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Abstract— We describe a trainable system for analyzing videos

of developing C. elegans embryos. The system automatically
detects, segments, and locates cells and nuclei in microscopic
images. The system was designed as the central component of a
fully-automated phenotyping system. The system contains three
modules (1) a convolutional network trained to classify each pixel
into five categories: cell wall, cytoplasm, nucleus membrane,
nucleus, outside medium; (2) an Energy-Based Model which
cleans up the output of the convolutional network by learning
local consistency constraints that must be satisfied by label
images; (3) A set of elastic models of the embryo at various
stages of development that are matched to the label images.

Index Terms— image segmentation, convolutional networks,
nonlinear filter, energy-based model

I. I NTRODUCTION

A. Automatic Phenotyping

One of the major goals of biological research in the post-
genomic era is to characterize the function of every gene in
the genome. One particularly important subject is the studyof
genes that control the early development of animal embryos.
Such studies often consist in knocking down one or several
genes and observing the effect on the developing embryo, a
process calledphenotyping.

As an animal model, the nematodeC.elegansis one of the
most amenable to such genetic analysis because of its short
generation time, small genome size, and availability of a rapid
gene knock-down approach, RNAi(RNA interface) [7].

Since the completion of theC.elegansgenome sequence
and identification of its roughly20, 000 protein-coding genes
in 1998 [6], extensive research has been done on analyzing
how these genes functionin vivo. Early embryonic events
provide a good model to assess specific roles genes play in
a developmental context. EarlyC.elegansembryos are easily
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observable under a microscope fitted with Nomarski Differ-
ential Interference Contrast (DIC) optics. When observing
normal (wild type) embryos it is possible to visualize important
cellular functions such as nuclear movements and fusions,
cytokinesis and the setting up of crucial cell-cell contacts.
These events are highly reproducible from embryo to embryo
and deviate from normal behaviors when the function of a
specific gene is depleted [10] [30] [31] [40], allowing the
association of a gene’s activity with specific early embryonic
events.

A typical experiment consists in knocking down a gene
(or a set of genes), and recording a time-lapse movie of the
developing embryo through DIC microscopy. Figure 1 shows a
few frames extracted from the movie of a normally developing
C. elegansembryo from the fusion of the pronuclei to the four-
cell stage.

Using RNAi, several research groups have gathered a large
collection of such movies. Many of these movies depict cellu-
lar behaviors in the early embryos that deviate from the wild
type, and some show dramatic problems during embryonic
development. Although initial analyses of the movies have
been performed by hand, automating the analysis of the
cellular behaviors would augment our ability to process the
large amounts of data being currently produced, and could
reveal more subtle quantitative defects that cannot be detected
by manual analysis.

One important classification task is to automatically de-
tect whether the development is normal (and therefore, not
particularly interesting), or abnormal and worth investigating.
Another important task is to automatically extract quantitative
measurements such as the number of cells, the relative posi-
tions of the cell nuclei, the time between each cell division,
etc... Ultimately, one may want an automated system for
classifying the movies into a number of known scenarios of
normal or abnormal development.

This paper focuses on the detection, identification, and
measurement of various objects of interests in the embryo,
namely the cell nuclei, cytoplasms, and cell walls, from
sequences of images obtained through DIC microscopy. The
system described here is the key component of a fully auto-
mated analysis system under development. The present study
primarily concerns the early stages of development, from
fertilization to the four-cell stage.

Although the development ofC. elegansembryos is the
subject of numerous studies from biologists, there have been
very few attempts to automate the task of analyzing DIC image
sequences. The most notable exception is the work of Yasuda



Fig. 1. Snapshots of the early development stages of a wild type C.elegans embryo obtained through DIC microscopy.

et al. [39], which describes a computer vision approach to the
detection the nuclei and cell walls. Their method is based on
the combination of several types of edge features. Because
DIC microscopy images are very noisy and anisotropic, the
method produces a large number of false positives (e.g. areas
falsely detected as cell nuclei) that must be manually corrected.
One conclusion from this work is that DIC images are not
easily analyzed with commonly-used feature detectors. In this
paper, we propose to rely on machine learning methods to
produce a more reliable image segmentation system.

Learning methods have been used for low-level image
processing and segmentation with some success over the last
few years. A notable example is the object boundary detection
system of Martin et al. [25], [24]. Closer to our application
is the detection and classification of sub-cellular structures
in fluorescence microscopy images. Machine learning and
adaptive pattern recognition methods have been widely applied
to this problem in a series of influential work [23], [12]. These
systems rely on the time-honored method of extracting a large
number of carefully engineered features, while using learning
methods to select and exploit these features.

B. Overview of the system

The method proposed in this paper consists in learning the
entire processing chainfrom end to end, from raw pixels to
ultimate object categories. The system is composed of three
main modules.

The first module is a trainableConvolutional Network,
which labels each pixel in a frame into one of five cate-
gories. The categories are: cell nucleus, nuclear membrane,
cytoplasm, cell wall, and outside medium. The main advantage
of Convolutional Nets is that they can learn to map raw pixel
images into output labels, synthesizing appropriate interme-
diate features along the way, and eliminating the need for
manually engineered features. They have been widely applied
to detection and recognition tasks such as handwriting recogni-
tion with integrated segmentation (see [19] for a review), hand
tracking [27], face recognition [18], face detection [34],[8],
[28], and generic object recognition [11]. The main advantages
of Convolutional Networks is that they can operate directlyon
raw images

The architecture of the convolutional network is designed
so that each label can be viewed as being produced by a non-
linear filter applied to a40×40 pixel window centered on the
pixel of interest in the input image. This convolutional network
is trained in supervised mode from a set of manually labeled
images. The five categories may appear somewhat redundant:

it would be sufficient to label the nucleus, cytoplasm, and
external medium to locate the nuclear membrane and the cell
wall. However, including the boundaries as explicit categories
introduces redundancy in the label images that can be checked
for consistency.

Ensuring local consistency is the role of the next module.
Since the label of each pixel is produced independently of the
labels of neighboring pixels, the predicted label image may
indeed contain local inconsistencies. For example, an isolated
pixel in the outside medium may be erroneously classified as
nucleus. Since nucleus pixels must be surrounded by other
nucleus pixels or by nuclear membrane pixels, it would seem
possible to clean up the label image by enforcing a set of
local consistency constraints. To implement this process,we
used anenergy based model(EBM) [33], [16], [21]. EBMs
are somewhat similar to Markov Random Fields, and can
be seen as a sort of non-probabilistic Conditional Random
Field [17]. The EBM used in the present system can be viewed
a scalar-valued “energy” functionE(f(X), Y ), wheref(X)
is the label image produced by the convolutional net, andY
is the cleaned-up image. The EBM is trained so that when
f(X) is a predicted label image andY is the corresponding
“correct” (cleaned-up) label image, the energyE(f(X), Y )
will be smaller than for any other (“incorrect”) value ofY . The
cleanup process consists in searching for theY that minimizes
E(f(X), Y ) for a givenf(X). This approach is related to the
relaxation labeling method [13]. While learning methods have
been used to estimate the coupling coefficients in relaxation
labeling systems [29], the method used here is based on
minimizing a new type of contrastive loss function [21].

The third component of the system models the embryos
and their internal parts by matching deformable templates to
the label images. This module is used to precisely locate and
count parts such as cells nuclei, and cell walls. It is also
used to determine the stage of development of the embryo
in the image. This technique is related to the classical active
contour method [14], [26], and very similar to elastic matching
methods based on the Expectation-Maximization algorithm as
described in [32], [3].

The following sections describe the three modules of the
system in detail.

II. CONVOLUTIONAL NETWORK

A Convolutional Network is a trainable system whose archi-
tecture is specifically designed to handle images or other 1D
or 2D signals with strong local correlations. A Convolutional
Network can be seen as a cascade of multiple non-linear



local filters whose coefficients are learned to optimize an
overall performance measure. Convolutional Networks have
been applied with success to a wide range of applications [19],
[27], [18], [34], [8], [28], [11].

Convolutional Networks are specifically designed to handle
the variability of 2D shapes. They use a succession of layers
of trainable convolutions and spatial subsampling interspersed
with sigmoidal non-linearities to extract features with in-
creasingly large receptive fields, increasing complexity,and
increasing robustness to irrelevant variabilities of the inputs.
The convolutional net used for the experiments described in
this paper is shown in figure 2.

Each convolutional layer is composed of a set of planes
called feature maps. The value at position(x, y) in the j-th
feature map of layeri is denotedcijxy . This value is computed
by applying a series of convolution kernelswijk to feature
maps in the previous layer (with indexi − 1), and passing
the result through a sigmoid function. The width and height
of the convolution kernels in layeri are denotedPi and Qi

respectively. In our network, the kernel sizes are between 2
and 7. More formally,cijxy is computed as:

cijxy = tanh

(

bij +
∑

k

Pi−1
∑

p=0

Qi−1
∑

q=0

wijkpqc(i−1),k,(x+p),(y+q)

)

(1)
where p, q index elements of the kernelwijk, tanh is the
hyperbolic tangent function,i is the layer index,j is the index
of the feature map within the layer,k indexes feature maps
in the previous layer, andbij is a bias. Each feature map is
therefore the result of a sum of discrete convolutions of the
previous layer maps with small-size kernels, followed by a
point-wise squashing function. The parameterswijkpq andbij

are all subject to learning.
Subsampling layers have the same number of feature maps

as the convolutional layer that precedes them. Each value in
a subsampling map is the average of the values in a2 × 2
neighborhood in the corresponding feature map in the previous
layer. That average is added to a trainable bias, multiplied
by a trainable coefficient, and the result is passed through
the tanh function. The2 × 2 windows are stepped without
overlap. Therefore the maps of a subsampling layer are one
half the resolution of the maps in the previous layer. The role
of the subsampling layers is to make the system robust to small
variations of the location of distinctive features.

Figure 2 only shows a portion of the network: the smallest
portion necessary to produce a single output label. Each output
is influenced by a40 × 40 pixel window on the input. The
full network can be seen as multiple replicas of this network
applied to all40× 40 windows stepped every 4 pixels on the
input image (more on this later). The window size was chosen
so that the system would have enough context information
to make an informed decision about the category of a pixel.
For example, the local texture in the nucleus region is often
indistinguishable from that of the external medium. Therefore,
distinguishing nucleus pixels from external medium pixels
can only be performed by checking if the pixel is within a
roughly circular region surrounded by cytoplasm. Since the
nuclei are typically less than 40 pixels in diameter, we set the

window size to40 × 40 to ensure that at least some of the
nuclear membrane and the cytoplasm will be present in every
window containing nucleus pixels. Once the input window size
is chosen, the choice of the kernel size and subsmpling ratio
for each layer is quite constrained. The first layer (marked C1)
contains 6 feature maps with7 × 7 pixel convolution kernel.
The second layer (S2), is a subsampling layer with2 × 2
subsampling ratios. The third layer (C3) uses6×6 convolution
kernels. Each of the 16 maps in C3 combines data from
several maps in S2 by applying a separate convolution kernel
to each map, adding the results, and applying the sigmoid.
Each feature variable in C3 is influenced by an18× 18 pixel
window on the input. Each C3 map combines input from a
different subset of of S2 maps, with a total of 61 individual
kernels. Layer S4 is similar to S2 and subsamples C3 by a
factor of 2. Layer C5 comprises 40 feature maps that use
6 × 6 convolution kernels. There is one kernel for each pair
of feature map in S4 and C5. The output layer contains five
units, one for each category.

One key advantage of convolutional nets is that they can
be applied to images of variable size. Applying the network
to a large image is equivalent (but considerably cheaper com-
putationally) to applying a copy of the single-output network
to every40 × 40 window in the input stepped every4 pixel.
More precisely, increasing the input size by 4 pixels in one
direction will increase the size C1 by 4 pixels, S2 and C3 by
2 pixel, and S4, C5, and the output by 1 pixel. The size of the
output in any dimension is therefore(N − 36)/4, whereN is
the size of the input image in that dimension. Consequently,
the convolutional net produces a labeling for every4×4 block
of pixels in the input, taking information from a40 × 40
window centered on that block of pixels. Figure 2 shows the
size of each layer when a40 × 40 pixel input is used and a
single output vector is produced. Figure 4 shows the result
of applying the convolutional network to an image, which
produces a label image with1/4 the resolution of the input. It
would be straightforward to modify the method to produce a
label image with the same resolution as the input. However, we
determined that the current application did not require pixel-
level accuracy.

A. Datasets and Training

Training images were extracted from5 different movies
of C. elegansembryos.10 frames were extracted from each
movie, every10 frames, for a total of50 frames. Testing
images were extracted from a disjoint set of3 movies (of
three different embryos). Similarly,10 frames were extracted
(separated by10 frames) from each test movie, for a total of
30 frames. The sample frames were picked every10 frames
in the movies so as to have a representative set covering the
various stages of embryonic development.

Frames from different movies had different sizes, but were
typically around300×300 pixels. All images were 8-bit gray-
scale. The movies were stored in Apple Quicktime format,
whose compression method introduces some quantization and
blocking artifacts in the frames. Working with compressed
video make the problem more difficult, but it will allow us to



Fig. 2. The convolutional network architecture. The feature map sizes indicated here correspond to a40 × 40 pixel input image, which produces a1 × 1
pixel output with 5 components each. Applying the network toan Nx ×Ny pixel image will result in output maps of size[(Nx − 36)/4]× [(Ny − 36)/4].

tap into a larger pool of movies produced by various groups
around the world, and distributed in compressed formats.

1) preprocessing:DIC images are not only very noisy, but
also very anisotropic. The DIC process creates an embossed
“bas relief” look that, while pleasing to the human eye, makes
processing the images quite challenging. For example the cell
wall in the upper left region of the raw image in figure 4 looks
quite different from the cell wall in the lower right region.We
decided to design a linear filter that would make the images
more isotropic, while preserving the texture information.The
linear filter used was equivalent to computing the difference
between the image and a suitably shifted version of it. A
typical resulting image is shown in figure 4((a), bottom). The
pixel intensities were then centered so that each image had
zero mean, and scaled so that the standard deviation was
1.0. An unfortunate side effect of this pre-processing is that
it makes the quantization artifacts of the video compression
more apparent. Better preprocessing will be considered for
future embodiments of the system. It should be emphasized
that the purpose of this preprocessing is merely to make the
image features more isotropic. The purpose is not to recover
the optical pathlength, as several authors working with DIC
images have done [35].

2) labels: Each training and testing frame was manually
labeled with a simple graphical tool by a single person.
Labeling the images in a consistent manner is very difficult
and tedious. Therefore, we could not expect the manually
produced labels to be perfectly consistent. In particular,it is
very common for the position nucleus boundary or the cell
wall to vary by several pixels from one image to the next.

Consequently, it appeared necessary to use images of de-
sired labels that could incorporate a bit of slack in the position
of the boundaries. We used a very simple method which
consists in deriving two label images from each human-
produced label image. The process is described in figure II-
A.2. The first image, called M1, contains no boundary labels.
It is obtained by turning all the nuclear membrane pixels into
either nucleus or cytoplasm using a simple nearest neighbor
rule. The second label image, M2, is obtained by dilating the
boundaries by one pixel on each side, thereby producing a
3-pixel wide boundary.

Fig. 3. How the M1 and M2 label images are produced. The groundtruth
label image (GT) is unattainable. The human-produced labels may contain
error and inconsistencies. The M1 label image is derived from the human
produced labels by removing all boundary pixels, whereas the M2 label image
is produced by making the boundary 3 pixel wide so as to encompass the
ground truth.

Two separate networks were trained to produce the two
different sets of label images M1 and M2.

3) training set and test set:The simplest way to train the
system would be to simply feed a whole image to the system,
compare the full predicted label image to the ground truth,
and adjust all the network coefficients to reduce the error.

This “whole-image” approach has two deficiencies. First,
there are considerable differences between the numbers of
pixels belonging to each category. This may cause the infre-
quent categories to be simply ignored by the learning process.
Second, processing a whole image at once can be seen as
being equivalent to processing a large number of40 × 40
pixel windows in a batch. Previous studies have shown that
performing a weight update after each sample leads to faster



convergence than updating the weights after accumulating
gradients over a batch of samples [20]. Therefore, we chose
to break up the training images into a series of overlapping
40 × 40 windows that can be processed individually. Overall,
from the 50 frames in the training set,190, 440 windows of
size 40 × 40 pixels were extracted. To each such window
was associated the desired labels (for M1 and M2) of the
central pixel in the window. Each pair of window and label
was used as a separate training sample for the convolutional
network, which therefore produced a single output vector (a1
pixel output map). There were wide variations in the number
of training samples for each category: 3333 windows were
labeled nucleus, 12939 nuclear membrane, 80142 cytoplasm,
39612 cell wall, and 54414 external medium. To correct these
wide variations, a class frequency equalization method was
used. A full learning epoch through the training set consisted
in 272, 070 = 5 × 54414 pattern presentations. During one
epoch, each sample labeled “external medium” was seen
once, while samples from the other categories were repeated
54414/P times, whereP is the number of samples from
that category. Therefore each category was presented an equal
number of times (54414) during each epoch.

The network was trained to minimize the mean squared
error between its output vector and the target vector for thede-
sired category. The target vectors were[+1,−1,−1,−1,−1]
for nucleus, [−1, +1,−1,−1,−1] for nucleus membrane,
[−1,−1, +1,−1,−1] for cytoplasm,[−1,−1,−1, +1,−1] for
cell wall, and[−1,−1,−1,−1, +1] for external medium. The
training procedure used a variation of the back-propagation
algorithm to compute the gradients of the loss with respect to
all the adjustable parameters, and used an “on-line” version
of the Levenberg-Marquardt algorithm with a diagonal ap-
proximation of the Hessian matrix to update those parameters
(details of the procedure can be found in [19]).

Two separate networks were trained, one with the M1 labels
and another one with the M2 labels. Results are reported for
the network trained with the M2 labels.

B. Results

The network was trained for6 epochs on the frequency-
equalized dataset. The pixel-wise error rate of the network
trained with the M2 labels was measured. The pixel-wise
error rate on thenon frequency equalizedtraining set (i.e. on
the 50 frames from the training set) was 25.6%. The pixel-
wise error rate was 29.0% on the30 test frames. It must
be emphasized that pixel-wise error rate is a bad indicator
of the overall system performance. First of all, many errors
are isolated points that can easily be cleaned up by post-
processing. Second, it is unclear how many of the errors can be
attributed to inconsistencies in the human-produced labels, and
how many can be attributed to truly inaccurate classifications.
Third, and more importantly, the usefulness of the overall
system will be determined by how well the cells and nuclei
can be detected, located, counted, and measured.

Figure 4 shows a sample image (top left), a pre-processed
version of the image (bottom left), and the corresponding
internal state and output of the convolutional network. Layers

C1, C3, C5 and F6 (output) are shown. The segmented regions
of the five categories (nucleus, nuclear membrane, cytoplasm,
cell wall, external medium) are clearly delineated in the five
output maps.

The labeling produced by the network for several sample
images, with a false color scheme to represent the various
categories, is shown in figure 5. The essential elements of
the embryos are clearly detected. The cell nuclei are correctly
labeled before, during, and after the fusion of the pro-nuclei.
The cell wall is correctly identified by the M2 network.
However, the detection of new cell walls created during cell
division (mitosis) seems to be more difficult.

It takes90 minutes for one iteration of training process (one
pass through the frequency-equalized training set), on a Xeon-
based workstation running at2.2 GHz. We train the machine
with the M1 labels and the M2 labels in two seperate processes
up to 6 epochs, so the total CPU time is approximately18
hours.

The main advantage of the convolutional network approach
is that the low-level features are automatically learned. A
somewhat more traditional approach to classification consists
in selecting a small number of relevant features from a large
set. One popular approach is to automatically generate a very
large number of simple “kernel” features, and to select them
using the Adaboost learning algorithm [36]. Another popular
approach is to build the feature set by hand. This approach
has been advocated in [5] for the classification of sub-cellular
structures. We believe that these methods are not directly
applicable to our problem because the regions are not well
characterized by local features, but depend on long-range
context (e.g. a nucleus is surrounded by the cytoplasm). This
kind of contextual information is not easily encoded into a
feature set.

III. E NERGY-BASED MODEL

The Convolutional Network gives predictions on a per-pixel
basis. While it is trained to produce the best possible labeling,
there is no specific mechanism to ensure that elementary
consistency constraints of labels within a neighborhood are re-
spected. Some of those local constraints are easy to formulate.
For example, a nuclear membrane pixel must be connected
to other nuclear membrane pixels, and must have a nucleus
pixel on one side, and a cytoplasm pixel on the other side. A
popular way to model local consistency constraints in images
is to use Graphical Models, particularly Markov Random Field
(MRF) [22], which incorporate local 2D interactions between
variables.

Traditionally, the interactions terms between the variables
in an MRF are encoded by hand. While some of the rules for
our application could be encoded by hand, we chose to learn
them from data using the Energy-Based Model framework.

Traditionally, MRFs and other Graphical Models are viewed
as probabilistic generative models, where each configuration of
the input variable is associated with a probability. To ensure
proper normalization of the distribution, the integral (orthe
sum) of that probability over all possible input configurations
must be one. Learning the parameters of such a model is gen-
erally performed by maximizing the likelihood of the training



Fig. 4. convolutional network applied to a sample image. (a)top: raw input image; bottom: pre-processed image; (b) state of layer C1; (c) layer C3; (d):
layer C5; (e): output layer. The five output maps correspond to the five categories, respectively from top to bottom: nucleus, nucleus membrane, cytoplasm,
cell wall, external medium. The properly segmented regionsare clearly visible on the output maps.

Fig. 5. Pixel labeling produced by the convolutional network . Top to bottom: input images; label images produced by the network trained with M1 labels;
label images produced by the M2 network Because each output is influenced by a40× 40 window on the input, no labeling can be produced for pixels less
than20 pixels away from the image boundary.

data under the model. Unfortunately, this often requires that
the probability distribution be explictely normalized. This nor-
malization is generally intractable because it entails computing
the partition function, the normalization term which is a sum
over all possible input configurations (all possible label images
in our case).

Energy-Based Models [33], [21] associate a scalarenergyto
each configuration of the input variables. Making an inference
with an EBM consists in searching for a configuration of the
variables to be predicted that minimizes the energy. EBMs
have considerable advantages over traditional probabilistic
models: (1) There is no need to compute the partition functions

that may be intractable; (2) because there is no requirementfor
normalizability, the repertoire of possible model architectures
that can be used is considerably richer than with probabilistic
models.

Training an EBM consists in finding values of the trainable
parameters that associatelow energiesto “desired” configura-
tions of variables (e.g. observed on a training set), andhigh en-
ergiesto “undesired” configurations. With properly normalized
probabilistic models, increasing the likelihood of a “desired”
configuration of variables will automatically decrease the
likelihoods of other configurations. With EBMs, this is not
the case: making the energy of desired configurations low



Fig. 6. Local constraints: we illustrate the idea for a 3-category classification
problem. The top-left configuration is consistent, so assigned low energy,
while the bottom-left configuration is not consistent.

may not necessarily make the energies of other configurations
high. Therefore, one must be very careful when designing loss
functions for EBMs. We must make sure that the loss function
we pick will effectively drive our machine to approach the
desired behavior.

A. The architecture of the EBM

The EBM is a scalar functionE(W, Y, f1(X), f2(X)))
where W is the parameter vector to be learned,Y is the
label image to be predicted using the EBM,f1(X) is the label
image produced by the M1 convolutional network, andf2(X)
the label image produced by the M2 convolutional network.
Each of the variablesY, f1(X), f2(X) are 3D arrays of size
5 × Nx × Ny, whereNx and Ny are the dimensions of the
label images.

Operating the EBM consists in running the input image
through the M1 and M2 convolutional networks, and clamping
the f1(X), and f2(X) inputs of the EBM to the values
thereby produced. Then theY input is initialized with the
value f2(X), and an optimization algorithm is run to find a
value of Y that locally minimizesE(W, Y, f1(X), f2(X))).
The quantity at each pixel location ofY , f1(X), andf2(X)
is a discrete variables with 5 possible values: nucleus, nuclear
membrane, cytoplasm, cell wall, external medium. A number
of Markov-Chain Monte-Carlo (MCMC) methods were tested
for minimizing the energy, including simulated annealing with
Gibbs sampling. In the end, a simple “greedy” deterministic
descent was used. The sites are updated sequentially and setto
the configuration that minimizes the energy, keeping the other
sites constant.

The EBM is composed of two modules orfactors, as shown
in figure 7. The overall energy is the sum of the energies
produced by the two factors.

The first factor is the association module
A(Y, f1(X), f2(X)). The association module is fixed (it
has no trainable parameter), and produces a high energy if
Y gets very different from eitherf1(X), or f2(X). The
energy gets particularly large iff1(X), and f2(X) agree

Fig. 7. The architecture the Energy-Based Model. The image marked “input
labeling” is the variable to be predicted by the EBM. The firstlayer of the
interaction module is a convolutional layer with10 feature maps and5 × 5
kernels operating on the5 feature maps from the output label image. The
non-linear function for each node is of the formg(u) = u

2

(1+u2)
. The second

layer simply computes the average value of the first layer.

and Y takes a different value. The module ensures that the
cleaned-up label image will not be drastically different from
eitherf1(X), or f2(X). The function is encoded in the form
of a 5 × 5 × 5 table which contains the energies associated
with each possible combination of values of the variables
Y , f1(X), and f2(X) at any particular pixel location. The
output energy of the association module is simply the average
of those energies over all pixel locations.

The second factor is theinteraction moduleI(W, Y ). The
interaction module implements the local consistency con-
straints and is trained from data. The first layer of the
interaction module is a convolutional layer with10 feature
maps and5×5 kernels that operate on the5 feature maps ofY .
The non-linear activation function of the units is of the form
g(u) = u2

(1+u2) . This function and its derivatives are shown
in figure 8. The idea behind this activation function is that
each unit implements alinear constrainton the neighborhood
of variables from which it takes inputs [33]. When the input
vector is near orthogonal to the weight vector, the output is
near zero, indicating that the constraint is satisfied. Whenthe
input vector has a non-zero projection on the weight vector,
the output is non zero. If the constraint is strongly violated,
the output will be near 1.0 (the asymptote). The saturating
asymptote ensures that only a “nominal price” will be paid
(in terms of energy) for violating a constraint [33]. The total
output energy of the interaction module is the average of the
outputs of all the10 feature maps over all positions.

B. Training the EBM

As we mentioned earlier, a suitable loss function must be
found whose minimization will “dig holes” in the energy
landscape at the location of the desiredY for given f1(X)
andf2(X), and “build hills” for all other (incorrect) value of
Y .
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As reported in [21], there are several suitable loss functions
whose minimization will achieve the desired result. For this
work, we have used the loss function below. For a given
training example(X i, Y i), whereX i is an input image and
Y i a human-produced label image, the loss function is:

L(W, Y i, X i) = E(W, Y i, f1(X
i), f2(X

i))+c1e
−c2min

y,y 6=Y iE(W,y,f1(Xi),f2(X
i))

(2)
where c1 and c2 are user-specified positive constants. The
overall loss function is the average of the above function
over the training set. The first term is the energy associated
with the desired input configurations(Y i, f1(X

i), f2(X
i)).

Minimizing the loss will make this energy low on average.
The second term is a monotonically decreasing function of
miny,y 6=Y iE(W, y, f1(X

i), f2(X
i)), which can be seen as the

energy of the ‘best wrong answer”, i.e. the lowest energy as-
sociated with ay that is different from the desired answerY i.
Minimizing the loss will make this energy large. Minimizing
this loss function makes the machine approach the desired
behavior by making the energy of desired configurations low,
and the energy of wrong configurations found by our inference
algorithm high.

It takes about5 hours to complete one iteration of training.
Inference is rather fast and it takes less than1 minute for10
inference steps (10 updates of each site), which is sufficient
for our denoising purpose. Similar loss functions have recently
been used in the somewhat different contexts of face detection
and pose estimation [28], pose and illumination-invariant
generic object recognition [21], and face verification using
trainable similarity metrics [4].

C. Results

The training sets and test sets were the same as for the
convolutional neural net training. A few results produced by
applying the EBM to label image produced by the convo-
lutional network are shown in figure 9. The method does a
good job at eliminating isolated points that were erroneously
labeled. The nuclei are clearly identifiable in the resulting
images. However, the method is a bit overzealous in cleaning

up cell wall pixels. Several legitimate cell wall pixels that were
correctly identified by the convolutional net were eliminated
by the EBM.

It is possible that these deficiencies could be reduced by
modifying the architecture, changing the loss function, or
improving the training procedure. Because EBM is a relatively
new method, many aspects of EBM training are not yet fully
understood. More research is needed in this area.

Fig. 9. Results of EBM-based clean-up of label images on5 testing images.
Top line: input image; second line: output of M2 convolutional network; 3rd
and 4th line value ofY (cleaned-up image) at two different stages of the
energy-minimizing inference process.

IV. D EFORMABLE TEMPLATES FORGLOBAL ANALYSIS

The previous sections discuss image analysis techniques to
accurately segment images into cellular elements such as cell
nucleus, nuclear membrane, etc. Further processing steps are
needed to transform this pixel-wise information into the more
global characteristics that are relevant to automatic phenotyp-
ing. This section discusses various methods we considered
for extracting information at such higher levels of abstrac-
tion. When experts visually inspect images, they observe the
emerging organization of the multi-cellular organism. This
information is often conveyed by drawing a sketch of the
cell representing the relative shape and position of the cells
and of their nuclei. When inspecting a movie, sequences of
specific events occuring over multiple frames are identified.
Events can be global (for instance, which cells divide and in



what order) or very specific (for instance, a visible featurecan
appear between two specific cells at a specific time during the
embryo development).

An possible approach consists in collecting sketches rep-
resenting various normal or abnormal stages of the organism
development and using them as a dictionary of deformable
templates that can be aligned and matched with each frame of
the movies. Identifying the stage of development comes down
to finding the deformable template in the dictionary that best
matches the image under consideration. By aliging and fitting
the template to the images, we can extract the relative shapes
and position of the cells, the orientation of the organism and
the identity of each individual cell. Deformable templatesalso
enforce global constraints that are not easily implementedby
local analysis. For example, the nucleus must lie roughly in
the center of the cell, the cell boundary must be a closed curve,
etc.

Deformable template models have been used successfully
in several problems, such as medical image processing [14],
object matching in video sequences [2], and many other
applications. For a survey of active contour methods, see [26].

In the following, we present two different methods for
matching label images to deformable templates. The first
method uses “sparse” elastic templates that are matched to
the label images by minimizing an energy function using an
efficient method reminiscent of the Expectation-Minimization
algorithm (EM). The second method uses “dense” elastic tem-
plates that are matched to the label images using an algorithm
reminiscent of Kohonen’s Self-Organizing Map algorithm.

A. Fitting sparse deformable templates with EM

Matching images to simple deformable templates can be
achieved using the Expectation-Maximisation algorithm (EM).
[9] have applied spline-based models for hand-written charac-
ter recognition. They used deformable splines whose control
point positions were optimized with the EM. Each spline was
seen as the mean of a probabilistic Gaussian model that could
generate the “ink” of a character. Similarly, [3] proposed a
normalization method for handwritten words that used EM to
fit quadratic lines to key points on the trajectory of a pen
writing the word.

Experiments were performed with templates defined by a
set of key points linked by springs with given rest lengths
and stiffnesses. Figure IV-A shows deformable templates for
successive stages of the development of theC. elegansembryo.
Each key point is interpreted as the mean of a Gaussian
distribution that can generate pixels of the same label in
the label image. A particular template can be viewed in
probabilistic terms as a mixture of Gaussian model, where the
relative positions of the means of the components Gaussians
are dependent on each other. Different springs have been given
different spring constants in the models. For example, the
springs that link two key points on the cell wall are very stiff
(k = 100), while the springs that link the nucleus to the cell
wall are less stiff (k = 1) to allow the nucleus to move around.

We determine the embryo’s stage of development by fitting
each of those models to an image and finding the model that

matches the label image with the lowest energy. The EM
fitting algorithm alternates two steps. TheE-stepconsists in
computingresponsabilitycoefficients that assign each pixel in
the label image to a key point in the deformable template. The
M-stepconsists in finding the minimum energy configuration
of the spring system given those responsabilities. Since this
energy is quadratic in the position of the key points, the
solution can be found by solving a linear system. The E and M
steps are iterated until convergence. Examples of deformable
templates matched to real label images are shown in figure 11.

B. Fitting dense deformable templates with Colored SOMs

A second method was tested using templates with “dense”
nodes. Such dense templates may finer levels of global in-
formation such as the precise position of the cell boundaries.
Fitting such models with the EM algorithm is prohibitively ex-
pensive, and subject to local minima. Xu and Prince [38] claim
that complex contours may be identified more efficiently using
dynamic algorithms that do not derive from the optimization
of an energy function. Interesting active contour algorithms
[1] are derived from Kohonen’s Self-Organizing Map method
(SOM) [15].

Figure 12 shows preliminary results obtained using Colored
SOMs. Each deformable template is specified by assigning
labels to the nodes of a regular lattice [37]. The lattice
is then aligned with the label images associated with each
frame using a variant of Kohonen’s SOM algorithm [15].
Each iteration of the alignment algorithm picks a random
image pixel and locates the closest lattice node with the
same label. This node is then moved towards the location
of the image pixel. Neighboring nodes in the lattice are also
moved in the same direction with an amplitude that depends
on their lattice distance to the node being considered. Step
sizes and neighborhood sizes are decreased slightly after each
iteration. Results obtained with this method are promising, but
preliminary.

V. D ISCUSSION AND FUTURE WORK

The methods presented in this paper are the first components
of a fully automated phenotyping system that can operate on
microscopic image sequences of small clumps of cells. A
convolutional network labels each pixel as nucleus, nuclear
membrane, cytoplasm, cell wall or external medium. An
Energy-Based Model post-processes the label images so as
to satisfy local consistency constraints. Finally a set of de-
formable templates are matched to the label image to identify
the stage of development of the embryo and to precisely locate
the cell nuclei.

The final system will also include a Hidden Markov Model
that will be used to classify movies into normal or abnormal
development, to identify the type of abnormal development,
and to locate the time at which key events take place.

Because labeled data is very scarce, and because the system
has not yet been fully integrated, we report results for each
of the three modules that are somewhat qualitative. The
measurement of meaningful quantitative results will require a
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Fig. 10. EM deformable templates for each stage of theC. elegansembryo development. (a) Fertilization has just occurred. (b) The maternal pronucleus
migrates to the posterior area and a pseudo-cleavage furrowforms. (c) The pronuclei fuse. (d) The cell divides unequally to produce two cells. (e) The two
cells further split into four cells.

Fig. 11. Matching deformable templates to label images. Topto bottom: input images, M2 predictions, EBM output, EBM output overlaid with deformable
template that produced the best fit. Multiple templates are applied to each image. Only the template with smallest energyis shown here. Only the stiff springs
of the template are drawn (yellow lines). The pink dots indicate the node of the deformable template that corresponds to the center of the nucleus. We find
that the 2-cell templates correctly match image1, 5 − 10, while the 1-cell templates correctly match images3 − 4. However, image2 has been wrongly
matched with a 2-cell template (albeit with a high energy).



Fig. 12. Matching deformable templates with Colored Self-Organizing Maps. Each deformable template is specified by coloring a regular lattice of nodes.
The lattice is then aligned with the cell component labels derived from the image.

considerably larger dataset than is currently available, as well
as a fully integrated system.

The main advantage of the approach presented here is that
it is fully trainable, and therefore fairlygeneric. Applying the
system to a new problem comes down to collecting labeled
data and training the system with this new data. A particularly
interesting aspect of the approach is that the convolutional net-
work takes care of learning appropriate features and eliminates
the need for hand-designed feature sets that may be problem-
dependent.

The paper describes one of the first uses of Energy-Based
Models for solving a practical task. EBM training methods
are very much in their infancy. It is likely that performance
improvements will be obtained with better architectures, better
loss functions, and better optimization techniques.

A. Future Work

Because the configuration of the embryo changes slowly
from frame to frame, it should be possible to improve the
reliability of the labeling system by processing several succes-
sive frames simultaneously. The system described here could
easily be modified so that a window of a few successive frames
could be fed to the convolutional network. Similarly, the EBM
could take multiple successive frames into account and encode
temporal as well as spatial consistency. The main obstacle to
this is the small amount of manually-labeled successive frames
currently available. Producing more labeled data is one of
the current priorities of the present project. Semi-automated
software tools are being developed that will accelerate the
labeling process.

The goals of a fully automatic phenotyping system for
C. Elegans Embryos are (1) to label movies as normal or
abnormal, (2) to classify the type of abnormal development,
(3) to perform quantitative measurements such as the distance
between nuclei, the time of cell division, etc. Building such
a system will require modeling the sequential aspect of the
data. One technique being pursued involves the use of Hidden
Markov Models (HMM). Each known development scenario
(normal or abnormal) can be associated with an HMM whose

states represent the various stages of embryo development.
The emission probability model for each state is a mixture
model whose components are the deformable templates. Each
deformable template can be seen as a probability density
model whose log-likelihood is proportional the fitting energy
of the deformable model. Classifying a movie into one of the
scenarios simply consist in finding the HMM that maximizes
the likelihood of the observed data. This can be performed
with one of the standard methods for HMM inference (Viterbi
algorithm, or forward algorithm).

B. Conclusion

The emergence of fully-automated phenotyping system will
allow very large-scale exploratory experiments in functional
genomics. With an automatic phenotyping system, it may be-
come possible to perform systematic experiments where pairs
of genes are knocked out, perhaps unveiling new regulatory
interactions.

A fully automated system is still several years away, but
the methods presented in this paper suggests that it may
be within reach. Because the methods presented here are
trainable, and not particularly tuned to the particular problem
at hand, they may be easily applied to other image-based
phenotyping applications.
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