
Breaking SVM Complexity
with Cross-Training

Gökhan H. Bakır
Max Planck Institute

for Biological Cybernetics,
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Abstract
We propose to selectively remove examples from the trainingset using
probabilistic estimates related to editing algorithms (Devijver and Kittler,
1982). This heuristic procedure aims at creating a separable distribution
of training examples with minimal impact on the position of the decision
boundary. It breaks the linear dependency between the number of SVs
and the number of training examples, and sharply reduces thecomplexity
of SVMs during both the training and prediction stages.

1 Introduction

The number of Support Vectors (SVs) has a dramatic impact on the efficiency of Support
Vector Machines (Vapnik, 1995) during both the learning andprediction stages. Recent
results (Steinwart, 2004) indicate that the numberk of SVs increases linearly with the
numbern of training examples. More specifically,

k/n −→ 2BK (1)

wheren is the number of training examples andBK is the smallest classification error
achievable with the SVM kernelK. When using a universal kernel such as the Radial Basis
Function kernel,BK is the Bayes riskB, i.e. the smallest classification error achievable with
any decision function.

The computational requirements of modern SVM training algorithms (Joachims, 1999;
Chang and Lin, 2001) are very largely determined by the amount of memory required to
store the active segment of the kernel matrix. When this amount exceeds the available
memory, the training time increases quickly because some kernel matrix coefficients must
be recomputed multiple times. During the final phase of the training process, the active
segment always contains all thek(k + 1)/2 dot products between SVs. Steinwart’s result
(1) then suggests that the critical amount of memory scales at least likeB2n2. This can be
practically prohibitive for problems with either big training sets or large Bayes risk (noisy
problems). Large numbers of SVs also penalize SVMs during the prediction stage as the
computation of the decision function requires a time proportional to the number of SVs.

When the problem is separable, i.e.B = 0, equation (1) suggests1 that the numberk of
SVs increases less than linearly with the numbern of examples. This improves the scaling
laws for the SVM computational requirements.

1See also (Steinwart, 2004, remark 3.8)



In this paper, we propose to selectively remove examples from the training set using prob-
abilistic estimates inspired by training set editing algorithms (Devijver and Kittler, 1982).
The removal procedure aims at creating a separable set of training examples without mod-
ifying the location of the decision boundary. Making the problem separable breaks the
linear dependency between the number of SVs and the number oftraining examples.

2 Related work

2.1 Salient facts about SVMs

We focus now on theC-SVM applied to the two-class pattern recognition problem.See
(Burges, 1998) for a concise reference. Givenn training patternsxi and their associated
classesyi = ±1, the SVM decision function is:

f(x) =
n

∑

i=1

α∗

i yiK(xi, x) + b∗ (2)

The coefficientα∗
i in (2) are obtained by solving a quadratic programing problem:

α∗ = arg max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyjK(xi, xj) (3)

subject to∀i, 0 ≤ αi ≤ C and
∑

i

αiyi = 0

This optimization yields three categories of training examples depending onα∗
i . Within

each category, the possible values of the marginsyif(xi) are prescribed by the Karush-
Kuhn-Tucker optimality conditions.

- Examples such thatα∗
i = C are calledbouncing SVsor margin errorsand satisfy

yif(xi) < 1. The set of bouncing SVs includes all training examples misclassified
by the SVM, i.e. those which have a negative marginyif(xi) < 0.

- Examples such that0 < α∗
i < C are calledordinary SVsand satisfyyif(xi) = 1.

- Examples such thatα∗
i = 0 satisfy relationyif(xi) > 1. These examples play no

role in the SVM decision function (2). Retraining after discarding these examples
would still yield the same SVM decision function (2).

These facts provide some insight into Steinwart’s result (1). The SVM decision function,
like any other decision rule, must asymptotically misclassify at leastBn examples, where
B is the Bayes risk. All these examples must therefore become bouncing SVs.

To illustrate dependence on the Bayes risk, we perform a linear classification task in two
dimensions under varying amount of class overlap. The classdistributions were uniform
on a unit square with centersc1 andc2. Varying the distance betweenc1 andc2 allows us
to control the Bayes risk. The results are shown in figure 1.

2.2 A posteriori reduction of the number of SVs.

Several techniques aim to reduce the prediction complexityof SVMs by expressing the
SVM solution (2) with a smaller kernel expansion. Since one must compute the SVM so-
lution before applying these post-processing techniques,they are not suitable for reducing
the complexity of the training stage.

Reduced Set Construction. Burges (Burges, 1996) proposes to construct new patterns
zj in order to define a compact approximation of the decision function (2). Reduced set
construction usually involves solving a non convex optimization problem and is not appli-
cable on arbitrary inputs such as graphs or strings.
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Figure 1:Effect of noise on the number of sup-
port vectors. The number of ordinary SVs stays
almost constant whereas the number of bounc-
ing SVs grows. Additional support vectors do
not give extra information as indicated by the
rank of the kernel matrix. See section 2.1.
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Figure 2: Histogram of SVs selected by the
`1 penalization method on the MNIST 3-8 dis-
crimination task. The initial SVs have been or-
dered on thex-axis by increasing marginyf(x)
and decreasingα. See last paragraph in section
2.2.

Reduced Set Selection. The set of basis2 functionsK(xi, ·) associated with the SVsxi

do not necessarily constitute a linearly independent family. The same decision functionf(·)
can then be expressed by multiple linear combination of the functionsK(xi, ·). Reduced
set selection methods attempt to select a subset of the SVs that is sufficient to express
the SVM decision function. For instance, (Downs, Gates and Masters, 2001) propose to
compute the row echelon form of the kernel matrix and discardSVs that lead to zero rows.
This approach maintains the original SVM decision function.

In contrast, the`1 penalization method suggested in (Schölkopf and Smola, 2002,
sect. 18.4.2) simply attempts to construct a sufficiently good approximation of the origi-
nal SVM decision function by solving

arg min
β

∥

∥

∥

∥

∥

∑

i

α∗

i yiK(xi, ·) −
∑

i

βiyiK(xi, ·)

∥

∥

∥

∥

∥

2

K

+ λ
∑

i

|βi| (4)

where parameterλ trades accuracy versus sparsity, and‖·‖
K

denotes the Reproducing Ker-
nel Hilbert Space norm (Schölkopf and Smola, 2002, definition 2.9). Simplifying expres-
sion (4) yields a numerically tractable quadratic programming problem.

Which examples are selected? We have investigated thè1 penalization method (4) as
follows. We train a first SVM to discriminate digits 3 and 8 on the MNIST dataset (see
section 4.2) after randomly swapping 10% of the class labelsin the training set. We then
select a subset of the resulting support vectors using the`1 penalization method.

Choosingλ is quite difficult in practice. To evaluate the accuracy of the procedure, we train
a second SVM on the selected vectors, compare its recognition accuracy with that of the
first SVM. This was best achieved by enforcing the constraintβi ≥ 0 in (4) because the
second SVM cannot return an expansion with negative coefficients.

Figure 2 shows the histogram of selected SVs. The initial support vectors have been or-
dered on thex-axis by increasing values ofyif(xi), and, in the case of margin SVs, by
decreasing values ofαi. The selected SVs includesvirtually no misclassified SVs, but
instead concentrates onSVs with largeαi.

This result suggests that simple pre-processing methods might indicate which training ex-
amples are really critical for SVM classification.

2We use the customary namebasis functionsdespite linear dependence. . .



2.3 Training set editing techniques

We now consider techniques for reducing the set of training examples before running a
training algorithm. Reducing the amount of training data isindeed an obvious way to
reduce the complexity of training. Quantization and clustering methods might be used to
achieve this goal. These methods however reduce the training data without considering the
loss function of interest, and therefore sacrifice classification accuracy. We focus instead
on editing techniques, i.e. techniques for discarding selected training examples with the
aim of achieving similar or better classification accuracy.

Two prototypical editing techniques,MULTIEDIT and CONDENSE, have been thoroughly
studied (Devijver and Kittler, 1982, chapter 3) in the context of the nearest neighbor (1-
NN) classification rule.

Removing interior examples. The CONDENSEalgorithm was first described by (Hart,
1968). This algorithm selects a subset of the training examples whose 1-NN decision
boundary still classifies correctly all of the initial training examples:
Algorithm 1 (C ONDENSE).

1 Select a random training example and put it in setR.

2 For each training examplei = 1, . . . , n : classify examplei using the 1-NN rule with set
R as the training set, and insert it intoR if it is misclassified.

3 Return to step 2 ifR has been modified during the last pass.

4 The final contents ofR constitute the condensed training set.

This is best understood when both classes form homogeneous clusters in the feature space.
Algorithm 1 discards training examples located in the interior of each cluster.

This strategy works poorly when there is a large overlap between the pattern distributions
of both classes, that is to say when the Bayes riskB is large. Consider for instance a feature
space region whereP (y = +1 | x) > P (y = −1 | x) > 0. A small number of training
examples of classy = −1 can still appear in such a region. We say that they are locatedon
the wrong side of the Bayes decision boundary. Asymptotically, all such training examples
belong to the condensed training set in order to ensure that they are properly recognized as
members of classy = −1.

Removing noise examples. TheEdited Nearest Neighborrule (Wilson, 1972) suggests
to first discard all training examples that are misclassifiedwhen applying the 1-NN rule
using alln − 1 remaining examples as the training set. It was shown that removing these
examplesimprovesthe asymptotic performance of the nearest neighbor rule. Whereas
the 1-NN risk is asymptotically bounded by2B, the Edited 1-NN risk is asymptotically
bounded by1.2 B, whereB is the Bayes risk.
The MULTIEDIT algorithm (Devijver and Kittler, 1982, section 3.11) asymptotically dis-
cardsall the training examples located on the wrong side of the Bayes decision boundary.
The asymptotic risk of the multi-edited nearest neighbor rule is the Bayes riskB.
Algorithm 2 (M ULTI EDIT ).

1 Divide randomly the training data intos splitsS1, . . . ,Ss. Let us callfi the 1-NN classifier
that usesSi as the training set.

2 Classify all examples inSi using the classifierf(i+1) mod s and discard all misclassified
examples.

3 Gather all the remaining examples and return to step 1 if any example has been discarded
during the lastT iterations.

4 The remaining examples constitute the multiedited training set.

By discarding examples located on the wrong side of the Bayesdecision boundary, algo-
rithm MULTIEDIT constructs a new training set whose apparent distribution has the same
Bayes decision boundary as the original problem, but with Bayes risk equal to0. Devijver
and Kittler claim thatMULTIEDIT produces an ideal training set forCONDENSE.



Algorithm MULTIEDIT also discards some proportion of training examples locatedon the
correct side of Bayes decision boundary. Asymptotically this does not matter. However
this is often a problem in practice. . .

2.4 Editing algorithms and SVMs

Training examples recognized with high confidence usually do not appear in the SVM
solution (2) because they do not become support vectors. On the other hand, outliers always
become support vectors. Intuitively, SVMs display the properties of theCONDENSEbut
lack the properties of theMULTIEDIT algorithm.

The mathematical proofs for the asymptotic properties ofMULTIEDIT depend on the spe-
cific nature of the 1-NN classification rule. TheMULTIEDIT algorithm itself could be iden-
tically defined for any classifier. This suggests (but does not prove) that these properties
might remain valid for SVM classifiers3.

This contribution is anempiricalattempt to endow Support Vector Ma-
chines with the properties of theMULTIEDIT algorithm.

Editing SVM training sets implicitly modifies the SVM loss function in a way that relates
to robust statistics. Editing alters the apparent distribution of training examples such that
the class distributionsP (x | y = 1) andP (x | y = −1) no longer overlap. If the class
distributions were known, this could be done by trimming thetails of the class distributions.
A similar effect could be obtained by altering the SVM loss function (the hinge loss) into a
non convex loss function that gives less weight to outliers.

3 Cross-Training

Cross-Training is a representative algorithm of such combinations of SVMs and editing
algorithms. It begins with creatings subsets of the training set withr examples each. In-
dependent SVMs are then trained on each subset. The decisionfunctions of these SVMs
are then used to discard two types of training examples: those which are confidently recog-
nized, as inCONDENSE, and those which are misclassified, as inMULTIEDIT . A final SVM
is then trained using the remaining examples.
Algorithm 3 (C ROSSTRAINING ).

1 Creates subsets of sizer by randomly drawingr/2 examples of each class.

2 Trains independent SVMsf1, . . . , fs using each of the subsets as the training set.

3 For each training example(xi, yi) estimate the margin averagemi and variancevi:

mi = 1
s

∑

s

r=1 yifr(xi) vi = 1
s

∑

s

r=1 (mi − yifr(xi))
2

4 Discard all training examples for whichmi + vi < 0.

5 Discard all training examples for whichmi − vi > 1.

6 Train a final SVM on the remaining training examples.

The apparent simplicity of this algorithm hides a lot of hyperparameters. The value of the
C parameters for the SVMs at steps [2] and [6] has a considerable effect on the overall
performance of the algorithm.

For the first stage SVMs, we choose theC parameter which yields the best performance
on training sets of sizer. For the second stage SVMs, we choose theC parameter which
yields the best overall performance measured on a separate validation set.

Furthermore, we discovered that the discarding steps tend to produce a final set of training
examples with very different numbers of examples for each class. Specific measures to
alleviate this problem are discussed in section 4.3.

3Further comfort comes from the knowledge that a SVM with the RBF kernel and without thresh-
old termb implements the 1-NN rule when the RBF radius tends to zero.
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Figure 3: Comparing LIBSVM and Cross-Training on a toy problem of two Gaussianclouds for
increasing number of training points. Cross-Training gives an almost constant number of support
vectors (left figure) for increasing training set size, whereas in LIBSVM the number of support vec-
tors increases linearly. The error rates behave similarly (middle figure), and Cross-Training gives an
improved training time (right figure). See section 4.1.

4 Experiments
4.1 Artificial Data

We first constructed artificial data, by generating two classes from two Gaussian clouds in
10 dimensions with means(1, 1, 1, 1, 1, 0, 0, 0, 0, 0) and(−1,−1,−1,−1,−1, 0, 0, 0, 0, 0)
and standard deviation 4. We trained a linear SVM for differing amounts of training points,
selectingC via cross validation. We compare the performance of LIBSVM4 with Cross-
Training using LIBSVM withs = 5, averaging over 10 splits. The results given in figure
3 show a reduction in SVs and computation time using Cross-Training, with no loss in
accuracy.

4.2 Artificial Noise

Our second experiment involves the discrimination of digits 3 and 8 in the MNIST5

database. Artificial noise was introduced by swapping the labels of 0%, 5%, 10% and
15% of the examples. There are 11982 training examples and 1984 testing examples. All
experiments were carried out using LIBSVM’sν-SVM (Chang and Lin, 2001) with the
RBF kernel (γ = 0.005). Cross-Training was carried out by splitting the 11982 training
examples into 5 subsets. Figure 4 reports our results for various amounts of label noise.
The number of SVs (left figure) increases linearly for the standard SVM and stays constant
for the Cross-Training SVM. The test errors (middle figure) seem similar. Since our label
noise is artificial, we can also measure the misclassification rate on the unmodified test-
ing set (right figure). This measurement shows a slight loss of accuracy without statistical
significance.

4.3 Benchmark Data

Finally the cross-training algorithm was applied to real data sets from both the ANU repos-
itory6 and from the the UCI repository7.

Experimental results were quite disappointing until we realized that the discarding steps
tends to produce training sets with very different numbers of examples for each class. To
alleviate this problem, after training each SVM, we choose the value of the thresholdb∗

4 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/
5 http://yann.lecun.com/exdb/mnist
6 http://mlg.anu.edu.au/ ∼raetsch/data/index.html
7 ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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Figure 4: Number of SVs (left figure) and test error (middle figure) for varying amounts of label
noise on the MNIST 3-8 discrimination task. Thex-axis in all graphs shows the amount of label noise;
white squares correspond to LIBSVM; black circles to Cross-Training;dashed lines to bagging the
first stage Cross-Training SVMs. The last graph (right figure) shows the test error measured without
label noise. See section 4.2

in (2) which achieves the best validation performance. We also attempt to balance the
final training set by re-inserting examples discarded during step [5] of the cross-training
algorithm.

Experiments were carried out using RBF kernels with the kernel width reported in the
literature. In the SVM experiments, the value of parameterC was determined by cross-
validation and then used for training a SVM on the full dataset. In the cross-training ex-
periments, we make a validation set by takingr/3 examples from the training set. These
examples are only used for choosing the values ofC and for adjusting the SVM thresholds.
Details and source code are available8.

Train Test SVM SVM XTrain XTrain XTrain
Dataset Size Size Perf.[%] #SV Subsets Perf.[%] #SV
Banana 400 4900 89.0 111 5×200 88.2 51
Waveform 400 4600 90.2 172 5×200 88.7 87
Splice 1000 2175 90.0 601 5×300 89.9 522
Adult 3185 16280 84.2 1207 5×700 84.2 606
Adult 32560 16280 85.1 11325 5×6000 84.8 1194
Forest 50000 58100 90.3 12476 5×10000 89.2 7967
Forest 90000 58100 91.6 18983 5×18000 90.7 13023
Forest 200000 58100 — — 8×30000 92.1 19526

Table 1:Comparison of SVM and Cross-Training results on standard benchmark data sets.

The columns in table 1 contain the dataset name, the size of the training set used for the
experiment, the size of the test set, the SVM accuracy and number of SVs, the Cross-
Training subset configuration, accuracy, and final number ofSVs. Bold typeface indicates
which differences were statistically significant according to a paired test. These numbers
should be considered carefully because they are impacted bythe discrete nature of the grid
search for parameterC. The general trend still indicates that Cross-Training causes a slight
loss of accuracy but requires much less SVs.

Our largest training set contains 200000 examples. Training a standard SVM on such a
set takes about one week of computation. We do not report thisresult because it was not
practical to determine a good value ofC for this experiment. Cross-Training with specified
hyperparameters runs overnight. Cross-Training with hyperparameter grid searches runs in
two days.

We do not report detailled timing results because much of theactual time can be attributed

8 http://www.kyb.tuebingen.mpg.de/bs/people/gb/xtraining



to the search for the proper hyperparameters. Timing results would then depend on loosely
controlled details of the hyperparameter grid search algorithms.

5 Discussion

We have suggested to combine SVMs and training set editing techniques to break the lin-
ear relationship between number of support vectors and number of examples. Such com-
binations raise interesting theoretical questions regarding the relative value of each of the
training examples.

Experiments with a representative algorithm, namely Cross-Training, confirm that both the
training and the recognition time are sharply reduced. On the other hand, Cross-Training
causes a minor loss of accuracy, comparable to that of reduced set methods (Burges, 1996),
and seems to be more sensitive than SVMs in terms of parametertuning.

Despite these drawbacks, Cross-Training provides a practical means to construct kernel
classifiers with significantly larger training sets.
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