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1 Context

Given a finite set of m examples z1, . . . , zm and a strictly convex differen-
tiable loss function ℓ(z, θ) defined on a parameter vector θ ∈ R

d, we are
interested in minimizing the cost function

min
θ

C(θ) =
1

m

m
∑

i=1

ℓ(zi, θ) .

One way to perform such a minimization is to use a stochastic gradient al-
gorithm. Starting from some initial value θ[1], iteration t consists in picking
an example z[t] and applying the stochastic gradient update

θ[t + 1] = θ[t] − ηt
∂ℓ

∂θ
ℓ(z[t], θ[t]) ,

where the sequence of positive scalars ηt satisfies the well known Robbins-
Monro conditions

∑

t ηt = ∞ and
∑

t η2
t < ∞. We consider three ways to

pick the example z[t] at each iteration:

• Random Examples are drawn uniformly from the training set at each
iteration.

• Cycle Examples are picked sequentially from the randomly shuffled
training set, that is, z[km + t] = zσ(t), where σ is a random permuta-
tion of {1, . . . , m}, and k is a nonnegative integer, and t ∈ {1, . . . , m}.

• Shuffle Examples are still picked sequentially but the training set is
shuffled before each pass, that is, z[km + t] = zσk(t), where the σk are
random permutations of {1, . . . , m}, and k is a nonnegative integer,
and t ∈ {1, . . . , m}.
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With suitable assumptions on the function ℓ, the random case can be
treated with well known stochastic approximation results [1, 5]. With gains
of the form ηt = c/(t + t0) and sufficiently large values of the constant c,
one obtains results such as

E

[

C(θ[t]) − min
θ

C(θ)

]

∼
1

t
,

where the expectation is taken over the random choice of examples at each
iteration. Various theoretical works [2, 3, 6] indicate that no choice of ηt

can lead to faster convergence rates than t−1.

2 Experiments

We report now empirical results obtained with the three method.
The task is the classification of RCV1 documents belonging to class

CCAT [4]. Each of the 781,265 examples is a pair composed of a 47,152
dimensional vector xi representing a document and a variable yi = ±1 rep-
resenting its appartenance to the class CCAT. The parameter vector θ is
also a 47,152 dimensional vector and the loss function is

ℓ(x, y, θ) = log
(

1 + e−y (θ.x)
)

.

All experiments were achieved using a variant of the svmsgd2 program and
datasets.1 The only modification consists in implementing our three schemes
for selecting examples at each iteration.

Figure 1 shows log-log plots of the evolution of C(θ[t]) as a function of
the number of iterations. The slope of the curve indicates the exponent of
the convergence of the algorithm.

• The random case displays a t−1 convergence as predicted by the stochas-
tic approximation theory.

• The cycle case displays a t−α convergence with α significantly greater
than one. This means that this example selection strategy leads to a
faster convergence. The exact value of α changes when we consider
different permutations of the examples.

• The shuffle case displays a more chaotic convergence. A linear inter-
polation of the curve leads to an exponent α that is curiously close to

1http://leon.bottou.org/projects/sgd.

2



two, suggesting that we have an average t−2 convergence. This result
is stable when we repeat the experiment with different permutations
of the training set.

3 The Question

In light of the theoretical works associated with stochastic approximations,
stochastic algorithms that converge faster than t−1 are very surprising.

In fact, the stochastic approximation results rely on randomness assump-
tion on the successive choice of examples are independent. Both the cycle

and the shuffle break these assumptions but provide a more even coverage
of the training set.

What can we prove for the cycle and the shuffle cases?
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Figure 1: Evolution of C(θ[t]) for our three example selection strategies. The
horizontal axe counts the number of epoch. One epoch represents 781,265
iterations, that is, one pass over the training set.
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