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Foreword 

Context
Whereas humans can learn how to perform a task, computers must be 
programmed. This difference has pragmatic consequences because pro-
gramming is laborious and error prone. The mere existence of such a 
difference is also a serious issue for the cyberneticist1 who believes that 
brains and machines are both information-processing devices. 

The perceptron, invented in the late 1950s,2 was considered a paradigm 
shift.	For	 the	first	 time,	a	machine	could	be	 taught	 to	perform	certain	
tasks using examples. This surprising invention was almost immediately 
followed by an equally surprising theoretical result, the perceptron con-
vergence theorem,3,4 which states that a machine executing the percep-
tron algorithm can effectively produce a decision rule that is compatible 
with its training examples (§11.1). A youthful wave of optimism took 
over	the	research	community.	Although	it	only	dealt	with	a	very	specific	
category of tasks, namely pattern recognition tasks, the perceptron was 
widely	publicized	as	the	forerunner	of	more	general	learning	machines.	

When	 the	first	 edition	of	Perceptrons appeared almost a decade later, 
perceptron research had not yet produced a successful application in the 
real world. In fact, the most obvious application of the perceptron, com-
puter vision, demands computing capabilities that far exceed what could 
be achieved with the technology of the 1960s. Meanwhile, computers—
the kind one programs—were quickly showing their worth for all kinds 
of very tangible applications such as simulation, control, and accounting. 

This	reissue	contains	the	first	edition	text	of	Perceptrons, with fourteen 
chapters numbered 0 to 13. The accompanying Prologue and Epilogue 
were written for the 1988 expanded edition. In chapter 0, authors Mar-
vin Minksy and Seymour Papert clearly describe their mathematical 
approach and announce the theoretical results that follow. In his remark-
able review of the book in 1970,5 H. D. Block wrote:

The conversational style and the childlike freehand sketches might mislead the 
casual reader into believing that this book makes light reading. … The reader 
who tries to provide his own proofs will, I believe, soon come to appreciate the 
mathematical virtuosity of the authors.

Minsky and Papert also use this conversational style to stress how much 
they believe that a rigorous mathematical analysis of the perceptron is 
overdue	(§0.3).	They	argue	that	the	only	scientific	way	to	know	whether	
a	perceptron	performs	a	 specific	 task	or	not	 is	 to	prove	 it	mathemat-
ically (§13.5). Not only does such a proof provide an answer for the 
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specific	 task,	 but	 it	 also	 provides	 a	 framework	 for	 understanding	 the	
performance of the perceptron in general.  Accordingly, Minsky and 
Papert’s	 analysis	 focuses	 on	 characterizing	 the	 computational	 abili-
ties	of	perceptrons	for	specific	tasks,	such	as	parity	or	connectedness,	
whose geometrical interpretation helps in both establishing the proofs 
and appreciating their consequences. Their rigorous work and brilliant 
technique does not make the perceptron look very good …

Following the publication of the book, research on perceptron-style 
learning machines remained unfashionable until the mid-1980s. Fund-
ing	was	no	longer	forthcoming.	Compelled	to	change	fields,	perceptron	
researchers applied their unfashionable ideas wherever they went. This 
exodus helped spur the development of adaptive signal processing,6 
which, ironically, was one of the earliest and most spectacular appli-
cations of learning techniques. Meanwhile, somehow protected from 
these events by the iron curtain, V. N. Vapnik and A. Ya. Chervonenkis7 
developed the general theory of statistical learning machines.

The pendulum swung back toward learning machines in the mid-1980s 
with the work of the PDP Research Group8 and the early successes of 
the multilayer perceptron back-propagation algorithm.9 With this revival 
came the question of whether Perceptrons interrupted a promising line 
of research by overplaying the consequences of its theoretical analysis. 
The most direct answer can be found in Papert’s 1988 Daedalus article:10

This story seems to call for a plea of guilty or innocent: Did Minsky and I try to 
kill connectionism, and how do we feel now about its resurrection? Something 
more complex than a plea is needed. …[P]art of our drive came … from the fact 
that funding and research energy were being dissipated on what still appears to 
me … to be misleading attempts to use connectionist methods in practical ap-
plications. But most of the motivation for Perceptrons	came	from	…	finding	the	
appropriate	balance	between	romanticism	and	rigor	 in	the	pursuit	of	artificial	
intelligence. (p. 4)

The authors give a slightly more combative answer in the Prologue 
of the expanded edition of Perceptrons (1988): “progress had already 
come to a virtual halt because of the lack of adequate basic theories.” 
In the Epilogue, they argue that the new wave of network machines still 
does not address their concerns about the lack of basic theory and relies 
on hill-climbing procedures that are potentially marred with intractable 
scalability problems.

In other words, Minsky and Papert’s message had not changed in the 
twenty years that separated the expanded edition of Perceptrons from 
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the	first	edition.	Without	an	adequate	basic	 theory,	 they	believed	 that	
attempting to use connectionist learning machines in practical appli-
cations was futile. Far from trying to kill this research, they conceived 
Perceptrons	as	a	first	step	toward	correcting	an	already	fatal	flaw.

Aftermath
Three	decades	later,	machine	learning	is	a	thriving	research	field.11 The 
effectiveness of deep neural networks for practical applications such 
as speech recognition and computer vision is undeniable. Cell phones 
have	gained	 the	capability	 to	 recognize	 speech	and	sometimes	under-
stand what we mean.12 Automobiles are increasingly capable of driving 
themselves.13	 Pundits	 write	 about	 the	 imminence	 of	 artificial	 intelli-
gence. Although our theoretical understanding of learning machines has 
clearly progressed, these applications often rely on deep neural networks 
for which theory still offers very little guidance. Does this contradict 
Minsky and Papert’s argument about the necessity of an adequate basic 
theory? Can we sustain such progress using solely intuition and experi-
mentation? What is the role of mathematics in these developments?

Programming a computer is by essence a very mathematical exercise. 
The	 specification	 of	 a	 task	 lists	 the	mathematical	 properties	 that	 one	
wishes	 to	 see	 satisfied.	 The	 program	 is	 correct	 when	 its	 completion	
ensures	 that	 these	 properties	 are	 satisfied.	 Programs	 can	 invoke	 sub-
programs in the same way that the proof of a theorem can invoke more 
elementary theorems. If the subprograms are known to be correct, the 
designer of the main program can ignore their details and reason instead 
with	the	specifications	of	the	subtasks.	This	mathematical	property	of	
programming	means	 that,	 in	practice,	one	can	organize	 teams	of	pro-
grammers	and	clearly	define	their	individual	responsibilities.	Therefore,	
computers excel in all domains whose essential tasks satisfy two crite-
ria:	(a)	they	come	with	clear	mathematical	specifications,	and	(b)	their	
economic	importance	is	sufficient	to	pay	for	an	adequate	team	of	pro-
grammers. This is true of accounting, for instance, and communication 
protocols, computer-aided design, and so on.

There are, however, many economically important domains that do not 
satisfy	the	first	criterion.	For	example,	in	visual	pattern	recognition,	we	
can determine whether a connectedness recognition program is correct 
using	 the	mathematical	definition	of	 the	 set	of	 images	 representing	a	
connected shape (§9.2), but we cannot establish that a program that rec-
ognizes	cat	images	is	correct	in	the	same	way	because	we	lack	a	mathe-
matical description of the set of images representing a cat.
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The traditional way to address the absence of a mathematical speci-
fication	 consists	 of	 heuristically	 constructing	 one.	When	Minsky	 and	
Papert argue that the connectedness predicate is an obvious subtask for 
problems	such	as	recognizing	chairs,	tables,	or	people	(§13.3),	they	in	
fact	claim	that	one	can	provide	a	heuristic	specification	by	judiciously	
assembling	well-defined	geometrical	predicates	such	as	connectedness.	
One	 can	 then	 design	 programs	 that	 target	 the	 heuristic	 specification	
(§13.4). Of course, this approach introduces a logical gap: although we 
can	conceivably	prove	that	a	program	fulfills	the	heuristic	specification,	
this does not guarantee that the program can perform the task of interest. 
In the case of computer vision, scientists have devised many ingenious 
ways to leverage physical and geometrical insights about the nature of 
images.14	However,	absent	a	mathematical	definition	of	what	makes	a	
cat look like a cat, the logical gap remains. Almost a proof is no proof.

The	alternative	way	to	address	the	absence	of	a	mathematical	specifi-
cation	consists	of	replacing	the	missing	specification	with	a	large	col-
lection of training images and relying on a learning machine, such as 
the perceptron, to construct an appropriate predicate. Instead of lever-
aging	human	ingenuity	to	create	a	heuristic	specification,	the	idea	here	
is to leverage the training data and the computational power available 
to process it. Therefore, the reach and the performance of the learn-
ing approach increase whenever more data and more computing power 
become	available.	For	instance,	in	the	case	of	visual	object	recognition,	
it is generally agreed that the tipping point was reached in 2012 when 
a convolutional neural network decisively outperformed all competing 
approaches.15 This neural network was merely a very large variant of the 
convolutional networks introduced two decades before.16 The key fac-
tors were the availability of a large image dataset17 and the emergence 
of GPU (graphics processing unit) computing.

When they wrote Perceptrons, Minsky and Papert clearly did not antic-
ipate that the mere passage of time would eventually tilt the balance in 
favor of learning systems. Maybe they simply placed too much trust in 
human ingenuity, expecting instead that these pesky pattern recognition 
problems would be solved long before reaching the tipping point. Nev-
ertheless, this general trend possibly explains why learning machines 
have	enjoyed	practical	successes	despite	the	weaknesses	of	basic	theory.

A	closer	analysis	reveals	finer	trends.	We	have	already	seen	that	the	use	
of	heuristic	specifications	undermines	the	theoretical	basis	of	program-
ming.	The	lack	of	mathematical	specification	affects	the	theoretical	basis	
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of learning machines in a slightly different way. Theoretical questions 
about learning machines roughly belong to two categories: can the learn-
ing machine represent the predicate of interest, and, assuming this is the 
case, can the learning algorithm approach the predicate of interest when 
the number of training examples increases? Because we cannot rely on 
a	mathematical	definition	of	the	predicate	of	interest,	these	results	must	
target a much greater family of predicates, and often all of them. For 
instance,	 when	Minsky	 and	 Papert	 prove	 that	 no	 finite-order	 percep-
tron can represent the connectedness predicate (§5.2), they state that a 
finite-order	perceptron	cannot	represent	all	predicates.	Such	a	result	does	
not necessarily mean that the learning system cannot represent the pred-
icate that tells whether the image represents a cat. In fact, a human can 
easily	recognize	a	cat	but	has	trouble	visually	determining	which	of	the	
two shapes shown on the cover of Perceptrons is connected.  

We now know of learning systems for which both categories of theo-
retical questions have positive answers. For instance, a support vector 
machine using a universal kernel can represent and approach any predi-
cate	with	arbitrary	precision	when	the	size	of	the	training	set	increases.18 
Such a guarantee is stronger than anything offered by the heuristic spec-
ification	approach.	Many	researchers	in	the	2000s	were	therefore	confi-
dent that such principled learning systems would quickly dominate the 
practical applications of pattern recognition, only to be reminded in the 
2010s	that	a	jack	of	all	trades	is	master	of	none.	Although	deep	learning	
systems19 do not offer such solid guarantees, they are responsible for a 
string of spectacular successes in economically important applications 
such as speech recognition, computer vision, and machine translation. 

The current status of deep learning systems can be compared to the age 
of steam that marked the beginning of the industrial age. The steam 
engine began transforming the world20 long before the formulation of 
the laws of thermodynamics.21 The massive technological advances that 
have shaped our modern world, however, would have been unthinkable 
without thermodynamics. In that sense, Minsky and Papert’s message 
remains very relevant.

Léon Bottou
February 16, 2017

Stephenson’s Rocket, Mechanics Magazine, 1829.  
Source: Wikimedia Commons user Duncharris~commonswiki.
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