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Abstract
Dot product embeddings take a graph and con-
struct vectors for nodes such that dot products
between two vectors give the strength of the edge.
Dot products make a strong transitivity assump-
tion, however, many important forces generating
graphs in the real world lead to non-transitive
relationships. We remove the transitivity assump-
tion by embedding nodes into a pseudo-Euclidean
space - giving each node an attract and a repel
vector. The inner product between two nodes is
defined by taking the dot product in attract vectors
and subtracting the dot product in repel vectors.
Pseudo-Euclidean embeddings can compress net-
works efficiently, allow for multiple notions of
nearest neighbors each with their own interpre-
tation, and can be ‘slotted’ into existing models
such as exponential family embeddings or graph
neural networks for better link prediction.

1. Introduction
Network analysis is ubiquitous across many disciplines rang-
ing from the natural (Jeong et al., 2001; Barabasi & Oltvai,
2004) to the social sciences (Granovetter, 1985; Easley et al.,
2010; Jackson, 2010). In general, graphs are high dimen-
sional objects and can be difficult to work with. Finding
easy representations is thus an important problem in applied
machine learning. In the symmetric (or undirected) case a
workhorse method are node embedding models (Lovász &
Vesztergombi, 1999; Ng et al., 2002; Perozzi et al., 2014;
Tang et al., 2015; Grover & Leskovec, 2016; Athreya et al.,
2017; Lerer et al., 2019). In these models each node in a
network is associated with an embedding (a.k.a latent vec-
tor) and dot products between vectors reflect the strength of
an edge between two nodes.

We consider situations where a network exhibits a lack of
‘transitivity’ - A is strongly connected to B, B is strongly
connected to C, but A is not connected to C. Such unclosed
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triangles are sometimes called ‘forbidden triads’ (Granovet-
ter, 1973). Despite being forbidden, forces such as het-
erophily or role similarity in real networks give rise to such
triads. A major weakness of dot product embeddings is their
inability to easily represent networks that contain many such
examples (Seshadhri et al., 2020).

Our key contribution is to consider embedding nodes into
a pseudo-Euclidean space. Nodes still receive real vector
embeddings, however, there is a modified ‘inner product’
where the latent vectors are split into two parts: one on
which nodes attract (similar are more likely to connect) and
one on which they repel (similar are less likely to connect).
The total strength of an edge is modeled as the dot product of
the attract sub-vector minus the dot product of the repel sub-
vectors. We refer to this as an attract-repel (AR) embedding.
We discuss multiplicity of solutions to an AR decomposition
and give a give a method for constructing ‘minimal’ AR
embeddings from an adjacency matrix using a combination
of convex optimization and eigendecomposition.

We show that AR embeddings have much better represen-
tation capability in real-world graphs than Euclidean ones.
We then show that AR embeddings can be used to under-
stand the structure of graphs. In social networks, the relative
contribution of A vs R components can be used measure het-
erophily both at the graph and node level. This measurement
is fully latent and does not use any label information.

Pseudo-Euclidean space admit multiple notions of “near-
est neighbors.” Different notions each have interpretable
properties in different types of networks. In co-occurrence
graphs neighbors in R space map well onto the notion of
‘substitutability’. In biological co-activation networks dif-
ferent notions of nearest neighbors appear to map well onto
the notions of activation and inhibition.

Finally, we focus on the task of link prediction. The AR
decomposition can be slotted into the loss function of any
model which outputs node embedding vectors. We show
that this can lead to increases in model performance for ex-
ponential family embeddings (Rudolph et al., 2016) as well
as graph convolutional networks (Kipf & Welling, 2016) in
intransitive graphs.

There is recent interest in using hyperbolic geometry to
perform graph embeddings as many graphs of interest have



hierarchical structure and Euclidean embeddings have a hard
time representing hierarchies (Nickel & Kiela, 2017; 2018;
Liu et al., 2019). We show that hyperbolic space is a man-
ifold in pseudo-Euclidean space and thus AR embeddings
are also able to represent hierarchies.

2. Related Work
2.1. VV’ vs. VU’ Factorizations

A large literature in graph embeddings considers factorizing
the adjacency matrix as M ∼ V V ′ (Athreya et al., 2017) or
as or as M ∼ f(V V ′) for some choices of f (Hoff et al.,
2002; Rudolph et al., 2016). Other methods work indirectly
on the adjacency matrix by constructing the embeddings
from co-occurrences in random walks (Perozzi et al., 2014;
Grover & Leskovec, 2016; Tang et al., 2015).

Recently Seshadhri et al. (2020) show that Euclidean dot
product models cannot reproduce the distribution of trian-
gles and degrees in real world social networks, no matter
what algorithm is used to construct the embeddings. Chan-
puriya et al. (2020) respond and argue for factorizing ad-
jacency matrices as M ∼ V U ′. Our results show that the
M ∼ V U ′ formalization is ‘too general’ for undirected
graphs since symmetry implies uivj = ujvi, so V U ′ can
be written in a pseudo-Euclidean form M ∼ AA′ −RR′.

2.2. Non-Metric Visualization

Van der Maaten & Hinton (2012) considers extending t-
SNE (Van der Maaten & Hinton, 2008) to intransitive sim-
ilarity matrices by embedding objects in multiple t-SNE
maps simultaneously - i.e. in multiple vector spaces each
of dimension 2 (because of the interest in visualization).
Constructing visualization techniques that take advantage
of the unique geometry of pseudo-Euclidean space is an
extremely interesting future direction.

2.3. The Eigenmodel

The ‘Eigenmodel’ is the closest work to our own (Hoff,
2007). It decomposes the adjacency matrix into a learned
V DV ′ where D is a diagonal matrix. Our work builds
upon this in several ways. First, we formalize much of
the intuition in that paper. Second, we give a method for
guaranteed computation of the ‘simplest’ AR decomposition.
Third, we study properties of the model beyond just better
out of sample fit (e.g. interpretation of ‘neighbors’).

2.4. Directed Graph Embeddings

Our work intersects a large literature on directed graphs.
The ComplEx approach approximates knowledge graphs
as A ∼ EV E′ where V is the diagonal matrix of eigenval-
ues which can take complex values (Trouillon et al., 2016).

When the matrix is symmetric V is guaranteed real so it is
very close to the Eigenmodel above. Sim et al. (2021) con-
siders the intransitivity problem in undirected graphs and
performs a pseudo-Riemannian embedding to deal with it.
The symmetry of undirected graphs gives us the additional
structure that allows us to use off-the-shelf optimization
techniques as well as good interpretability properties.

3. Dot Product Embeddings
We consider the general problem of embedding a weighted
undirected graph G = (N,E). Nodes N are generically
indexed by i, j, edges eij , with eij = eji. We ignore self-
edges in the graph, so eii is not defined.

We consider embeddings into RD endowed with the dot
product x · y =

∑d
j=1 xjyj . We refer to a set of vectors,

one for each node, V = {v1, . . . , vN} ⊂ RD with the dot
product as an Euclidean embedding of the graph. Let say
that D is the dimension of the embedding.

Definition 3.1. We say that a Euclidean embedding V rep-
resents the graph if for all i ̸= j we have

vi · vj = eij .

Our interest will be the dimension of the embedding V .

Proposition 3.2. Let G be an arbitrary graph. There exists
an infinitely sized family of dot product embeddings {V}
that represents G

We leave the proof to the Appendix. However, while the
Proposition shows that Euclidean embeddings always ex-
ist, we will now see that this embedding may not be low
dimensional even when the underlying graph is ‘simple’.

Star M-Bipartite

Consider the graphs above with edge weights eij ∈ {0, 1}
with colors only added for visualization purposes. For the
dot product to represent any star graph any two green nodes
must have vi · vj = 0, but this means they must be orthog-
onal. Thus, in the star graphs, we need at least as many
dimensions as peripheral nodes. The M-bipartite graph is
another example: this graph has a very simple structure but
it is maximally intransitive (if i is linked to j, it is never
linked to any neighbor of j). We will now formally show
that any embedding of this graph does not really compress
it. We will see later that both of these graphs have 2 di-
mensional pseudo-Euclidean embeddings for any choice of
M .



Proposition 3.3. If V is a Euclidean embedding that
represents the M -bipartite graph then it has dimension
≥ 2M − 1.

Again, we relegate the proof to the Appendix.

4. Pseudo-Euclidean Embeddings and
Attract-Repel

Let us consider the counterexample above more. In the M -
bipartite graph all green nodes have the same connectivity
pattern, so for maximum compression we would like to give
them the same representation, however, such a construction
means they will have high dot product with each other. So,
such an efficient encoding is impossible in the dot product
model. We will now work with pseudo-Euclidean space
where vectors can have inner product 0 with themselves and
where the triangle inequality does not apply, thus allowing
for efficient coding of the M -bipartite and other intransitive
graphs.

Given RM we endow it with ·k with k > 0 which is a
symmetric bilinear form (which is not technically an inner
product but we will refer to as one) defined as

vi ·k vj =

M−k∑
p=1

vipvjp −
M∑

q=M−k+1

viqvjq.

Setting k = 0 we have standard Euclidean space. The
special case of M = 4 and k = 1 is known as Minkowski
spacetime (Naber, 2012). We consider the general (M,k)
case here.

For simplicity of notation, instead of considering a single
vector vi per node, we split the vectors into ai and ri so
that we can write the score as ai · aj − ri · rj where · is
the standard dot product. We refer to this as an attract-
repel (AR) embedding. We can still define an embedding as
representing a graph:
Definition 4.1. We say that a AR embedding represents
G if for any two i, j with i ̸= j we have that

eij = ai · aj − ri · rj .

Both the star and M -bipartite graphs have high dimensional
Euclidean-only representations but a simple AR decompo-
sition where ai = 1 for all i and ri = 1 if i is green and
ri = −1 if i is purple. We know from the prior section
that a Euclidean (and thus an AR embedding with R empty)
always exists so the AR problem is over-parametrized in a
non-trivial way.

4.1. Minimal Pseudo-Euclidean Embeddings

We now discuss how ‘minimal’ AR embeddings can be
found. Let AR be the set of all AR embeddings repre-

senting a graph G and let A and R be the stacked em-
bedding vectors for each node. We will look for the so-
lution with the smallest Frobenius norm, a solution to
min(A,R)∈AR ||A||2F + ||R||2F . We first show that this so-
lution can be found using convex optimization and eigen-
decomposition which gives better guarantees than a local
search.

Start with a graph G and consider the adjacency matrix of
G. Recall that we do not look at self-edges in our graph,
therefore any choice of diagonal for the matrix makes it
a valid adjacency matrix for all i ̸= j. Let D be an M -
dimensional vector and denote by MD as the matrix that
is the adjacency matrix for G on the off-diagonal and has
arbitrary diagonal D.

We now show that finding the simplest AR decomposition
is strongly related to finding an appropriate choice for D.
In particular, we choose D to minimize the nuclear norm of
MD (Candès & Recht, 2009). More formally:

Proposition 4.2. Let A,R be a solution to
min(A,R)∈AR ||A||2F + ||R||2F . Let MD be the solu-
tion to minD ||MD||∗. Then MD = A′A−R′R.

We leave the proof to the Appendix as it uses standard tech-
niques from the literature. However, we use this equivalence
to construct the lowest norm AR embedding:

Algorithm 1 Construct Minimal AR Decomposition
Solve the convex problem:

min
M̂

||M̂ ||∗ s.t. M̂ij = eij∀i ̸= j

Compute the eigendecomposition of M̂ = Q′DQ.
if low rank is desired then

Truncate the n− k smallest in absolute value eigenval-
ues to 0

end if
Let D− be the strictly negative eigenvalues
D+ be the strictly positive ones
Let Q− correspond to the eigenvectors with negative
eigenvalues and Q+ be the eigenvectors with positive
eigenvalues.
Set A = Q+

√
D+ and set R = Q−√−D−

Rows of A are ai, rows of R are ri

For relatively small matrices, we can solve nuclear norm
minimization directly. However, it scales poorly with ma-
trix size. A popular solution for medium size approximate
solutions to the nuclear norm is SVT (Cai et al. (2010)). We
use code implemented in the R package filling (You, 2020).

Often we are willing to take a lossy compression of our
data - i.e. a low rank representation. To select the ‘natural’
rank we use generalized Gabriel bi-cross-validation (BCV)



(Owen et al., 2009). In BCV the row and column indices
are split into folds, one fold of the matrix, is held out while
the rest of the matrix is used to fit a low-rank factorization.
The estimated ‘natural’ rank of the matrix is the one which
minimizes average held out loss. We point the readers to
the exposition in (Owen et al., 2009) which discusses the
guarantees of BCV as well as advantages of this method
over many other choices. However, any method for rank
selection for can be used in the procedure above.

For cases where SVT cannot be applied, we will use gra-
dient descent methods and add an explicit regularizer on
||A||, ||R|| when we deal with link prediction.

5. Hierarchical or ‘Tree-Like’ Graphs and AR
A recent literature focuses on another failure point of Eu-
clidean embeddings: they are poor at representing hiearchi-
cal graphs. A proposed solution to this problem is instead
embedding graphs into hyperbolic space which has better
representation capacity for such graphs (Nickel & Kiela,
2017). Note that hyperbolic models continue to be met-
ric, yet we will see there is a deep relationship between
pseudo-Euclidean embeddings and hyperbolic ones.

We follow the exposition in Nickel & Kiela (2017) to in-
troduce this model. The Poincare model of d-dimensional
hyperbolic space is given by the open ball Bd = {x ∈
Rd|||x|| < 1} endowed with the metric tensor gx =

(
2

1− ||x||2
)gE where gE is the Euclidean metric tensor.

The distance between any two points in the poincare model
is given by

d(x, y) = arccosh(1 + 2
||x− y||2

(1− ||x||2)(1− ||y||2)
).

While so far we have focused on exact representations that
require eij = vi · vj , the experimental measures in Nickel
& Kiela (2017) use a slightly different criterion, easier to
apply in unweighted (eij ∈ {1, 0}) graphs:

Definition 5.1. A set of vectors V with metric d order-
represents an unweighted graph if for any i, j with eij = 1
and k with eik = 0 we have d(i, j) < d(i, k). In other
words, for any node any other nodes it is connected to are
closer to it in embedding space than any non-connected
nodes.

For our comparison purposes we will work with this weaker
requirement. Adapting the definition to the AR product
means simply replacing the d(i, ·) with the AR product and
reversing the inequality (since in distance more similar is
smaller but in inner product more similar is larger). Given
these definitions we can now show the following result:

Proposition 5.2. Let G be a graph that is order-represented

by a hyperbolic embedding V of dimension d. Then there
exists a d+1 dimensional AR embedding with R dimension
1 that also order-represents the graph.

The proof of this Proposition is relatively straighforward and
uses fact that there is a diffeomorphic model of hyperbolic
space called the Lorenz model (Nickel & Kiela, 2018). We
relegate it to the Appendix.

6. “Neighbors” in Pseudo-Euclidean Space
One of the most common uses of embeddings in practice
is clustering or nearest neighbor lookup. Formally, the
problem is: given a query vector q and a database of node
embeddings for all nodes j ̸= q we want to find the nearest
neighbor of q.1 Normal Euclidean embeddings have a single
notion of nearest neighbor given by argmaxjvq · vj .

In this section we will show 1) there are at least 4 interest-
ing notions of ‘neighbor’ in pseudo-Euclidean space, each
has a different interpretation, 2) in practice we can still
use Euclidean nearest neighbor libraries by appropriately
formatting the query vector.

First, we write the database of vectors D to be searched as
the concatenation of vectors [aj , rj ] for each node j. We
can represent the query q as the concatenation [aq,−rq]. If
we compute dot product neighbors of q we get back nodes
with high values of aq · aj − rq · rj . This corresponds to
nodes j with high eqj in the original graph. We will refer
to this as ‘first order’ similarity of nodes and denote it by
F (q, j).

We can also represent q as [aq, rq]. Finding standard dot
product nearest neighbors in this case results in nodes j
with high values of aq · aj + rq · rj . If q and j have a
very high value of this product, it means that for any other
node k, eij and eik are very close. Thus, this returns nodes
with similar neighborhoods to q, which is sometimes called
‘second order’ similarity (Tang et al., 2015), we denote by
S(q, j).

We consider the difference S(q, j)−F (q, j). Given a query
node q a node j scores high on this composite metric if it
has the same neighbors but is not connected to q. In other
words, if q and j are part of many forbidden triads. We
will later see that this corresponds to ‘substitute’ pairs in
co-ocurrence graphs. Replacing F, S by their definitions
gives aq · aj + rq · rj − aq · aj − rq · rj = 2rq · rj . Since
distances here are dimensionless we can replace this with
rq · rj - i.e. the dot product nearest neighbor in R space or
a lookup using the [0, rq] as the query vector.

1This is used in many real world machine learning pipelines un-
der the name of ‘vector databases’ (Raghavan & Wong, 1986) with
recent interest in constructing fast, large-scale, nearest neighbor
lookup libraries (Johnson et al., 2019).



Proximity Interpretation
ai · aj − ri · rj Measures whether i, j are directly con-

nected
ai · aj + ri · rj Measures whether i, j connected to

same other nodes
ri · rj Measures whether i, j are part of for-

bidden triads - i.e. connected to similar
others but not to each other - useful in
finding ‘substitute’ nodes

ai · aj Measures whether i, j are part of many
triangles - connected to same other
nodes and to each other

Figure 1. While Euclidean space has a single notion of proximity,
pseudo-Euclidean embeddings admit multiple notions of proximity
between nodes. Here we summarize four different ways of com-
puting node proximity and their interpretation in practice.

The final notion we consider are nodes j that score high
on S(q, j) + F (q, j). These nodes are nodes which have
similar neighborhoods and are strongly connected to each
other. In other words, these are nodes that are part of many
triangles with q. The same argument as the paragraph above
gives that these are nodes with high similarity in A space,
aq · aj . This corresponds to standard nearest neighbors in A
space or lookups using the query vector [aq, 0].

7. Empirical Evaluation
We now turn to an empirical evaluation of pseudo-Euclidean
embeddings. We will evaluate representational capacity (ex-
periments 1, 2), ability to learn about graphs from different
notions of neighbors (experiments 3A, 3B, 4A, 4B, 5), and
finally generalization capacity when slotted into commonly
used link prediction models (experiment 6).

7.1. Experiment 1: AR vs Euclidean on Social Graphs

Our theoretical results show that AR embeddings require
fewer, and sometimes drastically fewer, dimensions to per-
fectly represent the same graph as a dot product embedding.
We first ask: does this hold for approximate representation?

We consider the anonymized ego-networks (an ego network
takes a focal ego, takes all of their friends, and maps the
friendships between them) of 627 users of a music social
network (Rozemberczki et al., 2020). We consider users
with at least 50 friends (mean ego network size = 81.6).

We construct minimal AR embeddings as described above.
Letting eij be the true edges and êij be the model estimated
edges we first consider the variance explained in e by ê
(reconstruction precision). We consider what dimension
of embedding is required to achieve a given reconstruction
quality across our 627 networks in Figure 2. The stan-
dard dot product requires a ∼ 50% higher dimensionality
to recover the network with the same fidelity as the AR
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Figure 2. AR embeddings are much more efficient at compressing
social networks than dot product embeddings. Error bars (very
small) reflect standard errors.

decomposition.

7.2. Experiment 2: Representing Hierarchical Graphs

Theory guarantees that if hyperbolic embeddings can repre-
sent a graph, an AR representation also exists. However, just
because a solution exists doesn’t mean that gradient descent
- the most common way that embeddings are trained in prac-
tice - can actually find it. This is what we study here using
an experiment similar to Nickel & Kiela (2017) looking at
the transitive closure of the mammal subtree of WordNet
(Miller, 1995).

For the hyperbolic embeddings we use code directly from
the paper repository.

A standard method for embedding unweighted (i.e. eij ∈
{0, 1}) graphs into Euclidean space is using an exponential
family link function (Hoff et al., 2002; Rudolph et al., 2016)
which we will refer to as a logistic node embedding (LNE).
In the LNE we model p(eij = 1) = σ(vi · vj) where σ
is the sigmoid function. Another way to think about LNE
is that it is a Euclidean embedding of the matrix of logits
(rather than the original binary edges).

LNE is trained with binary cross entropy loss on the binary
edge labels. Since the graphs are sparse, we need to use
negative sampling. We use the strategy introduced in Lerer
et al. (2019) - for every positive sample eij we consider
two ‘corruptions’ eik where k is not a true neighbor of i
in the graph. In one we take k sampled uniformly from
the set of non-neighbors, in the other we take k sampled
proportional to its degree. This means that more common
nodes are represented more highly, but for graphs with fat
tailed degree distributions they do not completely dominate
the set of negative samples.

We consider the AR extension of this model (LNE-AR)

https://snap.stanford.edu/data/deezer_ego_nets.html
https://github.com/facebookresearch/poincare-embeddings


by using the AR product instead of the dot product giving
p(eij = 1) = σ(ai · aj − ri · rj). In this experiment we use
a single R dimension as suggested by our theorem, we refer
to this as LNE-AR1.
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Figure 3. Pseudo-Euclidean with a single R dimension (LNE-AR1)
embeddings are able to represent hierarchical relations while Eu-
clidean (LNE) embeddings are not.

As in Nickel & Kiela (2017) we use mean reconstruction
rank which takes every real edge (i, j) and all corresponding
negative edges (i, k) where eik = 0 and asks how many k
rank above j in terms of dot product/distance. In essence,
we ask: are true neighbors of i closer in embedding space
than non-neighbors?

Figure 3 shows our results. LNE fails completely to repre-
sent the graph even in high dimensions. We also see that
the optimization does not quite reproduce the bound of our
theorem: a 4 dimensional hyperbolic embedding represents
the graph perfectly but a 5 dimensional LNE-AR1 still is
slightly behind in terms of representation accuracy. This
small discrepancy is likely due to many factors including
the fact that while the hyperbolic code optimizes directly
for the contrastive loss, the LNE optimizes for the classifi-
cation loss and that the negative sampling and optimization
procedures are off the shelf and not tuned. Nevertheless, the
experiment shows that AR embeddings can work well in real
world graphs that exhibit both intransitivity and hierarchy.

7.3. Experiment 3: Measuring Homophily and
Heterophily using AR

We now begin to ask whether there are gains from using AR
embeddings from an interpretability standpoint. That is, can
we learn interesting things about the graph directly from the
embeddings?

In the case of social networks, there is a straightforward
interpretation of the AR decomposition. There are latent
attributes A on which birds of a feather flock together (i.e.
the homophily in the network) and there are latent attributes
R where opposites attract (the heterophily in the network).

In the AR decomposition we can see how much of a
network is explained by the R component by looking at

Network R-Fraction Node Assortativity
Wisconsin .59 .15
Texas .66 0.05
Cornell .68 0.11
Citeseer .81 0.72
Cora .81 0.82
EU .87 0.46

Table 1. Graph level R-fraction predicts node assortativity across
graphs. Node assortativity is a commonly used heuristic for identi-
fying a graph as homophilous or heterophilous.
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Figure 4. Nodes with higher R-fractions than the median in the
graph have more links to nodes with different labels. Error bars
reflect standard errors computed at the node level.

||R||2F
||A||2F + ||R||2F

. We call this the R-fraction of the network.

We can think of this as a latent measure of heterophily.

To evaluate whether R-fraction is a useful measure we con-
sider symmetric versions of standard datasets from the graph
literature: Cora (McCallum et al., 2000), Citeseer (Giles
et al., 1998), WebKB-Wisconsin, WebKB-Cornell, WebKB-
Texas (Craven et al., 1998). We also include the EU e-mail
dataset (Leskovec et al., 2007; Yin et al., 2017). Each dataset
has a label for each node and thus we can use node assortati-
tivity (fraction of neighbors sharing focal node’s label) as an
observed proxy for heterophily in the dataset as is defined in
the recent literature on heterophilic GNNs (Zhu et al., 2021;
Zheng et al., 2022).

We begin by seeing whether the R-fraction of a network
predicts its label assortativity. We use the algorithm outlined
in Section 4 to build low rank AR representations. In Figure
1 we see that the R fraction of these low rank representations
indeed predicts label assortativity at the network level.

7.4. Experiment 3B: Local Measures of Heterophily

The analysis above looks at the graph as a whole, but the
same idea can be applied to each node. Given an AR em-
bedding, we can compute the R-fraction for each node in-



dividually
||ri||

||ri||+ ||ai||
. We ask whether individuals that

have relatively high R-fractions are more likely than low-R
fraction nodes to be connected across labels. In Figure 4 we
take each graph, consider nodes with at least 5 neighbors,
and median split these nodes by R-fraction. We then look at
the number of edges they have to nodes with labels not the
same as their own. To make comparisons across networks
with very different degree distributions we normalize by the
average number of edges that a node has to other nodes of
different labels - in other words, we ask: do nodes whose
R-fraction is above the median have more edges to nodes
with different labels than average? In Figure 4 see that the
answer is yes. Again, label data is not used at all during
AR embedding construction, so we are reading per-node
‘heterophily’ purely from the graph.

7.5. Experiment 4: Finding Substitutes using AR

There is recent interest in using embedding techniques to
find substitutable products (Ruiz et al., 2020). Substitutes
in this case are defined as products which fulfill the same
need - or, in the case of co-purchase graphs, are purchased
with the same items but rarely together. For example, both
Pepsi and Coke may be purchased with Hamburgers and
Fries, but a purchase which contains Pepsi usually does not
also contain Coke. Section 6 shows that, in theory, we can
find such pairs by looking at neighbors in R space. We now
ask whether this yields meaningful substitutes in practice.

7.5.1. EXPERIMENT 4A: ROLES ON TEAMS

We begin by looking at data from the online game DotA2.
In this game individuals are placed in a team of 5, each
individual chooses one of 115 (as the time of this analysis)
‘heroes’, and the team competes against another team. As
with many team sports, there are different roles on a team
that need to be covered and so real world teams are unlikely
to include multiple copies of the same role. Heroes in DotA
are different and specialized, each able to play only a subset
of roles.

We use a publicly available Kaggle dataset of 39, 675 DotA
matches. From this data we construct a co-occurrence ma-
trix for the heroes. Letting cij be the co-occurrence be-
tween i and j. Because the co-occurences are extremely
right skewed, we consider the matrix of log(cij +1) though
qualitatively all our results go through using the raw co-
occurrence counts as well. We take the low rank (k=10)
exact AR decomposition of this co-occurrence matrix.

For each possible hero, we take the list of ‘official roles’ the
hero can play from the the DotA wiki. We construct a vector
for each hero where a 0 in a dimension indicates that the
hero cannot play that role and 1 indicates they can. We then
ask whether, given two heroes, the similarity in these ‘true
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Figure 5. In our DotA data we see that similarity in A vectors does
not predict similarity in roles very well but similarity in R vectors
(produced without knowing roles) does. Error bars reflect standard
errors computed at the bin level.

target substitute score
baking mix bisquick 0.78
baking powder baking soda 0.85
beer apple juice 0.40
brown sugar sugar 0.74
buttermilk skim milk 0.52
chicken broth vegetable broth 0.63
lemon fresh lemon juice 0.76
onion scallion 0.71
orange juice honey 0.61
parmesan cheese mozzarella 0.64
parsley dried parsley 0.59
pecan walnut 0.85
pecan sliced almond 0.65
red wine dry white wine 0.68
unsalted butter margarine 0.67
unswtd chocolate baking cocoa 0.74
vegetable oil canola oil 0.88
vinegar cider vinegar 0.89
yogurt greek yogurt 0.70

Figure 6. Substitutes for various focal ingredients found by looking
at R neighbors.

role vectors’ is predicted by their similarity in A or R space.
Since similar roles are substitutes, we should expect to see
R but not A similarity to be related to role similarity, which
is precisely what we see in Figure 5. Again, the embeddings
A and R do not use any role labels in their construction,
only co-occurrence counts.

7.5.2. EXPERIMENT 4B: SUBSTITUTES IN INGREDIENTS

We now look at a different substitute task. We use a dataset
of 180, 000+ cooking recipes (Majumder et al., 2019). We
construct the log co-occurrence matrix of the 1000 most
common ingredients in these recipes. We compute the exact
low rank (k=125) AR decomposition of this matrix.

We then look at some commonly substituted cooking ingre-
dients. We restrict to focal ingredients that appear in the
1000 most commonly used ingredients and have exact 1-1
substitutes rather than mixtures of items. In Table 2 we take
some focal ingredients and show their nearest R neighbors
using the cosine similarity. We use cosine similarity as the
length of an R or A vector encodes a node’s commonal-
ity. We include only the top neighbor for space here, in the
Appendix we include an expanded version of the table in-

https://www.dota2.com/home
https://www.kaggle.com/c/mlcourse-dota2-win-prediction/overview
https://dota2.fandom.com/wiki/Role
https://www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions
https://www.allrecipes.com/article/common-ingredient-substitutions/
https://www.allrecipes.com/article/common-ingredient-substitutions/


cluding the top 3 suggested substitutes per target ingredient.
We see that using R-similarity as a substitutability metric
seems to yield qualitatively good results in this dataset.

7.6. Experiment 5: Inhibition and Activation in
Biological Networks

Systems biology is a field focusing on study of interactions
between genes or proteins. Deterministic or stochastic dy-
namical systems are usually used to model these interactions.
However, the topology of the governing equations is quite
often partially or fully unknown. We ask whether AR em-
beddings can help researchers recover information about the
directed graph of structural equations governing interactions
from observed co-occurrence relationships.

Most real gene regulatory networks are poorly understood,
so simulations of a gene regulatory networks are often used.
In our example we use a commonly used, simplified model
of hematopoietic stem cell differentiation (Krumsiek et al.,
2011). This network consists of 11 transcription factors with
28 directed regulatory interactions between them. Some ex-
hibit activation relationships (x makes y more likely) and
some of which exhibit inhibition (x makes y less likely),
see the Appendix A.2 for a full description. We sampled
snapshots of expressions from the system. From these snap-
shots we construct the co-occurrence matrix of transcription
factors. We compute the AR decomposition of this matrix
using the same methodology as the experiments above (rank
= 8).

We then compare the similarity in A and R components
across inhibitor and activator pairs. Importantly, while inhi-
bition/activation are directed relationships, we only observe
undirected correlations. In Figure 7 we see that activators
are closer in A space while inhibitors are closer in R space.
Looking at the Euclidean embedding of the correlation be-
tween two nodes does not display as clean of a pattern.
See the Appendix A.2 for another analysis visualizing the
embeddings.
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Figure 7. Activators are closer in A space than average while in-
hibitors are close in R space. Euclidean embeddings are less clear.
Error bars reflect standard errors.

7.7. Experiment 6: Pseudo-Euclidean Embeddings in
Other Models

In this section, we move from the problem of reconstruc-
tion (asking how well models can express certain data) and
consider the task of link prediction - in other words, gener-
alization to unseen edges.

The first models we consider are the LNE/LNE-AR from
above. An increasingly popular method for dealing with
graph data are graph neural networks (GNN) (Zhou et al.,
2020). Typically GNNs are used in graphs where nodes
have feature vectors to do inductive classification tasks,
however since GNNs construct a vector for each node (call
this vGNN

i ) we can also use these vectors for link prediction
tasks (Zhang & Chen, 2018) by using σ(vGNN

i · vGNN
j ) as

our edge probabilities. We can convert the GNN to do the
AR embeddings simply by splitting the vGNN vectors and
using the LNE-AR formula for edge probabilities.

Our goal is to investigate bonuses provided by AR rather
than trying to achieve perfect state of the art performance.
Thus, we focus on the simple graph convolutional network
(GCN) (Kipf & Welling, 2016). We train LNE, LNE-AR,
GCN, and GCN-AR models on Cora, Citeseer, Wisconsin,
Texas, Cornell which all have feature vectors for all nodes.
We do not use the EU data or the ego network data as they
do have node features and so are less interesting from the
GCN standpoint.

We split each dataset into 80/10/10 train/validation/test.
We adapt the hyperparameters, training, evaluation, and
error bar construction code from Chami et al. (2019) for all
of our experiments. See Appendix A.3 for more details.

In Figure 8 we plot the test set AUC for these models. In
graphs which had high intransitivity in Table 1 we see a large
gain from using AR as opposed to Euclidean embeddings
in both GCN and LNE models.

GCN Logistic Node Embedding
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Figure 8. Pseudo-Euclidean embeddings peform better in link pre-
diction in both GCN and LNE models when underlying graphs
are intransitive. Error bars reflect multiple iterations with different
random seeds as in Chami et al. (2019).
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A. Appendix
Proof of Proposition 3.2. Let G be an arbitrary graph. We will construct an embedding that represents it.

Let N be the number of nodes, let D be a vector in RN . Let MD be an N ×N matrix where mij = eij for i ̸= j and D is
the matrix diagonal. If MD is positive semi-definite then there exists a factorization MD = V V ′.

Row vectors of V are embeddings for each node that represent the graph G. We can see now that any D which makes
MD positive semi-definite gives us these required embeddings. Such a D always exists since we can always construct
one by taking D arbitrary, computing the largest negative eigenvalue λmin and then the matrix MD+λmin

will be positive
semi-definite. Clearly the family of embeddings that represent the graph can be put into 1− 1 correspondence with the set
of matrix diagonals that make MD positive semi-definite.

Proof of Proposition 3.3. In essence, we want to determine the rank, that is, determine the dimension of the nullspace of a
matrix

M =

(
A R
R B

)
where A is an n × n diagonal matrix with coefficients a1 . . . an > 0, B is an n × n diagonal matrix with coefficients
b2 . . . bn > 0, and R is an n× n matrix of all 1. Let’s solve!

M ×
(

u
v

)
= 0 ⇐⇒ ∀i

{
aiui +

∑
j vj = 0

bivi +
∑

j uj = 0

Since ai > 0 and bi > 0, this implies

∀i ui = − 1

ai

∑
j

vj vi = − 1

bi

∑
j

uj (1)

If we were free to set
∑

j vj and
∑

j uj as we please, the two equations (1) would describe a 2-dimensional space. Therefore
the nullspace of M has dimension at most 2. However we can also use the first of these equations to write∑

i

ui = −
∑
i

1

ai

∑
j

vj (2)

Therefore our nullspace has dimension at most 1. But we can continue and use the second equations from (1) to replace vj
above: ∑

i

ui = −

(∑
i

1

ai

)∑
j

v]

 =

(∑
i

1

ai

)∑
j

1

bj

∑
k

uk

Therefore, if r =
(∑

i
1
ai

)(∑
j

1
bj

)
̸= 1, then we must have

∑
i ui =

∑
j vj = 0 which means that ui = vj = 0: the

matrix is nonsingular. On the other hand, if r = 1, then I can choose
∑

j vj equal to any non zero value, deduce
∑

j ui

using (2), compute ui and vi using (1), and verify that we have described a one-dimensional nullspace.

In conclusion: if r =
(∑

i
1
ai

)(∑
j

1
bj

)
̸= 1, the matrix has full rank. If r = 1 the matrix has rank 2n − 1. This is the

case, for instance, when ai = bj = n.

Proof of Proposition 4.2. Let D be a solution of problem minD ∥MD∥∗ . Matrix MD is real and symmetric and therefore
diagonalizable. For each eigenvector u associated with a positive eigenvalue λ, we can form a vector a = u

√
λ. For each

eigenvector u associated with a negative eigenvalue, we can form a vector r = u
√
−λ. Collecting these a and r vectors

into matrices A and R, we obtain MD = AA⊤−RR⊤ and ∥MD∥∗ = ||A||2F+||R||2F . Then, (A,R) is also a solution of
problem min(A,R)∈AR ||A||2F+||R||2F because, for any (A′, R′) ∈ AR,

||A||2F + ||R||2F = ∥MD∥∗ ≤ ∥A′ A′⊤ −R′ R′⊤∥∗ ≤ ||A′||2F + ||R′||2F

where the first inequality holds because ∥MD∥∗ is optimal, and the second inequuality results from Lemma 6 of (Mazumder
et al., 2010) after noticing that A′A′⊤−R′R′⊤ = [A′, R′] [A′,−R′]⊤.



Conversely, let A,R be a solution of problem min(A,R)∈AR ||A||2F+||R||2F . Then matrix MD = AA⊤−RR⊤ is a solution
of problem minD ∥MD∥∗, because, for any D′, we can diagonalize MD′ as above and form (A′, R′) ∈ AR such that

∥MD∥∗ = ∥AA⊤ −RR⊤∥∗ ≤ ||A||2F + ||R||2F ≤ ||A′||2F + ||R′||2F = ∥MD′∥∗

where the first inequality results again from Lemma 6 of (Mazumder et al., 2010).

Proof of Proposition 5.2. The Lorenz model works as follows: we take a vector in Rd+1 written as (x0, x1, . . . , xd) and
define the inner product

L(x, y) = −x0y0 +

d∑
i=1

xiyi.

This is clearly the pseudo-Euclidean inner product with R dimension 1. However, while pseudo-Euclidean space is not a
metric space, we can take the manifold defined by

Hd = {x ∈ Rd+1 | L(x, x) = −1, x0 > 0}

and endow it with the metric
d(x, y) = arccosh(−L(x, y)).

This defined manifold and metric is diffeomorphic to the Poincare ball. Given a set of vectors on the Poincare ball, we
can take the inverse of this diffeomorphism on these vectors to get their Lorenz counterparts. Then since d(x, y) here is a
monotone transformation of L(x, y), we have that if d(x, y) > d(x, z) then L(x, y) < L(x, z). Thus we have constructed
an AR embedding that order-represents the graph.

A.1. Expanded Ingredient Substitution List

In the main text we reported the top R neighbor for each focal ingredient to save space. Here we report the top 3 neighbors
per each focal ingredient.

A.2. Experiment 5 Supplement

We show the governing equations of the Krumsiek et al. (2011) model in 9. The original network is represented by boolean
rules, which we translated into a system of ODEs to allow us to sample from the model.

In addition to the analysis in the main text, we use Kernel PCA to visualize the 2 dimensional projection of the PSD
factorization of the Spearman correlation matrix of transcription factors (panel B) compared to the projections of the A
(panel C) and R (panel D) components of the AR decomposition.

We see that mutual inhibitors have the highest R-similarity scores (and so are close together in the Kernel PCA representation).
One way inhibitions have lower scores, which is not surprising, because the inhibitions doesn’t happen immediately and at
some points of time both transcription factors can still be observed together. A similar story is obvious in the A-similarities
showing mutual and one-way activations. However, looking at the embedding of the correlations, such relationships are not
obvious. This is partially driven by the fact that in the correlations it is hard to differentiate between two items which have
similar contexts but do not appear together (i.e. inhibitors) from items which have low correlation because they are on very
different pathways.

A.3. Experiment 6 Supplement

The architecture of the GCN works as follows: let X be the feature vectors of nodes stacked, a single layer GCN is written
as R(ÂXW 0) where Â is the normalized adjacency matrix and R is some non-linearity. The GCN takes the node features,
maps them into a hidden space by the learned W 0, takes neighbor averages, and passes them through a non-linearity. This
outputs an embedding vector for each node. The graph convolution process can be repeated on this vector again if desired,
still outputting one vector per node.

When training the link prediction models of dimension d we always use d
2 dimensions for A and R in the LNE-AR/GCN-AR

cases. Because of this we found it is important to have different regularization rates for each of the subspaces with the full
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target substitute R score
baking mix bisquick 0.78
baking mix biscuit mix 0.73
baking mix bisquick mix 0.70
baking powder baking soda 0.85
baking powder whole wheat flour 0.51
baking powder all-purpose flour 0.42
beer apple juice 0.40
beer mango 0.39
beer corn oil 0.39
brown sugar sugar 0.74
brown sugar honey 0.69
brown sugar light brown sugar 0.68
buttermilk skim milk 0.52
buttermilk soymilk 0.48
buttermilk chickpea 0.39
chicken broth chicken stock 0.85
chicken broth vegetable broth 0.63
chicken broth vegetable stock 0.61
lemon fresh lemon juice 0.76
lemon lemon, juice of 0.71
lemon lemon juice 0.66
onion red onion 0.71
onion scallion 0.71
onion yellow onion 0.68
orange juice honey 0.61
orange juice orange 0.50
orange juice lemon 0.47
parmesan cheese mozzarella 0.64
parmesan cheese cheddar 0.62
parmesan cheese olive oil 0.53
parsley fresh parsley 0.93
parsley flat leaf parsley 0.65
parsley dried parsley 0.59
pecan walnut 0.85
pecan nut 0.75
pecan sliced almond 0.65
red wine dry red wine 0.79
red wine dry white wine 0.68
red wine white wine 0.61
unsalted butter butter 0.74
unsalted butter margarine 0.67
unsalted butter heavy cream 0.48
unswtd chocolate unswtd choc square 0.83
unswtd chocolate baking cocoa 0.74
unswtd chocolate unswtd cocoa 0.71
vegetable oil oil 0.96
vegetable oil canola oil 0.88
vegetable oil olive oil 0.67
vinegar cider vinegar 0.89
vinegar white vinegar 0.87
vinegar apple cider vinegar 0.82
yogurt plain yogurt 0.73
yogurt greek yogurt 0.70
yogurt vanilla yogurt 0.53

Table 2. Substitutes for various focal ingredients found by looking at cosine similarity neighbors in the R component.
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Figure 9. First panel shows the true directed network generating the symmetric co-occurrence patterns we observe with red indicating
inhibition and black denoting activation. Other panels show a kernel PCA of the correlation matrix dot product mode as well as the A and
R components respectively. While the inhibition/activation structure is well preserved in the AR embeddings, it is not nearly as clear in
the standard ‘attract only’ decomposition.

regularizer beingλA

∑
i ||ai||+ λR

∑
i ||ri||. An alternative is to keep a single L2 regularization weight over all parameters

but fix a dimension d and sweep k so that d− k dimensions are A and k are R.

We use an 80/10/10 train/validation/test split. We vary hyperparameters of d ∈ {12, 24, 48, 96} and regularization rates
λi ∈ {1e−7, 1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1} for all models. For GCNs we also vary the number of convolution
layers (1 or 2) as well as dropout ∈ {0, .1}, though we did not find dropout or convolution beyond a single layer to be useful
in our datasets.


