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Abstract

Upper bounds for the deviation between test error and training
error of a learning machine are derived in the case where no proba-
bility distribution that generates the examples is assumed to exist.
The bounds are data-dependent and algorithm dependent. The
result justifies the concept of data-dependent and algorithm de-
pendent VC-dimension.

1 Introduction

The main purpose of learning theory is to study how a learning machine trained on
a finite number of samples will perform on new, unseen samples. More specifically,
we are interested in predicting the difference between the error rate measured on
the new samples, and the error rate obtained on the training samples. In most
theories a link is established between the training samples and the test samples
by assuming that they are all drawn independently from an unknown probability
distribution. We call this distribution the “ground truth”, because to know it is to
solve the learning problem (though solving the learning problem does not require
to know it perfectly).

Although epistemology theories have long played with the idea that the world is
ruled by simple universal truths waiting to be uncovered, it can be argued that
in many real learning situations, there may be no such thing as an unattainable
underlying process that generates the data. The only thing that is available to us
for sure is the finite set of samples we have been given. In many cases, we cannot
hope to ever obtain more data than what we have been given. the concept of
underlying distribution has little relevance in that context.

Establishing a relationship between the training samples and the test samples can
be done by posing the so-called exchangeability hypothesis: the dataset is given to
us once and for all, but any partition of this dataset into a training set and a test
set is seen as fortuitous. Therefore, we will seek results that take into account all
the possible partitions of the data set into training set and test set.

We will derive bounds on the distribution of the deviation between the test error
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and the training error with no additional assumption but the exchangeability of
the samples. The bounds will be not only data dependent, but also algorithm
dependent.

There are several conceptual, technical, and practical reasons for replacing the
“ground truth hypothesis” by the “exchangeability hypothesis”. First of all, the
ground truth distribution cannot conceivably be determined empirically from a fi-
nite dataset, unless strong assumptions are made about its nature. Second, there
is no statistical test to determine whether a dataset has indeed been drawn inde-
pendently from a distribution, although it is possible to devise tests to determine
that they have not. Third, many empirical studies of learning do rely on splitting
a pre-existing dataset into training sets and test sets. A consistent performance
over a large number of arbitrary splits is considered a convincing estimate of the
generalization performance of the proposed algorithm.

In the following, we apply the standard mathematical techniques developed by Vap-
nik and Chervonenkis to derive bounds on the distribution of the deviation between
the test error and training error over all possible splits of a given dataset. Sur-
prisingly the elimination of the ground truth hypothesis makes these bounds more
accurate than the comparable Vapnik Chervonenkis bounds. It also simplifies the
mathematics, and provides simple ways to produce data dependent and algorithm
dependent predictions of the learning curves.

2 Definitions and Notations

We are given a finite set S of n = ny + ny labeled samples z1,-- -, z,. The dataset
is split into a training set S; with n; samples, and a test set Sy with ns samples.
There are CI'* = n!/(ni!ny!) different ways to chose that split. A loss function
Q(z,w) measures the correctness on sample z of the answer produced by a learning
machine parameterized by w. In this paper we only consider the case of binary loss
functions that take the value 1 if the answer is wrong and 0 if it is correct. Finally,
a deterministic learning algorithm A produces the parameter wS* when given the
training set Sj.

In the case of a multi-layer perceptron for instance, the parameter w is the weight
vector, each example z; is a pair (z;,y;) composed of an input vector z; and an
output class y;. The loss function Q(z;,w) indicates the performance of the network
w on each example (z;,y;).

For each choice of a training set S; and a test set S2, and for each system w, we
can define the training error vy, the test error v5 and the total error v as:
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The results presented in this paper concern the distribution over all possible splits
of the dataset of the deviation between the training error vy (w!) and the testing
error vy (w°1), where w"! represents the system produced by running the learning
algorithm A on the training set S :

Pr{ | vy (W) — vy (W) | >e€ } (1)

The notation Pr(#) denotes the ratio of the number of training set/test set splits
for which condition # is true, over the total number C7'* of possible splits.



3 Misclassification Vectors

For each system w, the loss function Q(z,w) maps the full set of examples S onto a
binary vector ¢(w) = (Q(z1,w), . .., Q(zn,w)) of length n called the misclassification
vector. Each component is 0 if the system’s answer for the corresponding sample is
correct, and 1 if it is incorrect.

The total error v(w), the training error v;(w) and the testing error v»(w) depend
solely on the system w by means of the corresponding misclassification vector g(w).
Therefore we can simplify the notations and write these errors as v(q), v1(g) and
v2(q) when appropriate. With this convention, we can write:

Pri{ | v@®)—wnw)|>e} = Pr{|wn@®)-nc®)|>e} (2

where ¢%' is the misclassification vector produced by the parameter wS:.

For the sake of clarity, we are now going to assume that given n, n;, a misclassifi-
cation vector ¢, and a positive real number 7, we can compute €(v(q),n,ny,n) such

that:
Pr{ | v(q) —vi(q) | > e(w(q),n,n1,m) } =1 3)

Function €(v,n,n1,n) will be derived in section 5. We can now rewrite equation (2)
by replacing € by €(v(¢°!),n,n1,n):

Pri{ | W) — v (w™) | > e(w(w®),n,n1,n) }
= Pr{|w(@®)-wn(@™)|>e@@™),nmnm,m) } (4)

4 Uniform Bound on the Error Deviation

Because ¢ depends on the particular split of the dataset, there is no simple way to
characterize the distribution (4) without introducing precise knowledge about the
nature of the learning algorithm 4. Following [1] we will remove this dependency
by seeking a uniform bound, i.e. a bound which is simultaneously valid for all the
misclassification vectors produced by the learning algorithm .4 over all possible
splits of the dataset. This set of misclassification vectors is defined by:

Q.A(Sa nl) = {q = (Q(zl7w)7 o ',Q(Zm,U))), Vw € WA(S7n1)} (5)

where the symbol W4 (S, n1) denotes the set of all systems w obtained by running
algorithm A on all possible training sets of size ny extracted from dataset S.

Set W4 (S,n1) is the smallest family of parameters that contains w>* for all possible
choices of S;. Therefore set Q4(S,n1) is the smallest family of misclassification
vectors that contains ¢! for all possible choices of S;. Since set Q(S,n;) always
contain ¢°', we can write:

PT{ | VQ(q51) _Vl(q51) | > 5(”(‘151);","1,77) }
< Pr{3qe Qu(S,m), | na(q) —vi(q) | > e(v(q),n,n1,m) } (6)

This uniform bound is much tighter than the usual Vapnik Chervonenkis uniform
bounds [1] where a (large) family of systems is assumed to pre-exist prior to draw-
ing the data sets. The narrow family W4 (S,n1) contains a considerable amount of
information about the learning algorithm .4, and about its sensitivity to the choice
of the training set. Furthermore, running the algorithm on two different training
sets of size ny in general produces different parameters from W 4(S,n1), but may
occasionally map to identical misclassification vectors in Q4(S,n1). Several con-
siderations of a different nature can also be used to show that the above bound is
a near-equality, but a full discussion is beyond the scope of this paper.



We can now use the well-known inequality Pr{A or B} < Pr{A} + Pr{B} to
bound the right hand side of equation 6 as:

Pr{3q € Qa(S,m), | va(q) —v1(q) | > e(v(q),n,n1,n)}
< > Pr{|wn(-n@ |>ev),nni,m) } (7)

q€QAa(S,n1)

Since the terms in the sum are all equal to 7 (c.f. equation (3)), the right hand
side is equal to 5 Card(Q.4(S,n1)), where Card(Q4(S,n1)) denotes the number
of elements in set Q4(S5,ny), i.e. the number of different misclassification vectors
obtained by running algorithm A on all the possible splits of S. The final result is
then obtained by putting together the successive results (4), (6), (7):

Pr{ | v (W) — vy (wSh) | > e(v(q),n,n1,m) } < n Card(Qa(S,n1)) (8)

This bound concerns the distribution of the error deviation when we consider all
possible choices of training set and testing set. The result was obtained with no
assumption regarding the origin or the independence of the 2, ..., 2z,. It does not
require the ground truth hypothesis.

5 Distribution of the Error Deviation for a Single
Misclassification Vector

We now proceed with the derivation of function e(v,n,n;,n) as defined in (3).
Although there is no simple analytical expression for this function, we give various
approximations and suggest numerical estimation procedures.

We need to compute the distribution |v2(q) — v1(g)| for one particular misclassifi-
cation vector ¢ composed of p = nv(q) ones and n — p zeroes.

Let us gather all these ones and zeroes into a jar. We pick a training set by drawing
a set of n; digits from the jar. Out of the C]}* possible drawings of these n; digits,

there are exactly C[;CSL;’“ ways to draw exactly k ones. The probability of drawing
k ones therefore follows the hypergeometric distribution:

k ni—k
Pr{Drawing k ones in n, digits} = 2" with0<k<p
n

Since there are nv(g) ones in the jar, when we have drawn exactly k ones in the
training set, the difference between the number of ones in the training set and the
test set will be

nv(g)—k k

Ny ni

9)

The cumulative distribution of the deviation between v4(q) and v»(g) over all pos-
sible splits is easily written by summing up the above counts for all the values of &k
that belong to the following set

| va(q) —v1(q) |

K(e) = {kE{O,...,p}, W—ﬂ ><—:} (10)
We can therefore write:
Ck i Ol
Pr{|m(-n)|>e = Y, -2 nnr@ (11)

kEK(e) "



The function €(v(q),n,n1,7n) that we set out to compute produces quantiles of the
above distribution. Although there is no simple analytical expression for it, we can
numerically tabulate e(v(q),n,n1,n). This task is somewhat facilitated by efficient
numerical methods for computing the value of the cumulative distribution function
of the hypergeometric distribution [2].

For more approximate, but more palatable estimates, we can draw from two results
previously obtained by [1] when ny = ng. A first result is derived from section A5
page 173 of [1]. This result gives an absolute upper bound. This bound is rather
tight when v = 0.5 and n; is large enough:

log(2
e(v,n1,2n1,m) < % (12)

A

A second result is derived from section A6 page 180 of [1]. This second result gives
a relative upper bound. This bound is tighter when v is small:

) < 2 VIOg(2/77) (13)

5(’/;”1,2%;77 n
1

Replacing these two results into our main result (8) gives the following inequalities:

log(2
Pr | vy (wS) — vy (W) | > % < n Card(Q4(S,n1))

and:

Pr

y2(w513/(—w2§w“91) ‘> log(2/m) < n Card(Qa(S,n1))

ny

These two results should be seen as simple approximations of the more accurate
result (8). The left hand sides of these two inequalities can be compared with the
absolute and relative Vapnik Chervonenkis bounds.

Unlike the above results however, the Vapnik Chervonenkis bounds assume a prede-
fined family of function, an underlying ground truth distribution, an independence
hypothesis, and do not account for the properties of specific algorithms or specific
datasets.

6 Data and Algorithm Dependent Bound

This result is incomplete without a discussion of Card(Q 4(S,n1)), i.e. the number
of misclassification vectors reachable by algorithm A4 on the set of examples S.
Fach misclassification vector can be viewed as a dichotomy on the set of points
{z1,...,2n} implemented by the loss function Q(z,w) for some value of w.

According to the VC Dimension theory [1], the maximum number of dichotomies
achievable, on any set of n points, by any function in a predefined family, is either
equal to 2" or bounded by 1.5n" /h!. The positive integer h is named VC Dimension
of the family of functions. This result provides an obvious upper bound:

h

n ne\h
Card(Qu(S,m)) < 1557 < (7) (14)

The typical value of Card(Q4(S,n1)) is much smaller than this bound. Instead of
considering all possible sets of n examples, it only accounts for the set of the actual



n examples. Furthermore, instead of considering a large predefined family of func-
tions, Card(Q4(S,n1)) only considers the few functions reachable by a particular
learning algorithm running on various training sets of size n; extracted from the
actual n examples. Therefore, unlike the classical Vapnik Chervonenkis bounds,
bound (8) is data dependent and algorithm dependent.

This observation clarifies results obtained in [3]. Empirical measurements of the
uniform error deviation were shown to fit the algebraic expression of certain Vapnik
Chervonenkis bounds, with a value for h smaller than the VC Dimension. These
results led to conjecture the existence of a data dependent “effective VC Dimension”.

Bound (14) also gives an insight on the tightness of inequality (7) which bounds
the probability of a union of events by the sum of the individual probabilities. We
are considering a union of a polynomial number of events (cf. equation (14)) whose
probabilities are exponentially small (cf. equation (12)). Chances are that the
overlap between these events shrinks quickly as n increases.

7 Comparison with Traditional VC Bounds

Although results (8) looks very similar to the traditional Vapnik Chervonenkis
bounds, there are several important differences in both meaning and accuracy.

a. — No assumptions are made about the origin or the independence of the ex-
amples. Result (8) simply counts how many splits of the data set result in large
deviations between the training error and the test error. This follows very precisely
the testing procedures commonly used in the literature.

b. — Experiments could be designed to directly measure all the quantities involved
in inequality (8). The value of these quantities depends only on the set of examples
S and the algorithm 4. In fact such measurements have been attempted [3] with
some success.

¢. — The uniform error deviation only takes into account the systems that can be
obtained by running a particular learning algorithm A on training sets extracted
from a particular data set S. As a consequence, unlike the traditional VC bounds,
bound (8) does not involve a growth function defined as a supremum on all the
potential set of examples. Bound (8 depends only on the examples we have. This
data dependent result can be likened to probability dependent bounds based on the
annealed VC entropy [4].

d. — The traditional VC bounds must rely on additional bounding techniques such
as Chernoff bounds or Hoeffding bounds [5]. Our discrete framework instead uses
an ezact expression (11) derived from the hypergeometric distribution.

e. — The traditional derivation of the VC proofs consists of two steps. The first
step is essentially similar to the present work and provides a bound for the maximal
error deviation between two disjoint sets of examples. The second step, which is
rather intricate, transforms this result into the well known Vapnik Chervonenkis
theorems using an additional inequality (c.f. [1] page 168). The present work avoids
this second step, but as a consequence maintains an artificial symmetry between
the training set and the test set. This symmetry shows up in (14) for instance,
because the right hand side depends on n = n; + ns and therefore grows even when
the training set size is fixed and the testing set size increases. This suggest that
better results could be obtained by better accounting for the fact that the learning
algorithm only gets to see the training set.



8 Conclusion

Result (8) has been so far presented as describing how a learning algorithm may
withstand the usual testing procedure. We must then believe that this procedure
is actually convincing enough. Considering all possible splits of our data set S into
a training set S7 and a test set S» is convincing enough for many problems such as
isolated character recognition. This is clearly not an acceptable procedure for time
series.

The splitting procedure can be re-interpreted as follows. We first reorder the n
examples in set S using an arbitrary permutation. Then we use the first n; examples
as a training set S; and the remaining n, examples as a testing set. Our testing
procedure is convincing if we believe that all permutation are equally likely. In
other words, we assume that all our examples can be exchangeable at will.

Exchangeability hypotheses have been studied in the theoretical Bayesian frame-
work. Both objective and subjective Bayesians rely on the famous exchangeability
theorem [6] to justify particular forms of the belief probability distribution. Dis-
turbing results [7] however demonstrate that the Bayesian framework lacks a general
discussion of the consistency issues. The classical framework now addresses such
consistency issues using the Vapnik Chervonenkis theory (see [8] for instance). The
present work demonstrates that exchangeability hypothesis is sufficient to derive
results similar to the Vapnik Chervonenkis theory. This remark may lead to a new
way to address consistency in the Bayesian framework.

The bounds presented here show that the concept of effective VC-dimension intro-
duced in [3], i.e. the concept of a data-dependent and algorithm-dependent VC-
dimension, can be justified from first principles with a minimal set of hypotheses.
The present results can also be used to devise practical procedures to measure the
parameters of learning curves in real situations.
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