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Abstract

Machine learning systems based on minimiz-
ing average error have been shown to perform
inconsistently across notable subsets of the
data, which is not exposed by a low average
error for the entire dataset. Distributionally
Robust Optimization (DRO) seemingly ad-
dresses this problem by minimizing the worst
expected risk across subpopulations. We es-
tablish theoretical results that clarify the re-
lation between DRO and the optimization
of the same loss averaged on an adequately
weighted training dataset. The results cover
finite and infinite number of training distri-
butions, as well as convex and non-convex
loss functions. An implication of our results
is that for each DRO problem there exists a
data distribution such that learning this dis-
tribution is equivalent to solving the DRO
problem. Yet, important problems that DRO
seeks to address (for instance, adversarial ro-
bustness and fighting bias) cannot be reduced
to finding the one ‘unbiased’ dataset. Our
discussion section addresses this important
discrepancy.

1 INTRODUCTION

Distributionally Robust Optimization (DRO) (Ben-
Tal et al., 2009; Levy et al., 2020; Sagawa et al., 2020a;
Liu et al., 2021; Zhen et al., 2021) aims to make ma-
chine learning systems more robust by replacing the
optimization of a single expected error criterion by the
simultaneous optimization of the expected errors with
respect to a predefined family Q of distributions.
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In this work, we explore the relation between solving a
DRO problem and optimizing the expected error for a
single distribution constructed by mixing distributions
from the family Q, with a focus on the nonconvex deep
learning systems that are increasingly used for impor-
tant real tasks. We also discuss the consequences of
these findings for two application domains of DRO,
namely fighting bias in machine learning systems and
achieving robustness against adversarial examples. We
find that DRO does not really solve the problem at
hand but merely displaces important aspects into the
precise formulation of the DRO problem, such as the
choice of calibration coefficients.

We first present our theoretical results (Section 2), and
discuss their loose ends (Section 3). We then discuss
the consequences of these results in practical applica-
tions of DRO, that is when using DRO to address rep-
resentation disparity (Section 4.1) and in adversarial
robustness (Section 4.2). In the context of mitigat-
ing the majority bias, we provide simple recommen-
dations based on our theoretical findings. We give a
brief overview of related work (Section 5) on DRO and
mitigating bias.

2 THEORETICAL RESULTS

2.1 Setup

Let `(z, w) be the loss of a machine learning model
where w ∈ Rd represent the parameters of the model
and z ∈ Rn belongs to the space of examples. For
instance, the examples z may be pairs (x, y) and the
loss may be the squared loss `(z, w) = 1

2‖y − fw(x)‖2.

Distributionally Robust Optimization Instead
of assuming the existence of a probability distribution
P (z) over the examples z and formulating an Expected
Risk Minimization (ERM) problem:

min
w

{
CP (w)

∆
= Ez∼P [`(z, w)]

}
, (1)
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DRO considers a family Q of distributions and seeks
to minimize

min
w

{
CQ(w)

∆
= max

P∈Q
CP (w)

}
. (2)

Many authors define Q with the purpose of construct-
ing a learning algorithm with additional robustness
properties. For instance, Q may be the set of all distri-
butions located within a certain neighborhood of the
training distribution (Bagnell, 2005; Namkoong and
Duchi, 2016; Blanchet et al., 2019; Staib and Jegelka,
2019). Different ways to define this neighborhood lead
to different and sometimes surprising solutions (e.g.,
Hu et al., 2018). Interesting theoretical possibilities
appear when Q also contains the discrete distributions
that represent finite training sets. Besides these theo-
retically justified choices ofQ, many practical concerns
can be viewed through the prism of DRO on ad-hoc
families Q of distributions.

Example 1 (Fighting bias). Let the example distribu-
tions P1 to PK represent identified subpopulations for
which we want to ensure consistent error rates. This
can be achieved by minimizing the worst error, that
is, formulating a DRO problem with Q = {P1 . . . PK}
(see Section 4.1 for a discussion). Although this formu-
lation is far too simple to address all forms of biases,
it illustrates how DRO provides means to move away
from focusing on a single optimization objective.

Example 2 (Fighting adversarial attacks). Szegedy
et al. (2014) have shown that one can almost arbitrar-
ily change the output of a deep learning vision system
by modifying the patterns in nearly invisible ways. Let
Φ be the set of all measurable functions ϕ that map
an example pattern z to another pattern ϕ(z) that is
assumed visually indistinguishable from z according to
a certain psycho-visual criterion. Let Pϕ represent the
distribution followed by ϕ(z) when z follows the distri-
bution P . Robust solutions against the class of adver-
sarial perturbation Φ can be found with DRO with the
distribution family Q = {Pϕ : ϕ ∈ Φ} (see Section 4.2
for a discussion).

Calibration coefficients The simple DRO formu-
lation makes sense when we know that all distributions
define problems of comparable difficulty. It is however
easy to imagine that a particular distribution empha-
sises harder examples. We can introduce calibration
terms rP in the DRO formulation to prevent any sin-
gle distribution P to dominate the maximum

min
w

{
CQ,r(w)

∆
= max

P∈Q
{CP (w)− rP }

}
. (3)

Correctly setting the calibration terms is both difficult
and application-specific. A simple but costly approach

consists in letting rP be equal to the optimum cost for
that distribution alone, rP = minw CP (w). Calibrated
DRO (3) then controls the loss of performance incurred
by seeking a solution that works for all distributions as
opposed to solutions that are specific to each distribu-
tion. Another approach (Meinshausen and Bühlmann,
2015) relies instead on the variance of the predicted
quantity.

Calibration terms can also be used to counter the ef-
fect of finite training data. For instance, when we only
have n examples for a certain distribution P ∈ Q, the
expected risk CP (w) can be replaced by its empirical
estimate CPn

(w) augmented with a calibration con-
stant that decreases when the number n of training
examples increases (Sagawa et al., 2020a).

2.2 A local minimum of a DRO problem is a
stationary point of an expected loss
mixture

Finite case We first address the case where Q is a
finite set of distributions P1 . . . PK . The following re-
sult simplifies Proposition 2 of Arjovsky et al. (2019)
by eliminating the KKT constraint qualification re-
quirement. In the rest of this work, we always assume
that the mixture coefficients λk are nonnegative and
sum to one. We also assume that the parameters w are
real numbers, hence, the set of possible parameters is
convex.
Theorem 1. Let Q = {P1, . . . , PK} be a finite set of
probability distributions on Rn and let w∗ be a local
minimum of the DRO problem (2) or the calibrated
DRO problem (3). Let the cost CP (w) for any distri-
bution P on Rn be defined as CP (w) = Ez∼P [`(z, w)].
Let CP (w) be differentiable in w for all P ∈ Q. Then
there exists a mixture distribution Pmix =

∑
k λkPk

such that ∇CPmix
(w∗) = 0.

The proof relies on a simple hyperplane separation
lemma closely related to Farkas’ lemma (Boyd and
Vandenberghe, 2014, Sec.2.5 and Ex.2.20).
Lemma 1. A nonempty closed convex subset A of Rn
either contains the origin or is strictly separated from
the origin by a certain hyperplane, that is, there exists
a vector u ∈ Rn and a scalar c > 0 such that, for all
x ∈ A, 〈u, x〉 ≥ c.

Proof. Assume 0 /∈ A. Let u ∈ A be the projection of
the origin onto the closed convex set A. For all x ∈ A
and all t ∈ [0, 1], the point u+ t(x−u) also belongs to
the convex set A. Since u is the point of A closest to
the origin, for all t ∈ [0, 1],

r(t) = ‖u+ t(x− u)‖2

= ‖u‖2 + 2t 〈u, x− u〉+ t2‖x− u‖2 ≥ ‖u|2.
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Therefore r′(0) = 2 〈u, x− u〉 ≥ 0, and, as a conse-
quence, 〈u, x〉 ≥ 〈u, u〉 > 0.

Proof of Theorem 1. Let A ⊂ Rn be the convex hull
of the gk=∇CPk

(w∗) for k = 1 . . .K. A is closed and
convex. If A does not contain the origin, according
to the lemma, there exist u and c such that ∀ x ∈ A,
〈u, x〉 ≥ c > 0. Therefore, for all t > 0, moving from
w∗ to w∗−tu reduces all costs CPk

by at least tc+o(t).
As a consequence, maxk CPk

is also reduced by at least
tc + o(t), contradicting the assumption that w∗ is a
local minimum. Hence A contains the origin, i.e. there
are positive mixture coefficients λk summing to one
such that

∑
k λk∇CPk

(w) = ∇wCPmix(w) = 0.

All local and global solutions of the DRO problem (2)
or (3) are therefore stationary points of the expected
risk (1) associated with a mixture of the distributions
of Q. The exact mixture coefficients depend on the
loss functions, the distributions included in Q and, in
the case of the calibrated version of DRO, on the cal-
ibration constants rP .

This result raises several important questions. Is this
result valid when Q is not finite? Are these station-
ary points always local minima? Is the converse true?
What is the relation between the mixture coefficients
λk and the calibration constants rP ? How far can
such results go without assuming convex losses? These
questions will be discussed in the rest of this paper.

Infinite case The infinite case differs because the
convex hull of an infinite set of vectors is not necessar-
ily closed, even when the original set is closed. There-
fore, we cannot directly apply Lemma 1 to the convex
hull A of the gradients gP = ∇CP (w∗) for all P ∈ Q.
Applying it instead to the closure Ā of A yields a sub-
stantially weaker result: if w∗ is a local DRO mini-
mum, then for each ε > 0, there is a mixture P (ε)

mix of
distributions from Q such that ‖∇CP (ε)

mix
‖ ≤ ε.

There is no guarantee that P (ε)
mix converges to an ac-

tual distribution when ε converges to zero.1 Therefore
this weaker result does not help relating the solution
of a DRO problem with the solutions of an ERM prob-
lem for a suitable training distribution. However, this
stronger result can be obtained at the price of a tight-
ness assumption (Billingsley, 1999).

Definition 1. A family of distributions Q on a Polish

1Suppose for instance that Q contains all Gaussians
with unit variance with arbitrary means in R. For any
t > 0, let P (1/t)

mix be the equal mixture of t2 equally spaced
Gaussians in interval [−t,+t]. Neither this sequence not
any of its subsequences converge to a distribution because
there is no such thing as a uniform distribution on all of R.

space2 Ω is tight when, for any ε > 0, there is a com-
pact subset K ⊂ Ω such that ∀P ∈ Q, P (K) ≥ 1− ε.

Tightness is obvious when all the examples belong to a
bounded domain. Even when this is not the case, it is
known that any finite set of probability distributions
on a Polish space is tight (Billingsley, 1999). This often
provides the means to prove the tightness of an infinite
family Q of distributions that are "close" enough to a
single distribution such as the training data distribu-
tion. For instance, in the case of adversarial examples
(Example 2), tightness is doubly obvious, first because
all images belong to a bounded domain, second be-
cause the visual similarity criterion ensures that the
distance between z and ϕ(z) is bounded.

Theorem 2. Let Q be a tight family of probability dis-
tributions on Rn. Let w∗ be a local minimum of prob-
lem (3). Let Qmix be the weak convergence closure of
the convex hull of Q. Let there be a bounded continu-
ous function h(z, w) defined on a neighborhood V of w∗
such that ∇CP (w) = Ez∼P [h(z, w)] for all P ∈ Qmix

and such that ‖h(z, w) − h(z, w′)‖ ≤ M‖w − w′‖ for
almost all z ∈ Rn. Then Qmix contains a distribution
Pmix such that ∇wCPmix(w∗) = 0.

This theorem does not require the loss `(z, w) to be dif-
ferentiable everywhere as long as the purported deriva-
tive h(z, w) has the correct expectation (Bottou et al.,
2018). For our purposes, it must also be bounded,
continuous on V, and satisfy a Lipschitz continuity re-
quirement.

Proof. Let Ā be the closure of the convex hull of the
gP = ∇CP (w∗) for all P ∈ Q. According to Lemma 1,
if Ā does not contain the origin, then there are u
and c > 0 such that ∀x ∈ A, 〈u, x〉 > c. In partic-
ular, for all P ∈ Q, we have 〈u,∇CP (w∗)〉 > c > 0.
Thanks to the Lipschitz continuity of h(z, w), we have
CP (w∗ − tu) < CP (w∗) − tc + Mt2 for all P ∈ Q.
Therefore for any 0 < t < c/2M and any P ∈ Q, we
have CP (w∗ − tu) < CP (w∗)− tc/2 contradicting the
assumption that w∗ is a local DRO miminum. There-
fore Ā contains the origin. This means that for any
t > 0, there exists a mixture P (1/t)

mix of distributions
from Q such that ‖∇CP (ε)

mix
(w∗)‖ < 1/t. Note that if

Q is tight, the convex hull of Q is also tight. Therefore
the sequence P (1/t)

mix is also tight, and, by Prokhorov’s
theorem, contains a weakly convergent subsequence
whose limit Pmix belongs to the closure Qmix of the
convex hull of Q. Because h(z, w∗) is continuous and
bounded, the map P 7→ ∇CP (w∗) is continuous for
the weak topology. Therefore ∇CPmix

(w∗) = 0.

2For our purposes, it is sufficient to know that Rn is a
Polish space!
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2.3 A local minimum of an expected loss
mixture is a local minimum of a
calibrated DRO problem

The following elementary result states that if w∗ is
a local minimum of an expected cost mixture CPmix

,
then it also is a local minimum of the calibrated DRO
problem (3) with calibration constants rP equal to the
costs CP (w∗).

Theorem 3 (Converse). Let Pmix =
∑
k λkPk be an

arbitrary mixture of distributions Pk ∈ Q. If w∗ is a
local minimum of CPmix

, then w∗ is a local minimum
of the calibrated DRO problem (3) with calibration co-
efficients rP = CP (w∗).

Proof. By contradiction, assume that w∗ is not a local
minimum of (3), that is, for all ε > 0 there exists u
such that ‖u‖ < ε and maxP∈Q {CP (w∗ + u)− rP } <
maxP∈Q {CP (w∗)− rP }. Recalling our choice of rP
yields maxP∈Q {CP (w∗ + u)− CP (w∗)} < 0. Since
CP (w ∗ +u) < CP (w∗) for all P ∈ Q, CPmix(w∗ +
u) < CPmix(w∗), and w∗ cannot be a local minimum
of CPmix

.

3 DISCUSSION

3.1 Convex loss

Note the slight discrepancy between the statements of
Theorem 3 and Theorems 1–2. The former requires a
local minimum of the expected loss mixture, whereas
the latter only provides a stationary point.

This distinction is of course moot when the loss func-
tions `(z, w) is convex in w because convexity makes all
stationary points global minima as well.3 Theorems 1
and 3 then provide an exact equivalence between find-
ing a minimum of the calibrated DRO problem (3)
and finding a minimum of a well-chosen expected loss
mixture.

When Q is finite, this equivalence is a natural con-
sequence of convex duality theory (Bertsekas, 2009)
because we can restate the DRO problem as a convex
optimization problem using a slack variable L,

min
w,L

L s.t. ∀P ∈ Q. CP (w)− rP − L ≤ 0 . (4)

Theorem 2 shows that this equivalence still holds when
Q is infinite and satisfies a tightness assumption.

C1 C2

max(C1, C2)

1
2C1 + 1

2C2

w

Figure 1: The minimum of max{C1(w), C2(w)}
(which is w∗ = 0) is a stationary point of Cmix(w) =
1
2C1(w)+ 1

2C2(w). However, this stationary point is
not a local minimum but a local maximum of the mix-
ture cost.

3.2 Nonconvex loss

The nonconvex case is more challenging because the
stationary points identified by Theorem 1 need not
be local minima. Consider for instance the two real
functions

C1(w) = tanh(1 + w) + εw2

C2(w) = tanh(1− w) + εw2

where the term εw2 with 0 < ε � 1 is only present
to ensure that each of these functions has a well de-
fined optimum. As shown in Figure 1, their maximum
max{C1(w), C2(w)} has a a minimum in w∗ = 0. As
predicted by Theorem 1, this solution is a stationary
point of the the mixture Cmix = 1

2C1(w) + 1
2C2(w).

However, this stationary point is not a local minimum
but a local maximum.

In this counter-example, the solution w∗ = 0 of the
DRO problem minw max{C1(w), C2(w)} falls in nega-
tive curvature regions of the functions C1 and C2. As
a result any mixture of these two costs also has nega-
tive curvature in w∗. Therefore, w∗ cannot be a local
minimum.

Conversely, when a local optimum of the DRO prob-
lem is achieved in a point where the individual cost
functions have positive curvature, all mixtures must
also have positive curvature, and the stationary point
must be a local minima. This remark is important in
practice because learning algorithms for deep learning
problems tend to follow trajectories where the Hes-
sian is very flat apart from a few positive eigenval-
ues (Sagun et al., 2018). Although more evidence and
a formal framework are needed to make a definitive

3Convexity also provides easy means to weaken the dif-
ferentiability assumption because of the existence of sub-
gradients. One could similarly weaken the differentiability
assumptions of Theorems 1-2 by assuming instead the ex-
istence of local sub– and super–gradients.
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Algorithm 1: A Lagrangian DRO algorithm

Input: Equal size training sets Dk. k = 1 . . .K
Input: Calibration coeffs rk. Initial w0.
Input: Temperature β. Stopping threshold ε.
Output: A sequence of weights wt.

t← K
λk ← 1/t ∀k
repeat

wt+1 ← Descend
(
wt, {D1 ?λ1 . . . DK ?λK}

)
ck ← Cost

(
wt+1, {Dk}

)
∀k

δk ← 1
Z exp(β(ck − rk)) ∀k
— with Z such that

∑
k δk = 1

λk ← 1
t+1 (tλk + δk) ∀k

t← t+ 1

until maxk |λk − δk| < tε
return wt

statement, this fact suggests that the issue presented
in Figure 1 is often cured by overparametrization.

3.3 Lagrangian algorithms for DRO

When the loss function is convex, duality theory sug-
gests to write the Lagrangian of problem (4) and
solve instead a dual problem (Boyd and Vandenberghe,
2014; Bertsekas, 2009). Algorithm 1 is a typical exam-
ple of this strategy.

Although such Lagrangian DRO algorithms are justi-
fied by convexity considerations, they are also widely
used with deep learning system with nonconvex ob-
jectives (Sagawa et al., 2020a; Augustin et al., 2020).
Our theoretical results provide partial support to this
practice. In Appendix, we discuss failure modes that
prevent the algorithm from finding DRO solutions that
are not associated with a local minimum of an ade-
quate loss mixture, including the scenario most rele-
vant to overparameterized models (Appendix A).

3.4 Implications for overparameterized
models

Overparametrization, on the other hand, dilutes the
practical meaning of DRO or dataset rebalancing.
When the optimization achieves near zero loss on all
training examples, the expected losses for all subpop-
ulations are near zero regardless of DRO or rebalanc-
ing techniques. What matters is now the implicit or
explicit regularization that selects which of the many
possible solutions achieve near-zero loss for all exam-
ples.

For instance, Byrd and Lipton (2019) find that im-
portance sampling does not improve the average test

error. On the other hand, Sagawa et al. (2020b)
finds that the worst group error can be worse in
overparametrized networks. Sagawa et al. (2020a)
stress the impact of regularization when using DRO
in overparametrized network, and Lopez-Paz (2021)
finds that simple rebalancing techniques in over-
parametrized networks can improve the worst group
as much as Sagawa’s regularized group DRO.

Our theorems provide a satisfactory explanation of
these facts when, instead of viewing the regularization
as additional cost penalties, one views regularization
as data augmentation, that is, replacing each train-
ing example by a local distribution centered on the
training example (Leen, 1995). Since the effect of the
regularization is then expressed by the expected losses
CPk

(w), both DRO and rebalancing become meaning-
ful and practically equivalent objectives.

4 PRACTICAL IMPLICATIONS

Up to nonconvex effects that we believe disappear
with overparametrization (as discussed in Section 3.4),
the theoretical results suggest that DRO is practically
equivalent to training on a well chosen example distri-
bution. Does this mean that it would be enough to
acquire the true unbiased training data? Wasn’t DRO
supposed to provide a template to move away from op-
timizing a single averaged criterion? The theoretical
results make it clear that this well chosen example dis-
tribution is far from universal, but depends on often
overlooked assumptions hidden in the DRO problem
statement, such as calibration coefficients. We now
illustrate this assertion on two practical problems: ad-
dressing the majority bias (Section 4.1) and DRO in
adversarial robustness (Section 4.2).

4.1 Fighting bias

Bias issues in machine learning take many forms that
cannot be reduced to mere differences in error rates.
However, these issue often arise because the train-
ing algorithm optimizes a single performance criterion
(Barocas et al., 2019, p218). Minimizing the worst er-
ror measured on various subpopulations therefore can
be used as a template to understand how DRO can or
cannot be used to address bias. Following Example 1,
we formulate the minimization of the worst error as
the following DRO instance,

min
w

{
max
Pk∈Q

CPk
(w)− rPk

}
,

where the Pk represent the distributions associated
with K subpopulations of interest and the rPk

are cal-
ibration coefficients. Although they are rarely made
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Majority subpopulation
Class 0
Class 1

Minority subpopulation
Class 0
Class 1

Entire population (ERM solution)

Class 0, majority
Class 1, majority
Class 0, minority
Class 1, minority

Entire population (DRO solution)

Class 0, majority
Class 1, majority
Class 0, minority
Class 1, minority

Majority: 97% correct Majority: 83% correct
Minority: 58% correct Minority: 82% correct

Figure 2: Illustration of the majority bias when using
Expected Risk Minimization (ERM) in a linear binary
classification problem, where the dataset can be par-
titioned to a majority and a minority subpopulation.
The DRO solution was obtained using the Lagrangian
algorithm (Algorithm 1), both solutions use the same
linear SVM model.
explicit, there are legitimate reasons to introduce such
calibration coefficients in bias figthing problems.

• Calibration coefficients can be used to favor cer-
tain subpopulations in order to counter repre-
sentation disparity (which leads to the majority
bias when optimizing for average performance,
e.g. Figure 2) or disparity amplification. Rep-
resentation disparity refers to the pheonomenon
of achieving a high overall accuracy but low mi-
nority accuracy (Buolamwini and Gebru, 2018;
Khan and Fu, 2021). For instance, ubiquitous
speech recognition systems, such as voice assis-
tants, struggle with accents and dialects (Behra-
van et al., 2016; Yang et al., 2018; Najafian and
Russell, 2020). A minority user becomes discour-
aged by the poor performance of such system,
which leads to disparity amplification over time
due to the increasing gap between quantity of
data provided by active users (majority groups,
favored by the system from the beginning) and
groups that experienced poor performance due to
the initial representation disparity.

• Calibration coefficients can also be used to ac-
count for justifiable differences in difficulty across
distributions. For instance, it might be known
that one of the training distribution represents
examples collected with a deficient method, such
as, bad cameras, bad conditions, etc. Because
the task is more difficult due to data limitations,
the cost CP (w) for such a distribution will sys-
tematically be higher than for other distributions.
The simple DRO formulation (Equation (2)) then
amounts to optimizing only for this distribution.

As a consequence, small gains for the deficient
distribution will be obtained at the expense of
a massive performance degradation for all other
distributions, essentially making it as bad as the
performance for the deficient distribution.

The results presented in Section 2 and the discussion
presented in Section 3 suggest that, for all practical
purposes, this is equivalent to minimizing the expected
risk for a suitable mixture of the Pk distributions.
However, this mixture is not universal but depends
critically on the calibration coefficients rPk

. In fact,
specifying a set of calibration constants amounts to
describing what we consider to be an acceptable out-
come (acceptable subpopulation performance) for the
original bias fighting problem. What is acceptable or
not is obviously problem-dependent and can be the
object of difficult controversies.

Consequently, DRO should not be seen as a complete
solution to the bias fighting problem, but rather as
a way to produce a single system that works almost
as well on all subpopulations as the best system we
can get on each subpopulation in isolation, which by
themselves may or may not represent an acceptable
combination of results. This is the motivation for our
recommendations for addressing the majority bias in
practice using DRO (Inset 1), which are discussed in
more details in Appendix B.

Societal impact Using DRO for fairness or adver-
sarial robustness without a clear understanding of its
algorithmic limitations can have a negative societal im-
pact. Recommendations in Inset 1 and Appendix Sec-
tion B aim to prevent misuses of DRO, such as low-
ering performances on the remaining subpopulations
to match the error on the most difficult distribution.
However, our results show that it is also necessary to
address the underlying problems in the most challeng-
ing distribution. On one hand, failure to address the
issues in the minority subpopulation leaves it suscepti-
ble to unfairness, both in the application at hand and
in the future applications, where the unresolved issues
might persist. On the other hand, reducing the per-
formance of the majority populations can lead to an
unacceptable average performance, and as a result, the
system is not going to be used — which might lead to
a loss of interest in designing broadly accessible sys-
tems for this purpose (i.e., voice assistants robust to
minority accents). We hope that our results and dis-
cussion will give more context to the debate on the
sources of bias in machine learning (Hooker, 2021), as
well as help in bias mitigation in real-life scenarios.
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Fighting the majority bias with DRO: a minimal set of practical recommendations

1. Identify subpopulations Pk at risk in the available data.

2. For each subpopulation, and in isolation, determine the best performance r∗Pk
that can be achieved with

the machine learning model of choice.

3. Decide whether the r∗Pk
represent an acceptable set of performances. There is no point using DRO if

this is not the case. Instead, investigate why the model performs so poorly on the adverse distributions
(insufficient data, inadequate model, etc.) until obtaining an acceptable set of r∗Pk

.

4. Use DRO to construct a single machine learning system whose performance on each subpopulation
is not much worse than r∗Pk

. This can be achieved by using the r∗Pk
as calibration coefficients in a

Lagrangian algorithm.

5. Deploy the system on an experimental basis in order to collect more data. Sample the examples with
the lowest accuracy in order to determine whether we missed a subpopulation at risk. If one is found,
add the vulnerable subpopulation to the initial data and repeat all the steps.

Inset 1: A minimal set of practical recommendations. We elaborate on each step in the Appendix (Section B).

4.2 Adversarial examples

DRO is often presented as a good way to construct
systems robust to adversarial examples (Szegedy et al.,
2014; Madry et al., 2017). Following Example 2, this
can be formalized by considering a set Φ of all measur-
able functions ϕ that map an example pattern z to an-
other pattern ϕ(z) assumed visually indistinguishable
from z according to a predefined criterion. For in-
stance, it is common to consider the set of all transfor-
mations ϕ such that ‖z−ϕ(z)‖p ≤ κ, that is, transfor-
mations that can only modify an input pattern while
remaining in a given Lp ball.

Let Pϕ represent the distribution followed by ϕ(z)
when z follows the distribution P . Robust solutions
against the class of adversarial perturbation Φ can be
expressed as the DRO problem

min
w

{
max
ϕ∈Φ

CPϕ(w) = max
Pϕ∈Q

CPϕ(w)

}
.

The distribution family Q = {Pϕ : ϕ ∈ Φ} is typically
much larger than the ones considered in the bias fight-
ing scenario. Instead of representing a finite number
of subpopulations, the family Q is usually infinite and
uncountable.

Theorem 2 handles infinite distribution classes using
an additional tightness assumption. It is relatively
easy to construct a sequence of mixtures distributions
for which the expected gradient w∗ tends to zero. The
tightness assumption tells us that there exists a distri-
bution that achieves that limit, that is, there exists a
distribution for which the solution w∗ is a stationary
point of the expected loss.

Since the tightness assumption is trivially satisfied

when the examples belong to a bounded domain (as
is the case for images), this result suggests that there
exists a distribution of images for which the ordinary
training procedure yields a solution robust to adver-
sarial examples. Is it true that we would not have
adversarial example issues if only we had the right ex-
amples to start with?

More precisely, the theorem states that a DRO local
minimum is a stationary point of the expected risk
for an example distribution that depends on all the
details of the DRO problem and in particular on the
definition of the set Φ of adversarial perturbations,
which itself encodes which images are considered vi-
sually indistinguishable from a reference image. On
one hand, we could use DRO with a class of adver-
sarial perturbations Φ whose effect is conservatively
below the visual distinguishability threshold. For in-
stance, the perturbation might be limited to changing
pixel values by no more than a small threshold. Alas,
the solution might be fooled by adversarial examples
that do not satisfy this strict condition but neverthe-
less are still visually indistinguishable from the origi-
nal image. On the other hand, we could use DRO with
much broader class of perturbation, potentially includ-
ing some that would be clear to a human observer.
For instance, dithering patterns might occasionally in-
troduce enough noise to be perceptually meaningful.
Because such perturbations can dominate the DRO
problem, it becomes necessary to introduce calibra-
tion constants in order to account for the variation in
performance that can be justifiably expected with such
perturbations.

Because DRO is fundamentally related to minimizing
the expected cost for a well crafted example distribu-
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tion, DRO does not really solve the original problem
but merely displaces it into the specification of the
class of adversarial perturbations or the selection of
the associated cost calibration constants. However,
the adversarial example scenario is substantially more
challenging than the bias fighting scenario: because
the number of potential perturbations is much larger
than the number of potentially vulnerable subpopu-
lations, we cannot work around the problem by first
working on each of them in isolation as suggested in the
Inset 1. We find concerning that using DRO for adver-
sarial robustness without a reliable perceptual distance
might be fundamentally flawed (Sharif et al., 2018).

5 RELATED WORK

This work is motivated by Proposition 2 of Arjovsky
et al. (2019) which restates DRO for a finite class of
distributions as a constrained optimization problem
and shows under the usual KKT conditions that a so-
lution of the DRO problem must be a stationary point
of a certain mixture of the original distributions. Our
analysis substantially broadens this result by showing
that it still holds in the common setup where the class
of distributions is infinite (Bagnell, 2005; Namkoong
and Duchi, 2016; Blanchet et al., 2019; Staib and
Jegelka, 2019) and by providing a sufficiency result.
These extended results amount to a practical equiv-
alence, with substantial consequences for important
applications of DRO such as fighting bias in machine
learning or constructing systems that resist adversarial
examples.

As we discuss in later sections, the efficacy of DRO
largely depends on setting the values of calibration
coefficients (2.1). An existing approach, MaxiMin,
(Meinshausen et al., 2015), sets calibration coefficients
to the variance of a corresponding distribution, rP =
Var[YP ], in order to maximize the minimum explained
variance across distributions. Min-max regret is a re-
lated approach (Guillaume and Dubois, 2020).

Although biases in machine learning are more com-
plex than differences in error rates (Barocas et al.,
2019; Blodgett et al., 2020; Mehrabi et al., 2021), they
often arise because the training algorithm optimizes
a single performance criterion (Barocas et al., 2019,
p218). Using DRO to minimize the worst error is
therefore a useful template to understand how it can
or cannot be used to address bias. For instance, DRO
has been advocated to address biases in text autocom-
pletion tasks (Hashimoto et al., 2018), to achieve ro-
bustness in the presence of noisy minority subpopula-
tions (Wang et al., 2020), to predict recidivism (Duchi
et al., 2020), or to protect sensitive attributes (Taske-
sen et al., 2020). Recent work (Zhou et al., 2021) anal-

yses the failings of DRO in the presence of imperfect
partitions.

DRO is often advocated to achieve robustness against
adversarial examples (Szegedy et al., 2014; Goodfellow
et al., 2014a; Madry et al., 2017; Ren and Majumdar,
2021). Finding the appropriate choice for adversar-
ial risk and making it match some notion of percep-
tual similarity is a topic of ongoing research. Var-
ious schemes have been proposed in the past, using
L0 norms (Papernot et al., 2015), L2 norms (Szegedy
et al., 2014), L∞ norms (Goodfellow et al., 2014a;
Madry et al., 2017), Wasserstein balls (Sinha et al.,
2018), and perceptual criteria such as SSIM (Wang
et al., 2004). Yet, all these criteria still get fooled by
simple adversarial examples (Sharif et al., 2018). In
this paper, we discuss how the practice of using DRO
in adversarial robustness is problematic in the absence
of a reliable perceptual distance.

6 CONCLUSION

We establish a series of theoretical results that clar-
ify the relation between a well known algorithmic ap-
proach, DRO, and optimization of an expected error
defined on a suitable combination of the original distri-
butions. Contrary to the usual convex duality results,
these results hold for nonconvex costs and for infinite
families of distributions. These results also provide
some support for the common practice of leveraging
this quasi-equivalence to design efficient DRO algo-
rithms. But it also becomes clear that running such an
imperfect DRO algorithms is equivalent to optimizing
the expected risk for a well crafted distribution.

We then discuss the consequences of these results for
two practical problems, namely majority bias in ma-
chine learning and adversarial examples. Whether
fighting bias in machine learning systems is a data cu-
ration problem or an algorithmic problem has been
the object of much discussion. We extend this discus-
sion by adding results which show an existence of an
equivalent training distribution. However, this equiva-
lent training distribution depends on minute details of
the DRO formulation such as calibration coefficients or
the exact definition of the family of distributions under
consideration. Practically, this means that DRO is not
a complete solution of the practical problem because it
displaces the difficulty into setting the specifics of its
formulation, e.g. the choice of calibration constants.

In the case of fighting bias against a discrete number
of subpopulations, it makes sense to see DRO as a
way to construct a single system that works almost as
well as systems optimized for each subpopulation in
isolation. This forms the basis for our minimal set of
practical recommendations for addressing the majority
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bias (Inset 1) that can lead to a significant improve-
ment in terms of understanding DRO relative to the
current practice.

We then argue that a similar approach cannot be ap-
plied in the case of adversarial examples because po-
tential attacks form an infinite and uncountable fam-
ily. Although DRO has been shown to help, it may
not be able to provide a complete solution without a
precise understanding of what constitutes visually in-
distinguishable images.
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Supplementary Material

A LAGRANGIAN ALGORITHMS FOR DRO

The calibrated DRO problem (3) is easily rewritten as a constrained optimization problem by introducing a slack
variable L:

min
w,L

L s.t. ∀P ∈ Q. CP (w)− rP − L ≤ 0 .

With convex loss function, finite Q, and under adequate qualification conditions (Boyd and Vandenberghe, 2014;
Bertsekas, 2009), convex duality theory suggests to write the Lagrangian

L(w,M, λ1 . . . λK) = M +
∑
k

λk
(
CPk

(w)− rP −M
)
,

and solve instead the dual problem,

max
λk≥0

{
D(λ1 . . . λK)

∆
= min
w,M

L(w,M, λ1 . . . λK)

}
The solution must satisfy

∑
k λk = 1 because the dual D(λ1 . . . λk) is −∞ when this is not the case. With this

knowledge, the dual problem becomes

max
λk≥0∑
kλk=1

{
D(λ1 . . . λK) =

(
min
w

∑
k

λkCPk
(w)

)
−

(∑
k

λkrPk

)}
.

The inner optimization problem is precisely the minimization of the expected risk with respect to the mixture∑
k λkPk and therefore lends itself to many popular gradient descent methods.

Convex duality also clarifies the relation between the mixture coefficients λk and the calibration constants rPk
.

Increasing the weight of a distribution in the mixture is equivalent to reducing the corresponding calibration
coefficient. This observation then leads to a plethora of saddle-point seeking algorithms such as Uzawa itera-
tions (Arrow et al., 1958).

This stategy is illustrated in Algorithm 1. Although this particular instance uses a temperature parameter β to
smooth the mixture coefficient update rule, it is also common to focus on a single term with β = +∞. When
this is the case, each outer iteration of Algorithm 1 merely amounts to augmenting the training set with an extra
copy of the examples associated with most adverse subpopulation.

Because of their simplicity and effectiveness, such Lagrangian DRO algorithms are widely used with deep learning
system (Sagawa et al., 2020a; Augustin et al., 2020). Our theoretical results provide a measure support for the
practice of applying such algorithm to nonconvex losses.

A crucial assumption for this algorithm is the idea that increasing the weight of a distribution in the mixture
amounts to finding a local DRO minimum with a lower calibration coefficient for that distribution. This is true
in the convex case. This requires a more precise discussion in the nonconvex case. Suppose for instance that one
modifies the mixture coefficients by slightly increasing λ1 by a small δ > 0 and re-normalizing:

λ′1 = 1
Z (λ1 + δ) λ′k = 1

Zλk ∀k > 1
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C1 − r1

C2 − r2

max(C1 − r1, C2 − r2) 1
2C1 + 1

2C2

w

Figure 3: Both minima of Cmix(w) = 1
2C1 + 1

2C2 are solutions of a DRO problem, albeit one with different
calibration constants r1 and r2. Here r2 > r1.

1
2C1 + 1

2C2

1
4C1 + 3

4C2
1
8C1 + 7

8C2

Figure 4: Increasing the weight of the second distribution beyond a certain threshold erases the first minimum
and causes Algorithm 1 to jump to the other minimum which is a calibrated DRO minimum for r1 > r2.

Such a change can yield two outcomes. Either w∗ remains a local minimum of the new expected cost mixture,
or we can follow a descent trajectory and reach a new local minimum w′:

Z
∑
k

λ′kCPk
(w′) < Z

∑
k

λ′kCPk
(w∗) . (5)

i) Let us first assume that the old cost function increases when one moves from its local minimum w∗ to the
local minimum w′ of the new cost function∑

k

λkCPk
(w′) ≥

∑
k

λkCPk
(w∗) (6)

Subtracting (6) from (5) yields
δCP1

(w′) < δCP1
(w∗) ,

which, according to Theorem 3, means that the new local minimum w′ is a local minimum of a DRO problem
with a reduced calibration coefficient for distribution P1, just as for convex losses.

ii) However, it is also conceivable that (6) does not hold. This means that the new minimum w′ achieves a
lower cost than w∗ for both the old and new mixture costs. In other words, tweaking the mixture allowed us
to escape the attraction basin of the local minimum w∗. From the perspective of algorithm 1, this disrupts
the determination of the mixture coefficient, but this is nevertheless progress because both the old and new
mixture costs are lower. In theory, this can only happen a finite number of times in a neural network because
there is only a finite number of attraction basins. In practice, this never happens: stochastic gradient descent
in neural networks usually follows a path with slowly decreasing cost without hopping from one attraction
basin to another one (Goodfellow et al., 2014b; Sagun et al., 2018).

As mentioned earlier, it is also conceivable that w∗ remains a local minimum with the new mixture cost. Algo-
rithm 1 then keeps increasing the weight of distribution P1 as longs as the cost CP1

(w∗) = CP1
(w′) remains too

high with respect to the desired calibration coefficients. This last case covers two distinct scenarios.

iii) The Lagrangian algorithm could keep increasing the weight of the first distribution without moving away
from the local minimum w∗. The inner loop eventually minimizes the empirical risk for the first distribution
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only, yet without achieving progress. This suggests that we have reached a disappointing bound on the best
performance achievable with our model using training data sampled from this first distribution.

iv) Alternatively, the old mixture local minimum w∗ could stop being a local minimum of the new mixture once
the first distribution weight reaches a certain threshold. Consider for instance the problem of Figure 1. Even
though the DRO minimum corresponds to a local maximum of the mixture cost Cmix(w) = 1

2C1 + 1
2C2,

Theorem 3 tells us that both minima of this mixture cost are also local DRO minima, albeit for different
calibration constants ri. Figure 3 shows the case where r2 > r1. Figure 4 shows that increasing the
weight of the second cost function beyond a certain threshold eventually erases the left minimum and causes
Algorithm 1 to jump to the condition r1 > r2. In other words, our algorithm is not able to simultaneously
keep both cost functions as low as they could separately be. This either suggests that these two goals are
incompatible, or that the model does not have enough capacity to simultaneously achieve them together.
As usual with neural networks, the remedy is overparametrization. . .

One can derive two conclusions from this brief analysis. First, as long as we use a Lagrangian descent algorithm
to solve the DRO problem, there is little point being concerned about stationary points of the mixture cost that
are not local minima because (a) the algorithm is not going to find them anyway, and (b) overparametrizing the
network is likely to make them disappear anyway (scenario iv above). Second, the most concerning scenario is
the case where a single distribution or subpopulation dominates the DRO problem because our model is unable
to achieve a satisfactory performance even when it is trained to minimize the expected cost for that distribution
only. When this is the case, DRO cannot help.

B Practical recommendations

In this section, we provide a minimal set of practical recommendations to machine learning engineers who face the
difficult task of constructing and deploying bias-sensitive machine learning systems. We do not pretend that these
recommendations are sufficient to address the bias problem, but merely represent intuitively sensible steps that
are supported by our mathematical insights and should not be avoided. We summarize these recommendations
in Inset 1.

We also motivate and elaborate on each step below.

The identification of the subpopulations of concern frames the problem because it also defines the success criterion,
that is, bias mitigation with respect to meaningful subpopulations. Key factors to consider are future users of
the system, information on which groups have previously suffered from unfairness in similar scenarios, and the
quantity and quality of the available data at the training time. In particular, we must at least have enough data
to evaluate the subpopulation performances reliably. For instance, in a face recognition system, subpopulations
might contain images of people representing distinct ethnicities (Klare et al., 2012).

Working on each subpopulation in isolation attempts to determine the best achievable performance on each
subpopulation if this subpopulation were the only target. Data available for minority subpopulations might be
limited. In such case, data from remaining subpopulations can be used as a regularizer to improve performance
on the subpopulation P of interest. For instance, we can train on a mixture of data coming from both the
subpopulation P (with weight 1) and the remaining subpopulations (with weights αP ). We then treat αP as
a hyperparameter that we tune to achieve the best validation performance on data from the subpopulation P .
Our estimate of r∗P is then the performance of the resulting system, either measured on the validation set, or on
held out data if such data is available in sufficient quantity. This is why it is important to have sufficient data to
reliably validate a model performance on each subpopulation. Techniques proposed to tackle noisy datasets and
scenarios with limited labelled examples (active learning (Ren et al., 2020), transfer learning (Pan and Yang,
2010; Tan et al., 2018)) can be used to increase the performance.

We can then judge whether the r∗P represent an acceptable set of performances for a final system. No DRO
solution can perform better on a subpopulation P than a model trained for this subpopulation P only. If the set
of performances obtained in the previous steps is not acceptable, we must identify the root cause of this problem.
For instance, if poor performance stems from insufficient data quality for the subpopulation, this problem will
persist at the step of finding a consistent system using DRO. We need to then focus on improving data quality
for vulnerable subpopulations. We recommend investigating the root cause of insufficient performance for each
of the vulnerable subpopulations in isolation.
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If minimum cost that can be achieved per each subpopulation is acceptable, we can then build a system that
works consistently well across the subpopulations using DRO. In the simplest case, calibration coefficients rP
per each subpopulation are going to be equal to the optimum expected risk for that subpopulation alone,
rP = minw CP (w). We can also adjust the calibration coefficients to prevent overfitting to individual subpop-
ulations (Sagawa et al., 2020a). For n examples in a certain subpopulation P , the expected risk CP (w) can
be replaced by its empirical estimate CPn(w)+ augmented with a calibration constant that decreases when the
number n of training examples increases. Moreover, the model size often needs to be larger than the model
size that achieves the best performance on each individual subpopulations. Intuitively, this is needed because
handling all subpopulations at once might be more demanding than handling only one. In the main paper, we
also argue that overparametrization improves the issues associated with DRO local minima that are stationary
points of an expected loss mixture but are not local minima of this mixture. As a result, overparametrization
helps practical Lagragian DRO algorithms to find a good solution.

Finally, we must remain aware that the final system critically depends on the initial selection of the subpop-
ulations of interest. Therefore, it remains essential to cautiously deploy such a system and to monitor its
performance during the ramp up. In particular, the worst performing cases should be examined for consistent
patterns that might indicate that a vulnerable subpopulation was not considered in the problem specification.
When this is the case, the correct solution is to include the initially omitted subpopulation and start again.
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