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Abstract—Former experiments have shown the benefit of using specific multi-layer architectures, the so-called
time delay neural networks, for phoneme recognition (Waibel, Hanazawa, Hinton, Shikano, & Lang, 1988).
Similar experiments on a speaker-independent task were also performed on a small set of minimal pairs (Bottou,
1988). In this paper we focus on a speaker-independent, global word recognition task with time delay networks.
We first describe these networks as a way for learning feature extractors by constrained back-propagation. Such
a time-delay network is shown to be capable of dealing with a near real-sized problem: French digit recognition.
The results are discussed and compared, on the same data sets, with those obtained with a classical time warping

system.

Keywords—Speech recognition, Isolated digits recognition, Speaker independence, Time delay neural net-
work, Dynamic time warping, Hidden cells states clustering.

1. INTRODUCTION

Neural networks are now well known as powerful
learning tools in a variety of tasks related to auto-
matic speech recognition problems, where they have
achieved encouraging results (Bridle & Moore, 1984)
(Prager, Harrison, & Fallside, 1986) (Kohonen,
1988) (Watrous & Shastri, 1987) (Bourlard & Wel-
lekens, 1988).

However, speech recognition is a difficult task.
Problems such as speaker independence, continuous
speech, noisy environment, vocabulary size, signal
variability, coarticulation effect, etc. remain partly
unsolved. All the existing methods successfully over-
come some of the difficulties but fail solving the oth-

Thls work was partly supported by Brain project n°ST2J-0418-
C, and Esprit project N°2059 “Pygmalion”. L.B. also is supported
by DRET grant n° 87/808/19 and P.B. by DRET grant n°87/100.

One of us (L.B.) gratefully acknowledges helpful conversa-
tions with Geoffrey Hinton and Yann Le Cun, during a stay at
the University of Toronto.

Requests for reprints should be sent to Léon Bottou, LRI,
Bat 490, Université de Paris Sud, 91405 Orsay Cedex, France.

453

ers. Our aim here was to compare neural networks,
and more precisely multi-layer perceptrons (MLPs),
to classical methods on a widely studied and well-
mastered task for today’s speech recognition sys-
tems.

Two main techniques are frequently used: dy-
namic time warping (DTW) and hidden Markov
models (HMM). For a review of those techniques,
see Levinson (1985).

An efficient DTW system, has been developed for
some years at LIMSI (Gauvain, 1986; Gauvain, Mar-
iani, & Liénard, 1983). Its performances have been
shown to be state of the art on various databases
(Quenot, Gauvain, Gangolf, & Mariani, 1989). Fur-
thermore, whole word recognition experiments run
with HMM and DTW have shown that the results
obtained by these two methods are basically equiv-
alent, despite evident differences in their algorithmic
or hardware implementations. We thus compared
our MLPs to this DTW system on the same speaker-
independent digit recognition problem.

The first MLPs developed for speech recognition
tasks were fully connected, with usually one hidden
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layer. Such networks have performed correctly on
various small-sized problems: (Elman & Zipser,
1987) (Lippman & Gold, 1987; Lubensky, 1988).
However, on real-sized data, those architectures are
very inefficient. The number of training examples is
too small to succeed in specifying the whole set of
parameters in the network. As a consequence, gen-
eralization is relatively poor, unless a large enough
set of examples has been available for training. But
in that case, learning would take very long.

One way to reduce the complexity of the network
is to use local connections, that is, local fields. Hid-
den units are thus assigned local interest tasks, that
is, feature extraction. Since we cannot ensure very
precise time alignment of the signal, and since also
the speech signal can be significantly stretched in
time without altering its meaning, we would like to
design time invariant feature extractors. This led to
the idea of building networks with position indepen-
dent local fields or so-called time-delay neural
networks or TDNN (Waibel, Hanazawa, Hinton,
Shikano, & Lang, 1987) (Lang & Hinton, 1988).

We propose in this paper a typical experiment of
the capabilities of TDNNs with respect to DTW
methods. We first describe the speech database we
used. The time-delay architecture is then depicted in
the third section. In the fourth, we present some
experimental results, that were useful for tuning our
systems. The fifth section contains the results of a
comparison made between DTW and TDNN, using
the same database, and the same preprocessing.
Some hints for understanding how our TDNNs work
internally are provided in the sixth section.

2. DIGIT RECOGNITION

A speech database, in French, has been elaborated
at LIMSI. In the experiment reported here, we have
only used part of the database, namely the utterances
of the 10 digits by 26 speakers, male (40%) and fe-
male. Each of the speakers pronounced each digit
once.

The signal has been processed in the following
way, classically used at LIMSI (Gauvain, 1986;
Singer, 1988): the speech signal, from the micro-
phone in a quiet room, has been filtered at 5 KHz
through a low-pass filter, then sampled at 10 KHz
with a 12 bits A/D converter. High-frequency am-
plitudes are increased at 6 dB per octave. A DFT is
applied on successive 25.6-ms time frames, overlap-
ping by 12.8 ms. Thus 128 energy spectra values are
generated in the 0-5-KHz frequency domain. A Bark
scaled 16-channels filterbank is then simulated by

averaging on triangular frequency windows. The en-

ergy spegtra are then log-compressed.
This processing thus results in coding the speech
signal into sixteen eight bits values per 12.8-ms time
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frame. The digits, in French, are all monosyllabic
words, except “zéro”. The ten digits used in this
experiment lasted between 15 and 61 time frames
(Figure 1).

The resulting database has been used for com-
parison of three different recognition techniques,
namely Euclidian classifier, time-delay multilayer
perceptrons and dynamic time warping.

The Euclidian classifier provides a baseline result
for evaluating the database difficulty. Although such
a classifier is not actually appropriate for speech rec-
ognition tasks, this reliable and simple measure of
the database complexity may provide useful infor-
mation to the reader.

3. TIME-DELAY MLP

3.1. Description

In the late 1950s, most of the perceptron architec-
tures combined hand-crafted feature extractors fol-
lowed by an adaptive layer. These feature extractors
are first processed on the input data, producing some
feature maps. The resulting information is then used
both for teaching the adaptive layer and retrieving
the output of the perceptron. Minsky and Papert
(1969) showed the weakness of using a unique adap-
tive layer, and pointed out the resulting theoretical
limitations of the perceptron architecture. However,
adequately hand-crafted feature extractors usually
make the task easier for the adaptive layer, but find-
ing appropriate feature extractors may be too com-
plex to be achieved by hand.

The now well-known gradient back propagation
(GBP) rule allows to train multilayer perceptrons
(MLPs) and to find near optimal internal represen-
tations, that is, MLPs are capable of learning a set
of optimal feature extractors.

Let us now describe a network for learning feature
extractors. Each feature extractor is built from a set
of hidden units. These units are locally connected to
a window scanning the input data. As stated above,
the speech data have strong time-invariant proper-
ties. It thus seems interesting to give to our network
some knowledge about these properties. The sim-
plest way to do so is to insure that all the cells be-
longing to the same feature extractor will perform
the same task with respect to their inputs.

We thus enforce, during the training phase, their
incoming sets of weights to be identical. Such exten-
sions of the standard back-propagation algorithm
were discussed in the PDP book (Rumelhart, Hin-
ton, & Williams, 1986). The general theme of con-
strained back-propagation has also been extensively
studied in Le Cun (1988).

In the case of speech recognition, we use a small
number of time-invariant feature extractors on the
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FIGURE 1. The figure shows some examples of French digits spectrograms, as computed by the LIMSI processor. Each wbrd

has been hand segmented (signs [ and ] on the figure).

input data. The resulting values are then used as
input data for another layer of feature extractors and
so on. The network is trained by constrained back-
propagation.

As already related in Lang and Hinton (1988),
there is a nomenclature problem: If the “feature ex-
tractors” and the “feature cells” were respectively
called “cells” and “cell at a given time,” then some
connections would have been drawn between “cells
at different times™ and thus these connections would
have been renamed ‘‘time-delayed-connections™
(Waibel et al. 1987; Lang & Hinton, 1988). Both
trends indeed describe the same mathematical ob-
ject, either as a time-unfolded network, or as a time-
delay neural network (TDNN). Both nomenclatures
reveal different interesting aspects of the same ob-
ject.

Experiments have been run (Lang & Hinton,
1988) to compare fully connected, locally connected,
and TDNN networks. The experiments have been
carried out on the /b/,/d/,/e/,/v/ task. The results
show, even on this very simple task, that the time-
delay trick is quite appropriate. Other experiments
at ATR (Waibel et al., 1987) showed that such net-
works were capable of achieving better results than
a hidden Markov model (HMM) on a Japanese /b/,
/d/,/g/ recognition task.

A fundamental question concerning the use of
such architectures for more complex specch tasks
deals with the scaling problem: how do architectures,
learning time, performances, scale with the complex-
ity of the task? In order to explore this problem, we
used the digit recognition task: In our database, the
speech signal lasts about one second, which is the
input,to the network. This is to be compared with,
for example, the /b/,/d/,/g/ problem (Waibel et al.,
1987) where the typical speech data lasted 150 ms

only: With our larger framing rate, this means an
increase by 4 of the number of input units. We also
reduced the number of cells in the hidden layers by
progressively reducing the time discretization of the
cells. However, our network is about 1300-cells
large, where Waibel’s was about 400. We now pre-
cisely describe our network architecture.

In our digit problem (Figure 2), we have one six-
teen-dimensional vector as input every time slice
(12.8 ms). A first layer of 8 feature extractors op-
erating on windows of three consecutive vectors
transforms these inputs into 1 eight-dimensional vec-
tor every two time-slices. A new layer of 8 feature
extractors, windowed on seven consecutive vectors,
give 1 eight-dimensional vector every ten time-slices.
The resulting vectors are then fully connected to 10
decision cells, one for each digit to be recognized..

In a previous work (Waibel et al., 1987), hidden
layers states were computed every time slice. We
choose to sample these states every two time frames
in the first hidden layer, then every ten time frames
in the second hidden layer, by reducing the number
of cells in these layers. The computational load is
thus significantly reduced during both training and
retrieval. Finally, in contrast with Waibel’s work; the
output layer is fully connected to the last hidden layer
through adaptive weights: this allows for a last in-
tegration step, which is also learnt by the network.

Another argument was used to motivate these
choices: The information at the spectrogram level is
about 10000 bits/s. The phonetic information for the
same data (i.e., the information associated with the
corresponding sequence of phonemes) is no more
than 50 bits/s. The information carried through our
ten thresholded output cells is less than 6 bits/s. Our
speech recognition network can thus be viewed as
an information filtering device. If the last layer fea-
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FIGURE 2. The multi-layer network used In our simulations. It has one input layer, with 16 frequency-channels and 65 time
frames. The first hidden layer has 8 feature extractors: each one Is connected to 3 consecutive time frames, in the entire
frequency range in the input level. 31 successive cells implement a feature extractor through the time domaln: they overlap
by one time-frame. Cell no. 1, for example, is connected to time-frame 1 to 3 and cell no. 2 to time-frame 3 to 5. The second
hidden layer has a similar structure: it has 8 feature extractors, connected to 7 consecutive sets of 8 cells In the previous
layers, the cells in that layer are overlapping by 5: cell 1 is connected to the 8 feature extractors cells no. 1 to 7 and cell 2
to those numbered 6 to 12. The output level is fully connected to the last hidden layer.

ture extractors were computed every time frame, 625
values per second would have flowed through the
last hidden layer. This layer would thus have to per-
form most of the information filtering. We preferred
instead to distribute that task among all the network
layers, rather than to rely on a single linear separator.

3.2. Learning strategy

It is necessary, during the training phase, to fix some
input layer size. In all our experiments, this input
layer is set with 65 time frames, which is slightly
longer than the longest word we had to learn. In
addition, -each utterance is randomly shifted in the
128 first milliseconds of the 832 ms input window,
simulating a poor word segmentation.

The network is trained using an all purpose back-
propagation algorithm, exactly as described in (Fo-
gelman Soulié, Gallinari, Le Cun, & Thiria, 1987;
Le Cun, 1987).

e We use stochastic back-propagation, that is, Wid-

row Hoff rule, also called “online” back-propa-
gation: The weights are updated after each pattern
presentation. Stochastic back-propagation drasti-
cally reduces both the learning time in classifica-
tion tasks and the number of local minima.

We update the weights using neither momentum
nor weight decay. Momentum does not seem really
efficient when used with stochastic back-propa-
gation.

We add on-the-fly Gaussian noise to the inputs.
Using this technique slightly improves the network
ability to find a more general solution.

e The initial weights are carefully chosen: We ensure

that the standard deviation of the weighted sum
fit within the linear part of the activation function
(a hyperbolic tangent scaled into the [—1.7, 1.7]
range).

The equality constraint is implemented using
shared weights. They are updated by multiplying
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the learning rate by the sum of the corresponding
partial derivatives. In these experiments, the
thresholds are not constrained.

We do not try to further optimize the learning
speed. We started with reasonable values for the
learning rate (respectively, 0.01, 0.02, and 0.03 in
the three weight layers) and standard deviation of
the Gaussian noise (0.1), and manually divided
them by two as soon as the mean squared error
stopped decreasing (at the Sth, 9th, 14th, and 24th
sweep, cf. Figure 3). This is a quite robust process
for controlling the learning phase, which was
largely eased by the use of our graphics simulator
(Bottou, 1988).
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4. EXPLORATION RESULTS

Before attempting some systematic experiments, we
found it useful to first evaluate the different recog-
nition techniques on the same test task. We thus
defined a 16 speakers learning set, both male and -
female. The remaining ten speakers were used as a
test set. Speakers were assigned to the two sets using
alphabetical order, thus independently of any pho-
netical clue.

This 10 speakers test set is obviously too small for
precisely comparing the three recognition systems.
However, strong differences in the recognition scores
would have indicated that one or the other was ap-

Performance (CLASS-MAX) vs. number of sueeps

__._=hl=lf1I'IlE.ﬁa’

NMSE vs. number of

0.25

sueeps

FIGURE 3. The evolution, during training, of the performances both on the training and test sets. The x-axis shows the number

of epochs.
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proach was definitely unable to compete with the
others.

4.1. Performance of a FEuclidian classifier

We first used a simple Euclidian classifier on 65 time
frames long patterns.

We built 640 training patterns out of the 160 ut-
terances by shifting them in four random positions
within the first 128 ms. In the same way, with only
two random shifts, we built 200 patterns out of the
100 test utterances.

Class means were computed by averaging all the
training set patterns. We attempted then to classify
the test set patterns by measuring the Euclidian dis-
tance to the class mean. This rather rude technique
performs poorly: 71.5% only of the test patterns
were correctly classified.

4.2. Network results

In a preliminary experiment, we trained the network
without randomly shifting the training data in the
input window. We easily got a perfect recognition of
the training set, and a peak 95% performance on the
test set.

Unfortunately, although the hidden layers of our
network are designed for shift invariance, the last
weight layer is not. We then tested the previous
weight configuration on the same randomly shifted
patterns that were used for the Euclidian classifier.
When the test utterances were randomly shifted in
the 0-51-ms range, the performance sank to 89%.
With even more shifted data, in the 0-102-ms range,
the network achieved a poor 70% performance.

In order to get a real shift invariance capacity, we
then decided to train the network with the randomly
shifted data described above (shifted by 0-128 ms).
Moreover, such a random shift simulates a poor word
segmentation, and is in fact much closer to real
speech tasks than perfectly aligned test and training
data.

These small experiments clearly show that the de-
cision layer is the weak point of time-delay networks.
In these experiments, the layer is a simple linear
separator. Experiments reported by both Lang (Lang
& Hinton, 1988) and Waibel (Waibel et al., 1987)
rely on a slightly more complicated integration layer,
which is more adequate for phoneme processing.

We then ran this learning task on the shifted data
a couple of times during the first week of August
1988. We always stopped the simulation after 30
sweeps of the 640 training patterns (i.e., 19,200 single
pattern presentations). The network never achieved
less than 98% correct answers on the training set and
94% on the test set. One sweep of the 640 training

_patterns plus test cycles on both the training and test
sets took about three minutes on a Sun 4 workstation
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running our general purpose back-propagation sim-
ulator SN. (Bottou & Le Cun, 1988).

The best run produced a network able to correctly
classify 99.21% of the training patterns and 99% of
the test patterns (i.e., 1 only unrecognized utterance
out of the 100 test utterances). Unfortunately, our
speech database is clearly too small for really vali-
dating such performances. However, we reproduced
a couple of times this result with different initial
weights. It is interesting to notice that after 6 sweeps,
the network already achieved 97.9% on the training
set and 93% on the test set, and after 15 sweeps,
98.3% and 98% (see Figure 3a and 3b).

These results also show how a small number of
epochs is sufficient for efficiently teaching a time-
delay network, without problem specific or machine
dependent tricks.

4.3. DTW results

We first compared these results with an existing LIM-
SI's time warping system, usually performing best on
cepstral coefficients computed as follows:

Each time frame of the spectrogram log-com-
pressed energies is first normalized. A cosine frans-
formation is then applied for extracting 8 cepstral
coefficients. The time warping process is performed
using these § parameters and the mean energy. The
sixteen learning utterances for each word are pre-
cisely segmented, then averaged along their time
warping path, using an algorithm described in
(Singer, 1988). The resulting references require ap-
proximately as much memory space as the MLP
weights.

The 100 test utterances have been presented and
99 were correctly classified. The error source was
identified as a badly segmented training reference.
We thus conclude that the DTW system achieved a
99% performance, similar to the network.

5. MORE EXPERIMENTS

The above experiments actually show that a network
is able to perform correctly on a speech recognition

TABLE 1
MLP MLP
(Shifted  (Nonshifted

Set DTW Data) Data)
A 1 1 14
B 3 9.25 9
C 6 8.25 4
D 2 7 4

Total (out of 640 12 (1.9%) 35.5 (5.5%) 31 (4.8%)
utterances)
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FIGURE 4. Weights of the first and second hidden layers, that is, the feature detectors or masks computed by the network.
The last mask In the first hidden layer, for example, is implementing the detection of a climbing second formant in the
frequency domain. Weights in the second hidden layer implement combBinations of detectors and are thus almost impossible

to interpret.

task. However, the test set is so small that no com-
parison can be significantly achieved with these re-
sults. Moreover, the DTW system uses a quite
different preprocessing, and is thus hard to truly
compare.

We thus decided to lower the performances by
using less speakers for training. Moreover, a modi-
fied DTW system, working on spectral data, was just
released at LIMSI. We agreed on four 10 speakers
training sets, and four 16 speakers corresponding test
sets with males and females in the same proportions.

Last layer weights

UN DEUR TROXS

We also improved the consistency of the shifts
applied to the utterances for generating the MLP
patterns. During training, the utterances are ran-
domly shifted on-the-fly within the first 128 ms. Tests
were performed on both randomly shifted and fixed
utterances.

Table 1 shows the number of errors made on each
test set, by

e the DTW system,
e the MLP, on randomly shifted test utterances.

QUATRE CING

SIX SEPT HUXT

’ A
FIGURE 5. Weights of the second hidden to output layer. This represents the way by which the network weights the codes

computed in the last hidden layer for each different digit.
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Each utterance is tested four times, in four differ-
ent positions. The “numbers of errors” thus are in
fact averages over these four tests,

e by the MLP, on utterances starting 64 ms after the
beginning of the input window. The network has
still been trained on randomly shifted data

In these experiments, the network clearly did not
achieve the same level of performance as the DTW
based system. Testing against shifted or unshifted
utterances does not sensibly modify the performance
level.

Reducing the number of training utterances has
drastically degraded the network performances,
while the DTW results remain good. These results,
however are slightly compensated by the following
remarks:

e The MLP learns better on poorly segmented ut-
terances, while the DTW requires a good knowl-
edge of the starting and end-points of each ref-
erence.

00 UN 11 4 8 8 8
100 UN 31 4 88 8
200 UN 114 8 8 8
300 UN 1 1 4 8 8 8
400 UN 3 1 4 8 8 8
500 UN 1 148 8 8
600 UN 1 1 4 8 8 8
700 UN 311 4 8 8
800 UN 1 1 4 8 8 8
900 UN 1 1 4 8 8 8

10 DEUX 7 2 2 88 8
110  DEUX 7 2 2 8 8 8
210 DEUX 7 2 2 88 &8
310 DEUX 7 2 2 8 8 8
410 DEUX 7 5 5 2 8 8
510 DEUX 7 2 2 8 8 8
610  DEUX 77 2 2 8 8
710  DEUX 7 2 2 2 8 &8
810 DEUX 7 5 5 8 8 8
910  DEUX 7 2 2 8 8 8

20 TROIS 7 3 4 4 8 8
120 TROIS 8 3 3 4 8 8
220 TROIS 3 3 4 8 8B 8
320 TROIS 733 4 8 8
220 TROIS 7 3 2 8 8 8
520 TROIS 7 3 3 8 8 B
620 TROIS 33 3 ¢ 8 8
720 TROIS 8 3 3 4 8 8
820 TROIS 3 3 4 8 8 8
920 TROIS 33 4 8 8 8

30 QUATRE 2 1 4 4 B B8
130 QUATRE 7 4 4 4 8 8
230 QUATRE 7 1 4 4 8 8
330 QUATRE 7 1 4 4 8 B
430 QUATRE 7 1 4 8 8 8
530 QUATRE 2 4 4 B8 B B8
630 QUATRE 7 1 4 4 4 4
730 QUATRE 7 4 4 4 4 B
830 QUATRE 7 1 4 4 8 8
930 QUATRE 7 1 4 4 8 8

20 CINg 6 3 2 8 6 8
140 CINQ 6 7 1 7 6 8
240 CINQ 6 8B 1 2 6 B
340 CINQ 6 7 1 1 8 8
440  CINQ 6 7 1 2 6 8

. 540 CING: 6 3 2 8 8 8

< 640 CINQ 6 6 1 2 7 8
740 CINQ 6 3 1 8 7 8
840 CINQ 6 1 2 8 6 8
940  CINQ 6 3 1 8 6 8
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e The errors made by the MLP and the DTW are
rather different: Set “A”, for example, is the best
reference set for the DTW, and the worst training
set for the MLP. A hundred training utterances is
possibly not enough for training the MLP to resist
time distorsions. This invariance is built in the
DTW process! If this interpretation is correct, the
MLP performances could be improved by using
artificially distorted training patterns, as in Bottou
(1988).

Nonetheless, the DTW requires less utterances
than the MLP for achieving a given level of perform-
ances, proving therefore, that classical systems ac-
tually are not obsolete.

6. INTERNAL NETWORK
SPEECH REPRESENTATION

Understanding the nature of the internal network
representations may be the best way to improve its
performances. It seems reasonable to study these

50 SIX 6 6 6 6 6 8
150 SIX 6 5 6 8 8 8
250 SIX 6 6 6 6 6 8
350 SIX 6 6 6 6 6 6
450 SIX 6 6 6 6 6 B
550 SIX 6 5 6 8 B8 B
650 SIX 6 6 6 6 6 6
750 SIX 6 6 6 6 3 4
850 SIX € 6 6 6 6 8
950 SIX 6 6 5 6 6 8

60  SEPT 6 7 7 8 8 8
160  SEPT 6 7 2 8 8 8
260  SEPT 6 7 2 B 6 8
360  SEPT 6 7 2 8 8 8
460  SEPT 6 7 2 8 8 B
560  SEPT 6 2 4 8 8 8
660  SEPT 6 7 2 8 8 B
760  SEPT 6 6 7 8 3 4
860  SEPT 6 6 2 7 8 8
960  SEPT 6 7 2 8 6 B

70 HUIT 5 6 4 8 8 8
170 HUIT 5 6 4 8 8 8
270 HUIT 5 6 4 8 8 8
370  HUIT S 5 6 8 6 8
470 HUIT 7 5 6 8 B 8
570  RUIT 5 5 4 8 8 8
670  HUIT 5 55 8 6 8
770 HUIT 5 5 8 3 8 8
870  HUIT 5 6 4 8 6 8
970  HUIT S 5 4 8 8 8

80 NEUF 7 2 1 8 8 8 b
180  NEUF 2 16 8 8 8 0
280 NEUF 7 2 2 8 8 8 )
380 NEUF 2 1 6 8 8 B
480  NEUF 5 1 4 8 8 8
580 NEUF 5 2 1 8 8 8
680  NEUF 5 1 2 6 6 8
780  NEUF 5 1 6 8 3 8
880  NEUF 5 2 2 6 6 8
980  NEUF 2 1 4 8 8 8

90  ZERO 5 2 3 8 8 8
190  ZERO 5 2 3 3 8 8
290  ZERO 6 5 3 8 8 8
390  ZERO 7 2 3 3 3 8
490  ZERO 7 5 2 3 8 8
550  ZERO 7 5 2 3 8 8
690  ZERO 7 5 2 3 3 8
790  ZERO 5 2 3 3 8 8
890  ZERO 7 5 2 3 3 8
990  ZERO 7 2 2 3 8 8

FIGURE 8. The result of the clustering algorithm for 8 clusters. Each word Is coded by a sequence of 6 numbers, which give
the number of the cluster the corresponding activity code was In. For example, 8 Is clearly the prototype of the code for
silence. Different utterances of.each digit are coded by different sequences, but the coding Is still rather stable, for example,
“deux” Is coded ..728... or ..758..., “quatre” as ..714... or ..214... or ...74... or ...24....
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4
- FIGURE 6. The error made by the network in test phase. it classifies the 9 “neut” shown on Figure 6a as a 4 “quatre,” shown,
on Figure &b, pronounced by the same speaker “avi.” The figures represent the activities of the cells In the different layers,
from input (left) to output (right). The desired output is shown in the last column. ’



462 L. Bottou, F. Fogelman Soulié, P. Blanchet, and J. S. Liénard

Hidden 2 Output Input Hidden #2 output

&/ |

-,-.
Lo oLy iy
M SESABUBEL!
O 1 0 00 0 1 BRAS
TR 150 48 50 0 0 0 O 3 B3
h:ll.llllllll P
45 05 10 (50 50 60 0 8 A 51 2
08 G B
b
8
HHH
==lll=l
1 08 48
Vi

Hord #24, Speaker “gal’

Hidden 82 Output Input Hidden #2 Qutput
RN EEE!
00
1 =. 1
3
2 ] 2
a8
k] 8| b}
4 4
5 s
3 [
ol

7 CCEs 4
8 8
9 9
[} e

331 i

T

SHNE 3

-f:‘:‘w---':_-f-nn

oW sen

Word #125, Speaker ‘psi” Hord #23€, Speaker “marl’

FIGURE 7. The figure shows the results obtained for the four digits: 1 “un,” 5 “cing,” 6 “six” and 7 “sept” pronounced by
different speakers. The phonemes /s/ and /&/ (in “un” and “cing”) have been extracted by the network and coded In the
last hidden layer activity: For example, in “‘six,” phoneme /s/ Is coded 01100101 (from left to right and In digltai form) and
detected In the first (first occurrence of /s/ in “six™) and fourth (second occurrence of /s/ In “six”") set of cells. That same
code Is used by the network to detect phoneme /s/ in “cing” and “sept” in the first set of cells. The phoneme /é&/ Is coded
10011010 both in “cing” and “un.” (Note, only the input, the second hidden layer and the output are shown here.)
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representations on our best MLP. We thus focus in
this section on the weights configuration generated
by the network described in the fourth section.

The unique error made by this network actually
is not acceptable. In French, the digits 5 (cing) and
7 (sept) are pronounced in a similar way, and French
digits recognizers classically might mix them. In our
networks, we traced by hand the cells activities for
the unique error. A 9 (neuf) had been recognized as
a 4 (quatre), which is rather disappointing at first
sight (Figure 6).

We attermpted to visually identify significant in-
formation in the first layer weights (Figures 4 and
5). For example, it seems easy to recognize formant’s
movements detectors or other phonetic features de-
tectors. But we are unable to really distinguish be-
tween the randomly produced ones and those that
the network effectively uses for classifying the pat-
terns.

However, it is often claimed that neural networks
are good at extracting meaningful internal states. In
order to test for this ability here, we have studied
the activities of the last hidden layer cells: there are
6 x 8 such cells, whose activities can be viewed as
6 vectors in an eight-dimension space (Figure 7).
Each of these vectors represents the activity of the
8 masks in 6 different portions of the signal: Figure
7 shows that those vectors provide some sort of
encoding of the digit into phonetic features similar
to phonemes. This can be further tested as follows:
The set of the activity vectors for all the available
patterns (training and test sets) is analyzed through
a k-means clustering technique. The result is a de-
scription of each digit as a sequence of subword units.
In Figure 8, for example, we show the results of a
clustering of the 600 first patterns (100 words) in 8
clusters: The network has clearly extracted a rather
stable decomposition of each digit in subword units,
of a slightly larger grain than phonemes. Clustering
in 12 and 16 clusters does not yield better results,
the derived coding is simply more redundant: The
network does not seem to require more than 8 fea-
tures to make its decision.

Moreover, this clustering technique also shows
that the decomposition of the 9 that the network has
extracted is the least stable. This remark could give
some insight to start understanding the origin of the
9 versus 4 error: In addition, the stop-consonant in
that 4 is quite short and weak, which means that the
network could not use the stop-consonant informa-
tion for disambiguation. It seems that our network
structure exceedingly discretizes time inside the last
hidden layer: Cells with finer grain should be used
to allow for the detection of very short events.

Of cuurse, we do not claim that the results ob-
tained so far actually achieve the extraction of sub-
word units which are completely understandable and
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meaningful. However, we think that following up this
line of investigation could provide significant results
in that area.

7. CONCLUSION

We have presented here a time-delay neural network
trained on a French digit recognition task. This work
clearly demonstrates that adequate neural nets have
many significant abilities for speaker-independent
speech recognition tasks. However our networks did
not achieve as good results as a well-tuned classical
system. We think that this is rather normal for the
neural net approach, which has not been yet fully
explored nor optimized.

Moreover, such connectionist adaptive systems
may have interesting properties, that would bring
much to today’s speech recognition systems. The
MLP has shown its ability to learn on badly seg-
mented references, which suggests that a phonetical
speech recognition system could be trained with af-
fordable coarsely segmented databases. We also have
given some hints to utilize MLPs for subword units
extraction. More investigation is needed to get sig-
nificant results. However, we think that the results
obtained so far are an incentive to go further in the
direction presented here.

Finally, we would like to comment on the learning
and retrieving computational loads. Training a MLP
takes longer than storing references in a time-warp-
ing system. However, training our system was much
faster than the four days on a supercomputer re-
ported in the original Waibel’s paper. Recently, this
research team reported a speed-up by a factor of
1,000 of their learning speed (Haffner, Waibel, &
Shikano, 1988), which is more consistent with our
own results. The retrieving load is about 20,000 mul-
tiply-adds per second, which is rather small in com-
parison with the preprocessing Fourier transform and
is much faster than the computation required by the
time-warping process.
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APPENDIX: ERROR LISTS AND
CONFUSION MATRICES

We present here the list of errors and the confusion matrices
for both the MLP and the DTW system, for the ten training
speakers problem. The errors are listed for each set as follows:

(Digit.Speaker)—(Wrong class)

Each line of the confusion matrices shows here each digit has been
recognized.

MLP ERROR LIST

SET A SET B SET C SETD
(5.hebl)—(7) (5.heb1)—(7) (9.av1 }>(4) (5.cb1 )>(7)
(2.1ac1)—(0) (5.1ac1)—(0) (3.tas1)—>(4) (2.161 }=(7)
(B.Jacl)—(0) (9.phal)—(2) (5.tasl)—(1) (5.5p1 )—(9)
(7.lacl)—(5) (7.pr1)—(2) (6.1as1)—(8) (5.jigl)y—=(7)
(8.1ac1)—(6) ©.pwi)—=(2) (7.tas1)—(4)
(5.marl)—(7) (3.tasl)—(4)
(9.pr1)—(2) (5.tasl)—(1)
0.pwl)—(2) (6.tas1)—(8)
(3.tas1)—(4) (7.tas1)—(9)
(5.tas1)}>(Q1)
(6.tas1)—(8)

(7.tas1)—(4)

P -~
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APPENDIX: ERROR LISTS AND
CONFUSION MATRICES (Continued)

MLP CONFUSION MATRIX (1.56% = 1 error)

recognized as

2 3 4 5 6 7 8 9 0
d1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i2 0.00 96.88 0.00 0.00 0.00 0.00 1.56 0.00 0.00 1.56
g3 0.00 0.00 93.75 4.69 0.00 0.00 0.00 0.00 0.00 1.56
id 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
ts 4.69 0.00 0.00 0.00 84.38 0.00 7.81 0.00 1.56 1.56
6 0.00 0.00 0.00 0.00 0.00 95.31 0.00 4.69 0.00 0.00
7 0.00 1.56 0.00 312 1.56 0.00 92.19 0.00 1.56 0.00
8 0.00 0.00 0.00 0.00 0.00 1.56 0.00 98.44 0.00 0.00
9 0.00 6.25 0.00 1.56 0.00 0.00 0.00 0.00 92.19 0.00
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
DTW ERROR LIST
SET A SET B SET C SETD
(6.tas1)—>(8) (1.bgl)—=(7) (1.bgl)>(D) (1.bgl )=(7)
(5.tasi)—(1) (5.bgl }y=(7) (9.gal }»(2)
(6.tas1)—(8) (9.gal }—(2)
(5.tas1)—(1)
(6.tas1)—(8)
(7.tas1)—(4)
DTW CONFUSION MATRIX
recognized as
1 2 3 4 5 6 7 8 9 0
dl1 95.31 0.00 0.00 0.00 0.00 0.00 4.69 0.00 0.00 0.00
iz 0.00 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
g3 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
i4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
ts 3,13 0.00 0.00 0.00 95.31 0.00 1.56 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 95.31 0.00 4.69 0.00 0.00
7 0.00 0.00 0.00 1.56 0.00 0.00 98.44 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 - 0.00 0.00
9 0.00 3.13 0.00 0.00 0.00 0.00 0.00 0.00 .96.87 . 0.00
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0




