distinct learning principle. LASVM-NC

uses the LASVM-G methodology in a nonconvex learner
setting. LASVM-I is a learning scheme that we propose as a
convex variant of LASVM-NC that employs selective sam-
pling. FULL SVM does not take advantage of the noncon-
vexity or the efficiency of the CLEAN operation, and acts as
a traditional online SVM solver in our experimental
evaluation.

5 NONCONVEX ONLINE SVM SOLVER—
LASVM-NC

In this section, we present LASVM-NC, a nonconvex online
SVM solver that achieves sparser SVM solutions in less time
than online convex SVMs and batch SVM solvers. We first

introduce the nonconvex Ramp Loss function and discuss
how nonconvexity can overcome the scalability problems of
convex SVM solvers. We then present the methodology to
optimize the nonconvex objective function, followed by the
description of the online iterations of LASVM-NC.

5.1 Ramp Loss

Traditional convex SVM solvers rely on the Hinge Loss H1

(as shown in Fig. 3b) to solve the QP problem, which can be
represented in Primal form as

min
ww;b

Jðww; bÞ ¼ 1

2
kwwk2 þ C

Xn
l¼1

H1ðyifðxiÞÞ: ð11Þ

In the Hinge Loss formulation HsðzÞ ¼ maxð0; s� zÞ, s

indicates the Hinge point and the elbow at s ¼ 1 indicates
the point at which ylf�ðxlÞ ¼ ylðw � �ðxlÞ þ bÞ ¼ 1. Assume,
for simplicity, that the Hinge Loss is made differentiable
with a smooth approximation on a small interval z 2
½1� �; 1þ �� near the hinge point. Differentiating (11) shows
that the minimum w must satisfy

w ¼ �C
XL
l¼1

ylH
0

1ðylÞf�ðxxlÞ�ðxxiÞ: ð12Þ

In this setting, correctly classified instances outside of
the margin (z � 1) cannot become SVs because H 01ðzÞ ¼ 0.
On the other hand, for the training examples with ðz < 1Þ,
H 01ðzÞ is 1, so they cost a penalty term at the rate of
misclassification of those instances. One problem with
Hinge Loss-based optimization is that it imposes no limit
on the influences of the outliers, that is, the misclassifica-
tion penalty is unbounded. Furthermore, in Hinge Loss-
based optimization, all misclassified training instances
become support vectors. Consequently, the number of
support vectors scales linearly with the number of training
examples [19]. Specifically,

#SV

#Examples
! 2B�; ð13Þ

where B� is the best possible error achievable linearly in the
feature space �ð�Þ. Such a fast pace of growth of the number
of support vectors becomes prohibitive for training SVMs in
large-scale data sets.

In practice, not all misclassified training examples are
necessarily informative to the learner. For instance, in noisy
data sets, many instances with label noise become support
vectors due to misclassification, even though they are not
informative about the correct classification of new instances
in recognition. Thus, it is reasonable to limit the influence of

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

Fig. 2. LASVM versus LASVM-G for the Adult data set. (a) Test error
convergence. (b) Growth of number of SVs.

Fig. 3. (a) The ramp loss can be decomposed into (b) a convex hinge
loss and (c) a concave loss.

the outliers and allow the real informative training
instances to define the model. Since Hinge Loss admits all
outliers into the SVM solution, we need to select an
alternative loss function that enables selectively ignoring
the instances that are misclassified according to the current
model. For this purpose, we propose using the Ramp Loss

RsðzÞ ¼ H1ðzÞ �HsðzÞ; ð14Þ

which allows us to control the score window for z at which
we are willing to convert instances into support vectors.
Replacing H1ðzÞ with RsðzÞ in (12), we see that the Ramp
Loss suppresses the influence of the instances with score
z < s by not converting them into support vectors. How-
ever, since Ramp Loss is nonconvex, it prohibits us from
using widely popular optimization schemes devised for
convex functions.

While convexity has many advantages and nice mathe-
matical properties, the SV scaling property in (13) may be
prohibitive for large-scale learning because all misclassified
examples become support vectors. Since the nonconvex
solvers are not necessarily bounded by this constraint,
nonconvexity has the potential to generate sparser solutions
[12]. In this work, our aim is to achieve the best of both
worlds: generate a reliable and robust SVM solution that is
faster and sparser than traditional convex optimizers. This
can be achieved by employing the CCCP, and thus reducing
the complexity of nonconvex loss function by transforming
the problem into a difference of convex parts. The Ramp
Loss is amenable to CCCP optimization since it can be
decomposed into a difference of convex parts (as shown in
Fig. 3 and (14)). The cost function Jsð��Þ for the Ramp Loss
can then be represented as the sum of a convex part Jvexð��tÞ
and a concave part Jcavð��tÞ :

min
��

Jsð��Þ ¼ 1

2
kwwk2 þ C

Xn
l¼1

RsðyifðxiÞÞ

¼ 1

2
kwwk2 þ C

Xn
l¼1

H1ðyifðxiÞÞ
|ffl{zffl}

Jsvexð��Þ

� C
Xn
l¼1

HsðyifðxiÞÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Jscavð��Þ

:

ð15Þ

For simplification purposes, we use the notation

�l ¼ yl
@Jscavð��Þ
@f��ðxlÞ

¼ C; if ylf��ðxlÞ < s;
0; otherwise;

�
ð16Þ

where C is the misclassification penalty and f��ðxlÞ is the
kernel expansion defined as in (5) with the offset term b ¼ 0.
The cost function in (15), along with the notation introduced
in (16), is then reformulated as the following dual
optimization problem:

max
�

Gð�Þ ¼
X
i

yi�i �
1

2

X
i;j

�i�jKi;j;

with

Ai � �i � Bi;

Ai ¼ minð0; CyiÞ � �iyi;
Bi ¼ maxð0; CyiÞ � �iyi;
�i from ð16Þ:

8>>><
>>>:

ð17Þ

Collobert et al. [12] use a similar formulation for the CCCP-
based nonconvex optimization of batch SVMs, but there are

fundamental differences between optimization of batch
SVMs and the online algorithms presented here. In parti-
cular, the batch SVM needs a convex initialization step prior
to nonconvex iterations to go over the entire or part of the
training data in order to initialize the CCCP parameters to
avoid getting stuck in a poor local optima. Furthermore,
batch nonconvex SVMs alternate between solving (17) and
updating the �s of all training instances. On the other hand,
LASVM-NC runs a few online convex iterations as the
initialization stage, and adjusts the � of only the new fresh
instance based on the current model and solves (17) while the
online algorithm is progressing. Additionally, due to the
nature of online learning, our learning scheme also permits
selective sampling, which will be further discussed in the
LASVM-I section.

We would also like to point out that if the �s of all of the
training instances are initialized to zero and left unchanged
in the online iterations, the algorithm becomes traditional
Hinge Loss SVM. From another viewpoint, if s� 0, then
the �s will remain zero and the effect of Ramp Loss will not
be realized. Therefore, (17) can be viewed as a generic
algorithm that can act as both Hinge Loss SVM and Ramp
Loss SVM with CCCP that enables nonconvex optimization.

5.2 Online Iterations in LASVM-NC

The online iterations in LASVM-NC are similar to LASVM-G

in the sense that they are also based on alternating PROCESS

and REPROCESS steps, with the distinction of replacing the
Hinge Loss with the Ramp Loss. LASVM-NC extends the
LASVM-G algorithm with the computation of the ��,
followed by updating the � bounds A and B as shown in
(17). Note that while the �� do not explicitly appear in the
PROCESS and REPROCESS algorithm blocks, they do, in fact,
affect these optimization steps through the new definition
of the bounds A and B.

When a new example xi is encountered, LASVM-NC first
computes the�i for this instance as presented in the algorithm
block, where yi is the class label, f��ðxiÞ is the decision score for
xi, and s is the score threshold for permitting instances to
become support vectors.

We would like to point out that CCCP has convergence
guarantees (c.f. [12]), but it is necessary to initialize the CCCP
algorithm appropriately in order to avoid getting trapped in
poor local optima. In batch SVMs, this corresponds to
running classical SVM on the entire set or on a subset of
training instances in the first iteration to initialize CCCP,
followed by the nonconvex optimization in the subsequent
iterations. In the online setting, we initially allow convex
optimization for the first few instances by setting their �i ¼ 0
(i.e., use Hinge Loss), and then switch to nonconvex behavior
in the remainder of online iterations.

Note from (17) that the � bounds for instances with � ¼ 0
follow the formulation for the traditional convex

LASVM-NC

SS: min. number of SVs to start nonconvex behavior.

1) Initialization:

Set �� 0, � 0

2) Online Iterations:

Pick an example xi

ERTEKIN ET AL.: NONCONVEX ONLINE SUPPORT VECTOR MACHINES 7

Set �i ¼
C if yif��ðxiÞ < s and #SV > SS
0 otherwise

�

Set �i bounds for xi to (minð0; CyiÞ � �iyi �
�i � maxð0; CyiÞ � �iyi)
Compute Gap Target ĜG

Threshold maxðC; ĜGÞ
Run PROCESS(xi)

while Gap G > Threshold

Run REPROCESS
end

Periodically run CLEAN

setting. On the other hand, the bounds for the instances with
� ¼ C, that is, the outliers with score (z < s) are assigned new
bounds based on the Ramp Loss criteria. Once LASVM-NC

establishes the � bounds for the new instance, it computes
the Gap Target ĜG and takes a PROCESS step. Then, it makes
optimizations of the REPROCESS kind until the size of the
duality gap comes down to the Gap Threshold. Finally,
LASVM-NC periodically runs the CLEAN operation to keep
the size of the kernel expansion under control and maintain
its efficiency throughout the training stage.

6 LASVM AND IGNORING INSTANCES—LASVM-I

This SVM algorithm employs the Ramp function in Fig. 3a
as a filter to the learner prior to the PROCESS step. That is,
once the learner is presented with a new instance, it first
checks if the instance is on the ramp region of the function
ð1 > yi

P
j �jKij > sÞ. The instances that are outside of the

ramp region are not eligible to participate in the optimiza-
tion steps and they are immediately discarded without
further action. The rationale is that the instances that lie on
the flat regions of the Ramp function will have derivative
H 0ðzÞ ¼ 0, and based on (12), these instances will not play
role in determining the decision hyperplane ww.

The LASVM-I algorithm is based on the following record
keeping that we conducted when running LASVM-G experi-
ments. In LASVM-G and LASVM-NC, we kept track of two
important data points. First, we intentionally permitted
every new coming training instance into the kernel expan-
sion in online iterations and recorded the position of all
instances on the Ramp Loss curve just before inserting the
instances into the expansion. Second, we kept track of the
number of instances that were removed from the expansion
which were on the flat region of the Ramp Loss curve when
they were admitted. The numeric breakdown is presented in
Table 1. Based on the distribution of these cleaned instances,
it is evident that most of the cleaned examples that were
initially admitted from (z > 1) region were removed from the
kernel expansion with CLEAN at a later point in time. This is
expected, since the instances with (z > 1) are already
correctly classified by the current model with a certain
confidence, and hence do not become SVs.

On the other hand, Table 1 shows that almost all of the
instances inserted from the left flat region (misclassified
examples due to z < s) became SVs in LASVM-G, and
therefore were never removed from the kernel expansion.
In contrast, almost all of the training instances that were
admitted from the left flat region in LASVM-NC were
removed from the kernel expansion, leading to a much
larger reduction of the number of support vectors overall.

Intuitively, the examples that are misclassified by a wide
margin should not become support vectors. Ideally, the
support vectors should be the instances that are within the
margin of the hyperplane. As studies on Active Learning
show [14], [20], the most informative instances to determine
the hyperplane lie within the margin. Thus, LASVM-I ignores
the instances that are misclassified by a margin (z < s) up
front and prevents them from becoming support vectors.

LASVM-I

1) Initialization:

Set � 0

2) Online Iterations:

Pick an example xi
Compute z ¼ yi

Pn
j¼0 �jKðxi; xjÞ

if (z > 1 or z < s)

Skip xi and bail out

else

Compute Gap Target ĜG

Threshold maxðC; ĜGÞ
Run PROCESS(xi)

while Gap G > Threshold

Run REPROCESS

end

Periodically run CLEAN

Note that LASVM-I cannot be regarded as a nonconvex
SVM solver since the instances with � ¼ C (which corre-
sponds to z < s) are already being filtered out up front
before the optimization steps. Consequently, all of the
instances visible to the optimization steps have � ¼ 0,
which converts the objective function in (17) into the convex
Hinge Loss from an optimization standpoint. Thus, combin-
ing these two filtering criteria (z > 1 and z < s), LASVM-I

trades nonconvexity with a filtering Ramp function to
determine whether to ignore an instance or proceed with
optimization steps. Our goal with designing LASVM-I is
that, based on this initial filtering step, it is possible to
achieve further speedups in training times while maintain-
ing competitive generalization performance. The experi-
mental results validate this claim.

7 LASVM-G WITHOUT CLEAN—FULL SVM

This algorithm serves as a baseline case for comparisons in
our experimental evaluation. The learning principle of FULL

SVM is based on alternating between LASVM-G’s PROCESS

and REPROCESS steps throughout the training iterations.

FULL SVM

1) Initialization:

Set �� 0

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

TABLE 1
Analysis of Adult Data Set at the End of the Training Stage

2) Online Iterations:
Pick an example xi
Compute Gap Target ĜG

Threshold maxðC; ĜGÞ
Run PROCESS(xi)

while Gap G > Threshold

Run REPROCESS

end

When a new example is encountered, FULL SVM computes
the Gap Target (given in (8)) and takes a PROCESS step. Then,
it makes optimizations of the REPROCESS kind until the size
of the duality gap comes down to the Gap Threshold. In this
learning scheme, FULL SVM admits every new training
example into the kernel expansion without any removal step
(i.e., no CLEAN operation). This behavior mimics the
behavior of traditional SVM solvers by providing that the
learner has constant access to all training instances that it has
seen during training and can make any of them a support
vector any time if necessary. The SMO-like optimization in
the online iterations of FULL SVM enables it to converge to the
batch SVM solution.

Each PROCESS operation introduces a new instance to the
learner, updates its � coefficient, and optimizes the objective
function. This is followed by potentially multiple REPROCESS

steps which exploit �-violating pairs in the kernel expansion.
Within each pair, REPROCESS selects the instance with
maximal gradient, and potentially can zero the � coefficient
of the selected instance. After sufficient iterations, as soon as a
�-approximate solution is reached, the algorithm stops
updating the � coefficients. For full convergence to the batch
SVM solution, running FULL SVM usually consists of
performing a number of epochs where each epoch performs
n online iterations by sequentially visiting the randomly
shuffled training examples. Empirical evidence suggests that
a single epoch yields a classifier almost as good as the SVM
solution. For the theoretical explanation of the convergence
properties of the online iterations, refer to [13].

The freedom to maintain and access the whole pool of
seen examples during training in FULL SVM does come with a
price though. The kernel expansion needs to constantly grow
as new training instances are introduced to the learner, and it
needs to hold all non-SVs in addition to the SVs of the current
model. Furthermore, the learner still needs to include those
non-SVs in the optimization steps and this additional
processing becomes a significant drag on the training time
of the learner.

8 EXPERIMENTS

The experimental evaluation involves evaluating these
outlined SVM algorithms on various data sets in terms of
both their classification performances and algorithmic
efficiencies leading to scalability. We also compare these
algorithms against the reported metrics of LASVM and
LIBSVM on the same data sets. In the experiments presented
below, we run a single epoch over the training examples, all
experiments use RBF kernels and the results averaged over
10 runs for each data set. Table 2 presents the characteristics
of the data sets and the SVM parameters that were
determined via 10-fold cross validation. Adult is a hard to

classify census data set to predict if the income of the person
is greater than 50K based on several census parameters, such
as age, education, marital status, etc. Mnist, USPS, and
USPS-N are optical character recognition data sets. USPS-N
contains artificial noise which we generated by changing the
labels of 10 percent of the training examples in the USPS
data set. The Reuters-21578 is a popular text mining
benchmark data set of 21,578 news stories that appeared
on the Reuters newswire in 1987, and we test the algorithms
with the Money-fx category of the Reuters-21578 data set.
The Banana data set is a synthetic two-dimensional data set
that has 4,000 patterns consisting of two banana-shaped
clusters that have around 10 percent noise.

8.1 Generalization Performances

One of the metrics that we used in the evaluation of the
generalization performances is Precision-Recall Breakeven
Point (PRBEP) (see, e.g., [21]). Given the definition of
precision as the number of correct positive class predictions
among all positive class predictions and recall as the
number of correct positive class predictions among all
positive class instances, PRBEP is a widely used metric that
measures the accuracy of the positive class where precision
equals recall. In particular, PRBEP measures the trade-off
between high precision and high recall. Fig. 4 shows the
growth of PRBEP curves sampled over the course of training
for the data sets. Compared to the baseline case FULL SVM,
all algorithms are able to maintain competitive general-
ization performances at the end of training on all examples
and show a more homogeneous growth compared to
LASVM, especially for the Adult and Banana data sets.
Furthermore, as shown in Table 3, LASVM-NC and LASVM-I

actually yield higher classification accuracy for USPS-N
compared to FULL SVM. This can be attributed to their
ability to filter bad observations (i.e., noise) from training
data. In noisy data sets, most of the noisy instances are
misclassified and become support vectors in FULL SVM,
LASVM-G, and LASVM due to Hinge Loss. This increase in
the number of support vectors (see Fig. 6) causes SVM to
learn complex classification boundaries that can overfit to
noise, which can adversely affect their generalization
performances. LASVM-NC and LASVM-I are less sensitive
to noise, and they learn simpler models that are able to yield
better generalization performances under noisy conditions.

For the evaluation of classification performances, we
report three other metrics, namely, prediction accuracy (in
Table 3), and AUC, and g-means (in Table 4). Prediction

ERTEKIN ET AL.: NONCONVEX ONLINE SUPPORT VECTOR MACHINES 9

TABLE 2
Data Sets Used in the Experimental Evaluations

and the SVM Parameters C and 	 for the RBF Kernel

accuracy measures a model’s ability to correctly predict the
class labels of unseen observations. The area under the ROC
curve (AUC) is a numerical measure of a model’s discrimina-
tion performance and shows how correctly the model
separates the positive and negative observations and ranks
them. The Receiver operating characteristic (ROC) curve is
the plot of sensitivity versus 1� specificity and the AUC
represents the area below the ROC curve. g-means is the
geometric mean of sensitivity and specificity where sensitivity
and specificity represent the accuracy on positive and
negative instances, respectively. We report that all algo-
rithms presented in this paper yield as good results for these
performance metrics as FULL SVM and comparable classifica-
tion accuracy to LASVM and LIBSVM. Furthermore, LASVM-

NC yields the highest g-means for the Adult, Reuters, and
USPS-N data sets compared to the rest of the algorithms.

We study the impact of the s parameter on the general-
ization performances of LASVM-NC and LASVM-I, and
present our findings in Fig. 5. Since FULL SVM, LASVM-G,
LASVM, and LIBSVM do not use Ramp Loss, they are
represented with their testing errors and total number of
support vectors achieved in the end of training. These plots
depict that LASVM-NC and LASVM-I algorithms achieve
competitive generalization performance with much fewer
support vectors, especially for Adult, Banana, and USPS-N
data sets. In all data sets, increasing the value of s into the
positive territory actually has the effect of preventing

correctly classified instances that are within the margin from

becoming SVs. This becomes detrimental to the general-

ization performance of LASVM-NC and LASVM-I since those

instances are among the most informative instances to the

learner. Likewise, moving s further down to the negative

territory diminishes the effect of the Ramp Loss on the

outliers. If s! �1, then Rs ! H1; in other words, if s takes

large negative values, the Ramp Loss will not help to remove

outliers from the SVM kernel expansion.

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

Fig. 4. PRBEP versus number of training instances. We used s ¼ �1 for
the ramp loss for LASVM-NC.

TABLE 3
Comparison of All Four SVM Algorithms

with LASVM and LIBSVM for All Data Sets

TABLE 4
Experimental Results That Assess

the Generalization Performance and Computational Efficiency

It is important to note that at the point s ¼ �1, the Ramp-
loss-based algorithms LASVM-NC and LASVM-I behave as
an Active Learning [20], [22] framework. Active Learning is
widely known as a querying technique for selecting the
most informative instances from a pool of unlabeled
instances to acquire their labels. Even in cases where the
labels for all training instances are available beforehand,
active learning can still be leveraged to select the most
informative instances from training sets. In SVMs, the
informativeness of an instance is synonymous with its
distance to the hyperplane and the instances closer to the
hyperplane are the most informative. For this reason,
traditional min-margin active learners focus on the instances
that are within the margin of the hyperplane and pick an
example from this region to process next by searching the
entire training set. However, such an exhaustive search is
impossible in the online setup and computationally expen-
sive in the offline setup. Ertekin et al. [14] suggest that
querying for the most informative example does not need to
be done from the entire training set, but instead, querying
from randomly picked small pools can work equally well in
a more efficient way. Small pool active learning first samples
M random training examples from the entire training set
and selects the best one among those M examples based on
the condition that the selected instance among the top

percent closest instances in the entire training set with
probability (1�
), where 0 �
 � 1. With probability
1�
M , the value of the criterion for this example exceeds
the
-quantile of the criterion for all training examples

regardless of the size of the training set. In practice, this
means that the best example among 59 random training
examples has a 95 percent chance of belonging to the best
5 percent of examples in the training set.

In the extreme case of small pool active learning, setting
the size of the pool to 1 corresponds to investigating
whether that instance is within the margin or not. In this
regard, setting s ¼ �1 for the Ramp Loss in LASVM-NC and
LASVM-I constrains the learner’s focus only on the instances
within the margin. Empirical evidence suggests that
LASVM-NC and LASVM-I algorithms exhibit the benefits of
active learning at s ¼ �1 point, which yields the best results
in most of our experiments. However, the exact setting for
the s hyperparameter should be determined by the require-
ments of the classification task and the characteristics of the
data set.

8.2 Computational Efficiency

A significant time-consuming operation of SVMs is the
computation of kernel products Kði; jÞ ¼ �ðxiÞ � �ðxjÞ. For
each new example, its kernel product with every instance in
the kernel expansion needs to be computed. By reducing
the number of kernel computations, it is possible to achieve
significant computational efficiency improvements over
traditional SVM solvers. In Fig. 7, we report the number
of kernel calculations performed over the course of training
iterations. FULL SVM suffers from uncontrolled growth of
the kernel expansion, which results in a steep increase in the
number of kernel products. This also shows why SVMs
cannot handle large-scale data sets efficiently. In compar-
ison, LASVM-G requires fewer kernel products than FULL

SVM since LASVM-G keeps the number of instances in the
kernel expansion under control by periodically removing
uninformative instances through CLEAN operations.

LASVM-NC and LASVM-I yield significant reduction in the
number of kernel computations and their benefit is most
pronounced in the noisy data sets Adult, Banana, and
USPS-N. LASVM-I achieves better reduction of kernel
computations than LASVM-NC. This is due to the aggressive
filtering done in LASVM-I where no kernel computation is
performed for the instances on the flat regions of the Ramp
Loss. On the other hand, LASVM-NC admits the instances
that lie on the left flat region into the kernel expansion but
achieves sparsity through the nonconvex optimization steps.
The � values of those admitted instances are set to C in
LASVM-NC so that they have new � bounds. Resulting from
the new � bounds, these instances are more likely to be
picked in the REPROCESS steps due to violating KKT
conditions, and consequently removed from the set of
support vectors. The reason for the low number of kernel
products in LASVM-NC is due to its ability to create sparser
models than other three algorithms. A comparison of the
growth of the number of support vectors during the course
of training is shown in Fig. 6. LASVM-NC and LASVM-I end
up with smaller number of support vectors than FULL SVM,
LASVM-G, and LIBSVM. Furthermore, compared to LASVM-I,
LASVM-NC builds noticeably sparser models with less
support vectors in noisy Adult, Banana, and USPS-N data
sets. LASVM-I, on the other hand, makes fewer kernel
calculations in training stage than LASVM-NC for those data
sets. This is a key distinction of these two algorithms: The
computational efficiency of LASVM-NC is the result of its
ability to build sparse models. Conversely, LASVM-I creates

ERTEKIN ET AL.: NONCONVEX ONLINE SUPPORT VECTOR MACHINES 11

Fig. 5. Testing error versus number of support vectors for various
settings of the s parameter of the ramp loss.

comparably more support vectors than LASVM-NC, but
makes fewer kernel calculations due to early filtering. The
overall training times for all data sets and all algorithms are
presented both in Fig. 8 and Table 3. LASVM-G, LASVM-NC,
and LASVM-I are all significantly more efficient than FULL

SVM. LASVM-NC and LASVM-I also yield faster training than
LIBSVM and LASVM. Note that the LIBSVM algorithm here
uses a second order active set selection. Although second
order selection can also be applied to LASVM-like algorithms
to achieve improved speed and accuracy [23], we did not
implement it in the algorithms discussed in this paper.
Nevertheless, in Fig. 8, the fastest training times belong to
LASVM-I where LASVM-NC comes close second. The sparsest
solutions are achieved by LASVM-NC and this time LASVM-I

comes close second. These two algorithms represent a
compromise between training time versus sparsity and
recognition time, and the appropriate algorithm should be
chosen based on the requirements of the classification task.

9 CONCLUSION

In traditional convex SVM optimization, the number of
support vectors scales linearly with the number of training
examples, which unreasonably increases the training time
and computational resource requirements. This fact has
hindered widespread adoption of SVMs for classification
tasks in large-scale data sets. In this work, we have studied
the ways in which the computational efficiency of an online
SVM solver can be improved without sacrificing the
generalization performance. This paper is concerned with

suppressing the influences of the outliers, which particu-
larly becomes problematic in noisy data classification. For
this purpose, we first present a systematic optimization
approach for an online learning framework to generate
more reliable and trustworthy learning models in inter-
mediate iterations (LASVM-G). We then propose two online
algorithms, LASVM-NC and LASVM-I, which leverage the
Ramp function to avoid the outliers to become support
vectors. LASVM-NC replaces the traditional Hinge Loss with
the Ramp Loss and brings the benefits of nonconvex
optimization using CCCP to an online learning setting.
LASVM-I uses the Ramp function as a filtering mechanism to
discard the outliers during online iterations. In online
learning settings, we can discard new coming training
examples accurately enough only when the intermediate
models are reliable as much as possible. In LASVM-G, the
increased stability of intermediate models is achieved by
the duality gap policy. This increased stability in the model
significantly reduces the number of wrongly discarded
instances in online iterations of LASVM-NC and LASVM-I.
Empirical evidence suggests that the algorithms provide
efficient and scalable learning with noisy data sets in two
respects: 1) computational: there is a significant decrease in
the number of computations and running time during
training and recognition, and 2) statistical: there is a
significant decrease in the number of examples required
for good generalization. Our findings also reveal that
discarding the outliers by leveraging the Ramp function is
closely related to the working principles of margin-based
Active Learning.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

Fig. 6. Number of SVs versus number of training instances.
Fig. 7. Number of kernel computations versus number of training
instances.

ACKNOWLEDGMENTS

This work was done while Şeyda Ertekin was with the

Department of Computer Science and Engineering at the

Pennsylvania State University and NEC Laboratories,

America.

REFERENCES

[1] O. Bousquet and A. Elisseeff, “Stability and Generalization,”
J. Machine Learning, vol. 2, pp. 499-526, 2002.

[2] B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[3] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis. Cambridge Univ. Press, 2004.

[4] C. Cortes and V. Vapnik, “Support Vector Networks,” Machine
Learning, vol. 20, pp. 273-297, 1995.

[5] L. Mason, P.L. Bartlett, and J. Baxter, “Improved Generalization
through Explicit Optimization of Margins,” Machine Learning,
vol. 38, pp. 243-255, 2000.

[6] N. Krause and Y. Singer, “Leveraging the Margin More Care-
fully,” Proc. Int’l Conf. Machine Learning, p. 63, 2004.

[7] F. Perez-Cruz, A. Navia-Vazquez, and A.R. Figueiras-Vidal,
“Empirical Risk Minimization for Support Vector Classifiers,”
IEEE Trans. Neural Networks, vol. 14, no. 2, pp. 296-303, Mar. 2002.

[8] D.S.L. Xu and K. Cramer, “Robust Support Vector Machine
Training via Convex Outlier Ablation,” Proc. 21st Nat’l Conf.
Artificial Intelligence, 2006.

[9] Y. Liu, X. Shen, and H. Doss, “Multicategory Learning and
Support Vector Machine: Computational Tools,” J. Computational
and Graphical Statistics, vol. 14, pp. 219-236, 2005.

[10] L. Wang, H. Jia, and J. Li, “Training Robust Support Vector
Machine with Smooth Ramp Loss in the Primal Space,”
Neurocomputing, vol. 71, pp. 3020-3025, 2008.

[11] A.L. Yuille and A. Rangarajan, “The Concave-Convex Procedure
(CCCP),” Advances in Neural Information Processing Systems. MIT
Press, 2002.

[12] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading Convexity
for Scalability,” Proc. Int’l Conf. Machine Learning, pp. 201-208,
2006.

[13] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fast Kernel
Classifiers with Online and Active Learning,” J. Machine Learning
Research, vol. 6, pp. 1579-1619, 2005.

[14] S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the
Border: Active Learning in Imbalanced Data Classification,” Proc.
ACM Conf. Information and Knowledge Management, pp. 127-136,
2007.

[15] J.C. Platt, “Fast Training of Support Vector Machines Using
Sequential Minimal Optimization,” Advances in Kernel Methods:
Support Vector Learning, pp. 185-208, MIT Press, 1999.

[16] S. Shalev-Shwartz and N. Srebro, “SVM Optimization: Inverse
Dependence on Training Set Size,” Proc. Int’l Conf. Machine
Learning, pp. 928-935, 2008.

[17] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy,
“Improvements to Platt’s smo Algorithm for svm Classifier
Design,” Neural Computation, vol. 13, no. 3, pp. 637-649, 2001.

[18] O. Chapelle, “Training a Support Vector Machine in the Primal,”
Neural Computation, vol. 19, no. 5, pp. 1155-1178, 2007.

[19] I. Steinwart, “Sparseness of Support Vector Machines,” J. Machine
Learning Research, vol. 4, pp. 1071-1105, 2003.

[20] G. Schohn and D. Cohn, “Less Is More: Active Learning with
Support Vector Machines,” Proc. Int’l Conf. Machine Learning,
pp. 839-846, 2000.

[21] T. Joachims, “Text Categorization with Support Vector Machines:
Learning with Many Relevant Features,” Technical Report 23,
Univ. Dortmund, 1997.

[22] S. Tong and D. Koller, “Support Vector Machine Active Learning
with Applications to Text Classification,” J. Machine Learning
Research, vol. 2, pp. 45-66, 2001.

[23] T. Glasmachers and C. Igel, “Second-Order SMO Improves SVM
Online and Active Learning,” Neural Computation, vol. 20, no. 2,
pp. 374-382, 2008.

Şeyda Ertekin received the BSc degree in
electrical and electronics engineering from
Orta Dogu Teknik Universitesi (ODTU) in
Ankara, Turkey, the MSc degree in computer
science from the University of Louisiana at
Lafayette, and the PhD degree in computer
science and engineering from Pennsylvania
State University–University Park in 2009. She
is currently a postdoctoral research associate
at the Massachusetts Institute of Technology

(MIT). Her research interests focus on the design, analysis, and
implementation of machine learning algorithms for large-scale data
sets to solve real-world problems in the fields of data mining,
information retrieval, and knowledge discovery. She is mainly known
for her research that spans online and active learning for efficient and
scalable machine learning algorithms. At Penn State, she was a
member of the technical team of CiteSeerX. Throughout her PhD
studies, she also worked as a researcher in the Machine Learning
Group at NEC Research Laboratories in Princeton, New Jersey. Prior
to that, she had worked at Aselsan, Inc., in Ankara, and worked on
digital wireless telecommunication systems. She has also worked as
a consultant to several companies in the US on the design of data
mining infrastructures and algorithms. She is the recipient of
numerous awards from the ACM, US National Science foundation
(NSF), and Google.

ERTEKIN ET AL.: NONCONVEX ONLINE SUPPORT VECTOR MACHINES 13

Fig. 8. Training times of the algorithms for all data sets after one pass
over the training instances.

Léon Bottou received the diplôme de l’Ecole
Polytechnique, Paris, in 1987, the Magistère en
mathématiques fondamentales et appliquées et
informatiques from the Ecole Normale Supér-
ieure, Paris, in 1988, and the PhD degree in
computer science from the Université de Paris-
Sud in 1991. He joined AT&T Bell Labs from 1991
to 1992 and AT&T Labs from 1995 to 2002.
Between 1992 and 1995, he was the chairman of
Neuristique in Paris, a small company pioneering

machine learning for data mining applications. He joined NEC Labs
America in Princeton, New Jersey in 2002. His primary research interest
is machine learning. His contributions to this field address theory,
algorithms, and large-scale applications. His secondary research interest
is data compression and coding. His best known contribution in this field
is the DjVu document compression technology (http://www.djvu.org). He
is serving on the boards of the Journal of Machine Learning Research and
the IEEE Transactions on Pattern Analysis and Machine Intelligence. He
also serves on the scientific advisory board of Kxen, Inc. (http://
www.kxen.com). He won the New York Academy of Sciences Blavatnik
Award for Young Scientists in 2007.

C. Lee Giles is the David Reese professor of
information sciences and technology at the
Pennsylvania State University, University Park.
He has appointments in the Departments of
Computer Science and Engineering and Supply
Chain and Information Systems. Previously, he
was at NEC Research Institute, Princeton, New
Jersey, and the Air Force Office of Scientific
Research, Washington, District of Columbia. His
research interests are in intelligent cyberinfras-

tructure, Web tools, search engines and information retrieval, digital
libraries, Web services, knowledge and information extraction, data
mining, name matching and disambiguation, and social networks. He
was a cocreator of the popular search engines and tools: SeerSuite,
CiteSeer (now CiteSeerX) for computer science, and ChemXSeer, for
chemistry. He also was a cocreater of an early metasearch engine,
Inquirus, the first search engine for robots.txt, BotSeer, and the first for
academic business, SmealSearch. He is a fellow of the ACM, IEEE, and
INNS.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. XX, XXXXXXX 2011

