
The Tradeoffs of Large Scale Learning

Léon Bottou
NEC laboratories of America
Princeton, NJ 08540, USA
leon@bottou.org

Olivier Bousquet
Google Z̈urich

8002 Zurich, Switzerland
olivier.bousquet@m4x.org

Abstract

This contribution develops a theoretical framework that takes into account the
effect of approximate optimization on learning algorithms. The analysis shows
distinct tradeoffs for the case of small-scale and large-scale learning problems.
Small-scale learning problems are subject to the usual approximation–estimation
tradeoff. Large-scale learning problems are subject to a qualitatively different
tradeoff involving the computational complexity of the underlying optimization
algorithms in non-trivial ways.

1 Motivation

The computational complexity of learning algorithms has seldom been taken into account by the
learning theory. Valiant [1] states that a problem is “learnable” when there exists a probably approx-
imatively correct learning algorithmwith polynomial complexity. Whereas much progress has been
made on the statistical aspect (e.g., [2, 3, 4]), very littlehas been told about the complexity side of
this proposal (e.g., [5].)

Computational complexity becomes the limiting factor whenone envisions large amounts of training
data. Two important examples come to mind:

• Data mining exists because competitive advantages can be achieved by analyzing the
masses of data that describe the life of our computerized society. Since virtually every
computer generates data, the data volume is proportional tothe available computing power.
Therefore one needs learning algorithms that scale roughlylinearly with the total volume
of data.

• Artificial intelligence attempts to emulate the cognitive capabilities of human beings. Our
biological brains can learn quite efficiently from the continuous streams of perceptual data
generated by our six senses, using limited amounts of sugar as a source of power. This
observation suggests that there are learning algorithms whose computing time requirements
scale roughly linearly with the total volume of data.

This contribution finds its source in the idea that approximate optimization algorithms might be
sufficient for learning purposes. The first part proposes newdecomposition of the test error where
an additional term represents the impact of approximate optimization. In the case of small-scale
learning problems, this decomposition reduces to the well known tradeoff between approximation
error and estimation error. In the case of large-scale learning problems, the tradeoff is more com-
plex because it involves the computational complexity of the learning algorithm. The second part
explores the asymptotic properties of the large-scale learning tradeoff for various prototypical learn-
ing algorithms under various assumptions regarding the statistical estimation rates associated with
the chosen objective functions. This part clearly shows that the best optimization algorithms are not
necessarily the best learning algorithms. Maybe more surprisingly, certain algorithms perform well
regardless of the assumed rate for the statistical estimation error.

2 Approximate Optimization

2.1 Setup

Following [6, 2], we consider a space of input-output pairs(x, y) ∈ X × Y endowed with a proba-
bility distributionP (x, y). The conditional distributionP (y|x) represents the unknown relationship
between inputs and outputs. The discrepancy between the predicted output̂y and the real output
y is measured with a loss functionℓ(ŷ, y). Our benchmark is the functionf∗ that minimizes the
expected risk

E(f) =

∫

ℓ(f(x), y) dP (x, y) = E [ℓ(f(x), y)],

that is,
f∗(x) = arg min

ŷ

E [ℓ(ŷ, y)|x].

Although the distributionP (x, y) is unknown, we are given a sampleS of n independently drawn
training examples(xi, yi), i = 1 . . . n. We define the empirical risk

En(f) =
1

n

n
∑

i=1

ℓ(f(xi), yi) = En[ℓ(f(x), y)].

Our first learning principle consists in choosing a familyF of candidate prediction functions and
finding the functionfn = arg minf∈F En(f) that minimizes the empirical risk. Well known com-
binatorial results (e.g., [2]) support this approach provided that the chosen familyF is sufficiently
restrictive. Since the optimal functionf∗ is unlikely to belong to the familyF , we also define
f∗
F

= arg minf∈F E(f). For simplicity, we assume thatf∗, f∗
F

andfn are well defined and unique.

We can then decompose the excess error as

E [E(fn) − E(f∗)] = E [E(f∗
F) − E(f∗)] + E [E(fn) − E(f∗

F)] = Eapp + Eest , (1)

where the expectation is taken with respect to the random choice of training set. Theapproximation
error Eapp measures how closely functions inF can approximate the optimal solutionf∗. The
estimation errorEest measures the effect of minimizing the empirical riskEn(f) instead of the
expected riskE(f). The estimation error is determined by the number of training examples and by
the capacity of the family of functions [2]. Large families1 of functions havesmaller approximation
errors but lead tohigher estimation errors. This tradeoff has been extensively discussed in the
literature [2, 3] and lead to excess errors that scale between the inverse and the inverse square root
of the number of examples [7, 8].

2.2 Optimization Error

Findingfn by minimizing the empirical riskEn(f) is often a computationally expensive operation.
Since the empirical riskEn(f) is already an approximation of the expected riskE(f), it should
not be necessary to carry out this minimization with great accuracy. For instance, we could stop an
iterative optimization algorithm long before its convergence.

Let us assume that our minimization algorithm returns an approximate solutionf̃n such that

En(f̃n) < En(fn) + ρ

whereρ ≥ 0 is a predefined tolerance. An additional termEopt = E
[

E(f̃n) − E(fn)
]

then appears
in the decomposition of the excess errorE = E

[

E(f̃n) − E(f∗)
]

:

E = E [E(f∗
F) − E(f∗)] + E [E(fn) − E(f∗

F)] + E
[

E(f̃n) − E(fn)
]

= Eapp + Eest + Eopt. (2)

We call this additional termoptimization error. It reflects the impact of the approximate optimization
on the generalization performance. Its magnitude is comparable toρ (see section 3.1.)

1We often consider nested families of functions of the formFc = {f ∈ H, Ω(f) ≤ c}. Then, for each
value ofc, functionfn is obtained by minimizing the regularized empirical riskEn(f) + λΩ(f) for a suitable
choice of the Lagrange coefficientλ. We can then control the estimation-approximation tradeoff by choosing
λ instead ofc.

2.3 The Approximation–Estimation–Optimization Tradeoff

This decomposition leads to a more complicated compromise.It involves three variables and two
constraints. The constraints are the maximal number of available training example and the maximal
computation time. The variables are the size of the family offunctionsF , the optimization accuracy
ρ, and the number of examplesn. This is formalized by the following optimization problem.

min
F,ρ,n

E = Eapp + Eest + Eopt subject to

{

n ≤ nmax

T (F , ρ, n) ≤ Tmax
(3)

The numbern of training examples is a variable because we could choose touse only a subset of
the available training examples in order to complete the optimization within the alloted time. This
happens often in practice. Table 1 summarizes the typical evolution of the quantities of interest with
the three variablesF , n, andρ increase.

Table 1: Typical variations whenF , n, andρ increase.

F n ρ

Eapp (approximation error) ց
Eest (estimation error) ր ց
Eopt (optimization error) · · · · · · ր
T (computation time) ր ր ց

The solution of the optimization program (3) depends critically of which budget constraint is active:
constraintn < nmax on the number of examples, or constraintT < Tmax on the training time.

• We speak ofsmall-scale learning problemwhen (3) is constrained by the maximal number
of examplesnmax. Since the computing time is not limited, we can reduce the optimization
errorEopt to insignificant levels by choosingρ arbitrarily small. The excess error is then
dominated by the approximation and estimation errors,Eapp andEest. Takingn = nmax,
we recover the approximation-estimation tradeoff that is the object of abundant literature.

• We speak oflarge-scale learning problemwhen (3) is constrained by the maximal comput-
ing timeTmax. Approximate optimization, that is, choosingρ > 0, possibly can achieve
better generalization because more training examples can be processed during the allowed
time. The specifics depend on the computational properties of the chosen optimization
algorithm through the expression of the computing timeT (F , ρ, n).

3 The Asymptotics of Large-scale Learning

In the previous section, we have extended the classical approximation-estimation tradeoff by taking
into account the optimization error. We have given an objective criterion to distiguish small-scale
and large-scale learning problems. In the small-scale case, we recover the classical tradeoff between
approximation and estimation. The large-scale case is substantially different because it involves
the computational complexity of the learning algorithm. Inorder to clarify the large-scale learning
tradeoff with sufficient generality, this section makes several simplifications:

• We are studying upper bounds of the approximation, estimation, and optimization er-
rors (2). It is often accepted that these upper bounds give a realistic idea of the actual
convergence rates [9, 10, 11, 12]. Another way to find comfortin this approach is to say
that we study guaranteed convergence rates instead of the possibly pathological special
cases.

• We are studying the asymptotic properties of the tradeoff when the problem size increases.
Instead of carefully balancing the three terms, we writeE = O(Eapp)+O(Eest)+O(Eopt)
and only need to ensure that the three terms decrease with thesame asymptotic rate.

• We are considering a fixed family of functionsF and therefore avoid taking into account
the approximation errorEapp. This part of the tradeoff covers a wide spectrum of practical
realities such as choosing models and choosing features. Inthe context of this work, we do

not believe we can meaningfully address this without discussing, for instance, the thorny
issue of feature selection. Instead we focus on the choice ofoptimization algorithm.

• Finally, in order to keep this paper short, we consider that the family of functionsF is
linearly parametrized by a vectorw ∈ R

d. We also assume thatx, y andw are bounded,
ensuring that there is a constant B such that0 ≤ ℓ(fw(x), y) ≤ B andℓ(·, y) is Lipschitz.

We first explain how the uniform convergence bounds provide convergence rates that take the op-
timization error into account. Then we discuss and compare the asymptotic learning properties of
several optimization algorithms.

3.1 Convergence of the Estimation and Optimization Errors

The optimization errorEopt depends directly on the optimization accuracyρ. However, the accuracy
ρ involves the empirical quantityEn(f̃n) − En(fn), whereas the optimization errorEopt involves
its expected counterpartE(f̃n) − E(fn). This section discusses the impact on the optimization
error Eopt and of the optimization accuracyρ on generalization bounds that leverage the uniform
convergence concepts pioneered by Vapnik and Chervonenkis(e.g., [2].)

In this discussion, we use the letterc to refer to any positive constant. Multiple occurences of the
letterc do not necessarily imply that the constants have identical values.

3.1.1 Simple Uniform Convergence Bounds

Recall that we assume thatF is linearly parametrized byw ∈ R
d. Elementary uniform convergence

results then state that

E

»

sup
f∈F

|E(f) − En(f)|

–

≤ c

r

d

n
,

where the expectation is taken with respect to the random choice of the training set.2 This result
immediately provides a bound on the estimation error:

Eest = E
ˆ `

E(fn) − En(fn)
´

+
`

En(fn) − En(f∗

F)
´

+
`

En(f∗

F) − E(f∗

F)
´ ˜

≤ 2 E

»

sup
f∈F

|E(f) − En(f)|

–

≤ c

r

d

n
.

This same result also provides a combined bound for the estimation and optimization errors:

Eest + Eopt = E
ˆ

E(f̃n) − En(f̃n)
˜

+ E
ˆ

En(f̃n) − En(fn)
˜

+ E [En(fn) − En(f∗

F)] + E [En(f∗

F) − E(f∗

F)]

≤ c

r

d

n
+ ρ + 0 + c

r

d

n
= c

ρ +

r

d

n

!

.

Unfortunately, this convergence rate is known to be pessimistic in many important cases. More
sophisticated bounds are required.

3.1.2 Faster Rates in the Realizable Case

When the loss functionsℓ(ŷ, y) is positive, with probability1− e−τ for anyτ > 0, relative uniform
convergence bounds state that

sup
f∈F

E(f) − En(f)
p

E(f)
≤ c

r

d

n
log

n

d
+

τ

n
.

This result is very useful because it provides faster convergence ratesO(log n/n) in the realizable
case, that is whenℓ(fn(xi), yi) = 0 for all training examples(xi, yi). We have thenEn(fn) = 0,
En(f̃n) ≤ ρ, and we can write

E(f̃n) − ρ ≤ c

q

E(f̃n)

r

d

n
log

n

d
+

τ

n
.

2Although the original Vapnik-Chervonenkis bounds have the formc

q

d
n

log n
d

, the logarithmic term can
be eliminated using the “chaining” technique (e.g., [10].)

Viewing this as a second degree polynomial inequality in variable
√

E(f̃n), we obtain

E(f̃n) ≤ c

„

ρ +
d

n
log

n

d
+

τ

n

«

.

Integrating this inequality using a standard technique (see, e.g., [13]), we obtain a better convergence
rate of the combined estimation and optimization error:

Eest + Eopt = E

h

E(f̃n) − E(f∗

F)
i

≤ E

h

E(f̃n)
i

= c

„

ρ +
d

n
log

n

d

«

.

3.1.3 Fast Rate Bounds

Many authors (e.g., [10, 4, 12]) obtain fast statistical estimation rates in more general conditions.
These bounds have the general form

Eapp + Eest ≤ c

(

Eapp +

(

d

n
log

n

d

)α)

for
1

2
≤ α ≤ 1 . (4)

This result holds when one can establish the following variance condition:

∀f ∈ F E

[

(

ℓ(f(X), Y) − ℓ(f∗
F (X), Y)

)2
]

≤ c

(

E(f) − E(f∗
F)

)2− 1

α

. (5)

The convergence rate of (4) is described by the exponentα which is determined by the quality of
the variance bound (5). Works on fast statistical estimation identify two main ways to establish such
a variance condition.

• Exploiting the strict convexity of certain loss functions [12, theorem 12]. For instance, Lee
et al. [14] establish aO(log n/n) rate using the squared lossℓ(ŷ, y) = (ŷ − y)2.

• Making assumptions on the data distribution. In the case of pattern recognition problems,
for instance, the “Tsybakov condition” indicates how cleanly the posterior distributions
P (y|x) cross near the optimal decision boundary [11, 12]. The realizable case discussed in
section 3.1.2 can be viewed as an extreme case of this.

Despite their much greater complexity, fast rate estimation results can accomodate the optimization
accuracyρ using essentially the methods illustrated in sections 3.1.1 and 3.1.2. We then obtain a
bound of the form

E = Eapp + Eest + Eopt = E

[

E(f̃n) − E(f∗)
]

≤ c

(

Eapp +

(

d

n
log

n

d

)α

+ ρ

)

. (6)

For instance, a general result withα = 1 is provided by Massart [13, theorem 4.2]. Combining this
result with standard bounds on the complexity of classes of linear functions (e.g., [10]) yields the
following result:

E = Eapp + Eest + Eopt = E

[

E(f̃n) − E(f∗)
]

≤ c

(

Eapp +
d

n
log

n

d
+ ρ

)

. (7)

See also [15, 4] for more bounds taking into account the optimization accuracy.

3.2 Gradient Optimization Algorithms

We now discuss and compare the asymptotic learning properties of four gradient optimization algo-
rithms. Recall that the family of functionF is linearly parametrized byw ∈ R

d. Let w∗
F

andwn

correspond to the functionsf∗
F

andfn defined in section 2.1. In this section, we assume that the
functionsw 7→ ℓ(fw(x), y) are convex and twice differentiable with continuous secondderivatives.
Convexity ensures that the empirical const functionC(w) = En(fw) has a single minimum.

Two matrices play an important role in the analysis: the Hessian matrixH and the gradient covari-
ance matrixG, both measured at the empirical optimumwn.

H =
∂2C

∂w2
(wn) = En

[

∂2ℓ(fwn
(x), y)

∂w2

]

, (8)

G = En

[

(

∂ℓ(fwn
(x), y)

∂w

) (

∂ℓ(fwn
(x), y)

∂w

)′
]

. (9)

The relation between these two matrices depends on the chosen loss function. In order to summarize
them, we assume that there are constantsλmax ≥ λmin > 0 andν > 0 such that, for anyη > 0,
we can choose the number of examplesn large enough to ensure that the following assertion is true
with probability greater than1 − η :

tr(G H−1) ≤ ν and EigenSpectrum(H) ⊂ [λmin , λmax] (10)

The condition numberκ = λmax/λmin characterizes the optimisation difficulty (e.g., [16].)

The conditionλmin > 0 avoids complications with stochastic gradient algorithms. Note that this
condition only implies strict convexity around the optimum. For instance, consider a loss function
obtained by smoothing the well known hinge lossℓ(z, y) = max{0, 1−yz} in a small neighborhood
of its non-differentiable points. FunctionC(w) is then piecewise linear with smoothed edges and
vertices. It is not strictly convex. However its minimum is likely to be on a smoothed vertex with a
non singular Hessian. When we have strict convexity, the argument of [12, theorem 12] yields fast
estimation ratesα ≈ 1 in (4) and (6). This is not necessarily the case here.

The four algorithm considered in this paper use informationabout the gradient of the cost function
to iteratively update their current estimatew(t) of the parameter vector.

• Gradient Descent (GD)iterates

w(t + 1) = w(t) − η
∂C

∂w
(w(t)) = w(t) − η

1

n

n
∑

i=1

∂

∂w
ℓ
(

fw(t)(xi), yi

)

whereη > 0 is a small enough gain. GD is an algorithm withlinear convergence[16]:
whenη = 1/λmax, this algorithm requiresO(κ log(1/ρ)) iterations to reach accuracyρ.
The exact number of iterations depends on the choice of the initial parameter vector.

• Second Order Gradient Descent (2GD)iterates

w(t + 1) = w(t) − H−1 ∂C

∂w
(w(t)) = w(t) −

1

n
H−1

n
∑

i=1

∂

∂w
ℓ
(

fw(t)(xi), yi

)

where matrixH−1 is the inverse of the Hessian matrix (8). This is more favorable than
Newton’s algorithm because we do not evaluate the local Hessian at each iteration but
simply assume that we know in advance the Hessian at the optimum. 2GD is a superlinear
optimization algorithm withquadratic convergence[16]. When the cost is quadratic, a
single iteration is sufficient. In the general case,O(log log(1/ρ)) iterations are required to
reach accuracyρ.

• Stochastic Gradient Descent (SGD)picks a random training example(xt, yt) at each
iteration and updates the parameterw on the basis of this example only,

w(t + 1) = w(t) −
η

t

∂

∂w
ℓ
(

fw(t)(xt), yt

)

.

Murata [17, section 2.2], characterizes the meanES [w(t)] and varianceVarS [w(t)] with
respect to the distribution implied by the random examples drawn from a given training
setS at each iteration. Applying this result to the discrete training set distribution for
η = 1/λmin, we haveδw(t)2 = O(1/t) whereδw(t) is a shorthand notation forw(t)−wn.
We can then write

ES [C(w(t)) − inf C] = ES

ˆ

tr
`

H δw(t) δw(t)′
´˜

+ o
`

1
t

´

= tr
`

H ES [δw(t)] ES [δw(t)]′ + H VarS [w(t)]
´

+ o
`

1
t

´

≤ tr(GH)
t

+ o
`

1
t

´

≤ νκ2

t
+ o
`

1
t

´

.

(11)

Therefore the SGD algorithm reaches accuracyρ after less thanνκ2/ρ + o(1/ρ) iterations
on average. The SGD convergence is essentially limited by the stochastic noise induced
by the random choice of one example at each iteration. Neither the initial value of the
parameter vectorw nor the total number of examplesn appear in the dominant term of this
bound! When the training set is large, one could reach the desired accuracyρ measured on
the whole training set without even visiting all the training examples. This is in fact a kind
of generalization bound.

Table 2: Asymptotic results for gradient algorithms (with probability 1). Compare the second
last column (time to optimize) with the last column (time to reach the excess test errorǫ).
Legend: n number of examples;d parameter dimension;κ, ν see equation (10).

Algorithm Cost of one Iterations Time to reach Time to reach
iteration to reach ρ accuracyρ E ≤ c (Eapp + ε)

GD O(nd) O
(

κ log 1
ρ

)

O
(

ndκ log 1
ρ

)

O
(

d2 κ
ε1/α log2 1

ε

)

2GD O
(

d2 + nd
)

O
(

log log 1
ρ

)

O
(

(

d2 + nd
)

log log 1
ρ

)

O
(

d2

ε1/α log 1
ε

log log 1
ε

)

SGD O(d) νκ2

ρ
+ o

(

1
ρ

)

O
(

dνκ2

ρ

)

O
(

d ν κ2

ε

)

2SGD O
(

d2
)

ν
ρ

+ o
(

1
ρ

)

O
(

d2ν
ρ

)

O
(

d2 ν
ε

)

• Second Order Stochastic Gradient Descent (2SGD)replaces the gainη by the inverse of
the Hessian matrixH:

w(t + 1) = w(t) −
1

t
H−1 ∂

∂w
ℓ
(

fw(t)(xt), yt

)

.

Unlike standard gradient algorithms, using the second order information does not change
the influence ofρ on the convergence rate but improves the constants. Using again [17,
theorem 4], accuracyρ is reached afterν/ρ + o(1/ρ) iterations.

For each of the four gradient algorithms, the first three columns of table 2 report the time for a single
iteration, the number of iterations needed to reach a predefined accuracyρ, and their product, the
time needed to reach accuracyρ. These asymptotic results are valid with probability1, since the
probability of their complement is smaller thanη for anyη > 0.

The fourth column bounds the time necessary to reduce the excess errorE belowc (Eapp+ε) wherec
is the constant from (6). This is computed by observing that choosingρ ∼

`

d
n

log n
d

´α in (6) achieves
the fastest rate forε, with minimal computation time. We can then use the asymptotic equivalences
ρ ∼ ε andn ∼ d

ε1/α log 1
ε

. Setting the fourth column expressions toTmax and solving forǫ yields
thebest excess error achieved by each algorithmwithin the limited timeTmax . This provides the
asymptotic solution of the Estimation–Optimization tradeoff (3) for large scale problems satisfying
our assumptions.

These results clearly show that the generalization performance oflarge-scale learning systemsde-
pends on both the statistical properties of the objective function and the computational properties of
the chosen optimization algorithm. Their combination leads to surprising consequences:

• The SGD and 2SGD results do not depend on the estimation rateα. When the estimation
rate is poor, there is less need to optimize accurately. Thatleaves time to process more
examples. A potentially more useful interpretation leverages the fact that (11) is already a
kind of generalization bound: its fast rate trumps the slower rate assumed for the estimation
error.

• Second order algorithms bring little asymptotical improvements inε. Although the super-
linear 2GD algorithm improves the logarithmic term, all four algorithms are dominated by
the polynomial term in(1/ε). However, there are important variations in the influence of
the constantsd, κ andν. These constants are very important in practice.

• Stochastic algorithms (SGD, 2SGD) yield the best generalization performance despite be-
ing the worst optimization algorithms. This had been described before [18] and observed
in experiments.

In contrast, since the optimization errorEopt of small-scale learning systemscan be reduced to
insignificant levels, their generalization performance issolely determined by the statistical properties
of the objective function.

4 Conclusion

Taking in account budget constraints on both the number of examples and the computation time,
we findqualitative differencesbetween the generalization performance of small-scale learning sys-
tems and large-scale learning systems. The generalizationproperties of large-scale learning systems
depend on both the statistical properties of the objective function and the computational proper-
ties of the optimization algorithm. We illustrate this factwith some asymptotic results on gradient
algorithms.

Considerable refinements of this framework can be expected.Extending the analysis to regular-
ized risk formulations would make results on the complexityof primal and dual optimization algo-
rithms [19, 20] directly exploitable. The choice of surrogate loss function [7, 12] could also have a
non-trivial impact in the large-scale case.

Acknowledgments Part of this work was funded by NSF grant CCR-0325463.

References
[1] Leslie G. Valiant. A theory of learnable.Proc. of the 1984 STOC, pages 436–445, 1984.

[2] Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer Series in Statistics.
Springer-Verlag, Berlin, 1982.

[3] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: a survey of recent
advances.ESAIM: Probability and Statistics, 9:323–375, 2005.

[4] Peter L. Bartlett and Shahar Mendelson. Empirical minimization.Probability Theory and Related Fields,
135(3):311–334, 2006.

[5] J. Stephen Judd. On the complexity of loading shallow neural networks.Journal of Complexity, 4(3):177–
192, 1988.

[6] Richard O. Duda and Peter E. Hart.Pattern Classification And Scene Analysis. Wiley and Son, 1973.

[7] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization.The Annals of Statistics, 32:56–85, 2004.

[8] Clint Scovel and Ingo Steinwart. Fast rates for support vector machines. In Peter Auer and Ron Meir,
editors,Proceedings of the 18th Conference on Learning Theory (COLT 2005), volume 3559 ofLecture
Notes in Computer Science, pages 279–294, Bertinoro, Italy, June 2005. Springer-Verlag.

[9] Vladimir N. Vapnik, Esther Levin, and Yann LeCun. Measuring the VC-dimension of a learning machine.
Neural Computation, 6(5):851–876, 1994.

[10] Olivier Bousquet.Concentration Inequalities and Empirical Processes Theory Applied to theAnalysis of
Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

[11] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning.Annals of Statististics,
32(1), 2004.

[12] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification and risk bounds.
Journal of the American Statistical Association, 101(473):138–156, March 2006.

[13] Pascal Massart. Some applications of concentration inequalities to statistics. Annales de la Faculté des
Sciences de Toulouse, (2):245–303, 2000.

[14] Wee S. Lee, Peter L. Bartlett, and Robert C. Williamson. The importance of convexity in learning with
squared loss.IEEE Transactions on Information Theory, 44(5):1974–1980, 1998.

[15] Shahar Mendelson. A few notes on statistical learning theory. In Shahar Mendelson and Alexander J.
Smola, editors,Advanced Lectures in Machine Learning, volume 2600 ofLecture Notes in Computer
Science, pages 1–40. Springer-Verlag, Berlin, 2003.

[16] John E. Dennis, Jr. and Robert B. Schnabel.Numerical Methods For Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

[17] Noboru Murata. A statistical study of on-line learning. In David Saad, editor,Online Learning and Neural
Networks. Cambridge University Press, Cambridge, UK, 1998.

[18] Léon Bottou and Yann LeCun. Large scale online learning. In Sebastian Thrun, Lawrence Saul, and Bern-
hard Scḧolkopf, editors,Advances in Neural Information Processing Systems 16. MIT Press, Cambridge,
MA, 2004.

[19] Thorsten Joachims. Training linear svms in linear time. InProceedings of KDD’06, Philadelphia, PA,
USA, August 20-23 2006. ACM.

[20] Don Hush, Patrick Kelly, Clint Scovel, and Ingo Steinwart. QP algorithms with guaranteed accuracy and
run time for support vector machines.Journal of Machine Learning Research, 7:733–769, 2006.

