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Abstract

We propose to selectively remove examples from the traieétgusing
probabilistic estimates related to editing algorithms\(ij¥er and Kittler,
1982). This heuristic procedure aims at creating a sepadisiribution
of training examples with minimal impact on the positiontod tecision
boundary. It breaks the linear dependency between the nuofil&yV/s
and the number of training examples, and sharply reducethelexity
of SVMs during both the training and prediction stages.

1 Introduction

The number of Support Vectors (SVs) has a dramatic impacherfficiency of Support

Vector Machines (Vapnik, 1995) during both the learning anediction stages. Recent
results (Steinwart, 2004) indicate that the numbesf SVs increases linearly with the
numbern of training examples. More specifically,

wheren is the number of training examples alik is the smallest classification error
achievable with the SVM kernét’. When using a universal kernel such as the Radial Basis
Function kernel3 is the Bayes risiB, i.e. the smallest classification error achievable with
any decision function.

The computational requirements of modern SVM training atgms (Joachims, 1999;
Chang and Lin, 2001) are very largely determined by the amoumemory required to
store the active segment of the kernel matrix. When this amexceeds the available
memory, the training time increases quickly because sommeekmatrix coefficients must
be recomputed multiple times. During the final phase of thmiing process, the active
segment always contains all thék + 1)/2 dot products between SVs. Steinwart’s result
(1) then suggests that the critical amount of memory scallesst like32n2. This can be
practically prohibitive for problems with either big traig sets or large Bayes risk (noisy
problems). Large numbers of SVs also penalize SVMs duriagptiediction stage as the
computation of the decision function requires a time prtpoal to the number of SVs.

When the problem is separable, i®.= 0, equation (1) suggestshat the numbet: of
SVs increases less than linearly with the numberf examples. This improves the scaling
laws for the SVM computational requirements.

'See also (Steinwart, 2004, remark 3.8)



In this paper, we propose to selectively remove examplas fhe training set using prob-
abilistic estimates inspired by training set editing aitions (Devijver and Kittler, 1982).
The removal procedure aims at creating a separable seirhga@xamples without mod-
ifying the location of the decision boundary. Making the lgemm separable breaks the
linear dependency between the number of SVs and the numbmiirihg examples.

2 Related work

2.1 Salient facts about SVMs

We focus now on th&'-SVM applied to the two-class pattern recognition problepee
(Burges, 1998) for a concise reference. Givetraining patterns;; and their associated
classeg); = +1, the SVM decision function is:

fl@) =Y afyiK (wi,2) +b° @)
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The coefficient] in (2) are obtained by solving a quadratic programing prwoble
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subject tovi, 0 < a; < C and Zaiyi =0
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This optimization yields three categories of training epéen depending on;. Within
each category, the possible values of the margijrf$x;) are prescribed by the Karush-
Kuhn-Tucker optimality conditions.

- Examples such that; = C' are calledbouncing SVer margin errorsand satisfy
yi f(z;) < 1. The set of bouncing SVs includes all training examples lassified
by the SVM, i.e. those which have a negative margifi(x;) < 0.

- Examples such th&t < o < C are calledbrdinary SVsand satisfyy; f (z;) = 1.

- Examples such that; = 0 satisfy relatiory; f(z;) > 1. These examples play no
role in the SVM decision function (2). Retraining after disting these examples
would still yield the same SVM decision function (2).

These facts provide some insight into Steinwart’s resylt The SVM decision function,
like any other decision rule, must asymptotically misdfgsat leastBn examples, where
B is the Bayes risk. All these examples must therefore becarmaading SVs.

To illustrate dependence on the Bayes risk, we perform atiokssification task in two
dimensions under varying amount of class overlap. The da$sbutions were uniform
on a unit square with centeeg andc,. Varying the distance between andc, allows us
to control the Bayes risk. The results are shown in figure 1.

2.2 A posteriori reduction of the number of SVs.

Several techniques aim to reduce the prediction complefit3VMs by expressing the
SVM solution (2) with a smaller kernel expansion. Since onsntompute the SVM so-
lution before applying these post-processing technichey, are not suitable for reducing
the complexity of the training stage.

Reduced Set Construction. Burges (Burges, 1996) proposes to construct new patterns
z; in order to define a compact approximation of the decisiortion (2). Reduced set
construction usually involves solving a non convex optetiian problem and is not appli-
cable on arbitrary inputs such as graphs or strings.
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Figure 1:Effect of noise on the number of sup- Figure 2: Histogram of SVs selected by the
port vectors. The number of ordinary SVs stays /¢; penalization method on the MNIST 3-8 dis-
almost constant whereas the number of bounc- crimination task. The initial SVs have been or-
ing SVs grows. Additional support vectors do dered on the:-axis by increasing marginf (x)
not give extra information as indicated by the and decreasing. See last paragraph in section
rank of the kernel matrix. See section 2.1. 2.2.

Reduced Set Selection. The set of basfsfunctionsK (x;, -) associated with the SVs;
do not necessarily constitute a linearly independent farfithe same decision functigf{-)
can then be expressed by multiple linear combination of thhetfonsK («;, -). Reduced
set selection methods attempt to select a subset of the @ sstisufficient to express
the SVM decision function. For instance, (Downs, Gates ardtits, 2001) propose to
compute the row echelon form of the kernel matrix and dis&rd that lead to zero rows.
This approach maintains the original SVM decision function

In contrast, the/; penalization method suggested in (8ktopf and Smola, 2002,
sect. 18.4.2) simply attempts to construct a sufficientlgdyapproximation of the origi-
nal SVM decision function by solving
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where parametex trades accuracy versus sparsity, drjf.- denotes the Reproducing Ker-
nel Hilbert Space norm (Sétkopf and Smola, 2002, definition 2.9). Simplifying expres
sion (4) yields a numerically tractable quadratic prograngnproblem.

Which examples are selected? We have investigated thg penalization method (4) as
follows. We train a first SVM to discriminate digits 3 and 8 dvetMNIST dataset (see
section 4.2) after randomly swapping 10% of the class laibellse training set. We then
select a subset of the resulting support vectors using,tbenalization method.

Choosingh\ is quite difficult in practice. To evaluate the accuracy @&f pnocedure, we train
a second SVM on the selected vectors, compare its recogrtiouracy with that of the
first SVM. This was best achieved by enforcing the constrdjnt 0 in (4) because the
second SVM cannot return an expansion with negative coefiisi

Figure 2 shows the histogram of selected SVs. The initiapsttpvectors have been or-
dered on thec-axis by increasing values @f f(x;), and, in the case of margin SVs, by
decreasing values af;. The selected SVs includesrtually no misclassified SYy$ut
instead concentrates &Vs with largey;.

This result suggests that simple pre-processing methogistiamdicate which training ex-
amples are really critical for SVM classification.

2We use the customary narbasis functionslespite linear dependence. ...



2.3 Training set editing techniques

We now consider techniques for reducing the set of trainkagrgles before running a
training algorithm. Reducing the amount of training datandeed an obvious way to
reduce the complexity of training. Quantization and cliaetemethods might be used to
achieve this goal. These methods however reduce the tgadiaita without considering the
loss function of interest, and therefore sacrifice clasaific accuracy. We focus instead
on editing techniquesi.e. techniques for discarding selected training exampligh the
aim of achieving similar or better classification accuracy.

Two prototypical editing techniquesjuULTIEDIT and CONDENSE have been thoroughly
studied (Devijver and Kittler, 1982, chapter 3) in the comtef the nearest neighbor (1-
NN) classification rule.

Removing interior examples. The cONDENSEalgorithm was first described by (Hart,
1968). This algorithm selects a subset of the training exesnwhose 1-NN decision
boundary still classifies correctly all of the initial tréig examples:

Algorithm 1 (C ONDENSE).
1 Select a random training example and put it in Bet

2 For each training examplé = 1, ..., n : classify examplé using the 1-NN rule with set
R as the training set, and insert it int8 if it is misclassified.

3 Return to step 2 iRk has been modified during the last pass.
4 The final contents @R constitute the condensed training set.

This is best understood when both classes form homogenaaisrs in the feature space.
Algorithm 1 discards training examples located in the iioteof each cluster.

This strategy works poorly when there is a large overlap betwthe pattern distributions
of both classes, that is to say when the Bayesfigklarge. Consider for instance a feature
space region wher®(y = +1|x) > P(y = —1| «) > 0. A small number of training
examples of clasg = —1 can still appear in such a region. We say that they are located
the wrong side of the Bayes decision boundary. Asymptdyicall such training examples
belong to the condensed training set in order to ensurettbgtare properly recognized as
members of clasg = —1.

Removing noise examples. The Edited Nearest Neighbaule (Wilson, 1972) suggests
to first discard all training examples that are misclassifigdn applying the 1-NN rule
using alln — 1 remaining examples as the training set. It was shown thabvem these
examplesimprovesthe asymptotic performance of the nearest neighbor rule. rédise
the 1-NN risk is asymptotically bounded 25, the Edited 1-NN risk is asymptotically
bounded byl.2 B, wherel is the Bayes risk.
The mUuLTIEDIT algorithm (Devijver and Kittler, 1982, section 3.11) asyotally dis-
cardsall the training examples located on the wrong side of the Bagesihn boundary.
The asymptotic risk of the multi-edited nearest neighbte isithe Bayes risig.
Algorithm 2 (M uLTI EDIT).

1 Divide randomly the training data intesplitsS;, . . ., Ss. Let us callf; the 1-NN classifier

that usesS; as the training set.

2 Classify all examples i5; using the classifielf(; ;1) moa s @and discard all misclassified
examples.

3 Gather all the remaining examples and return to step 1 if any exampledasdiscarded
during the lastT iterations.
4 The remaining examples constitute the multiedited training set.
By discarding examples located on the wrong side of the Begession boundary, algo-
rithm MULTIEDIT constructs a new training set whose apparent distributéenthe same
Bayes decision boundary as the original problem, but witheBaisk equal t@. Devijver
and Kittler claim thamULTIEDIT produces an ideal training set fODNDENSE



Algorithm MULTIEDIT also discards some proportion of training examples locatethe
correct side of Bayes decision boundary. Asymptoticallg ttoes not matter. However
this is often a problem in practice. ..

2.4 Editing algorithms and SVMs

Training examples recognized with high confidence usuatiyndt appear in the SVM
solution (2) because they do not become support vectorshéutlher hand, outliers always
become support vectors. Intuitively, SVMs display the gnes of thecONDENSEbut
lack the properties of theULTIEDIT algorithm.

The mathematical proofs for the asymptotic propertiestof TIEDIT depend on the spe-
cific nature of the 1-NN classification rule. ThJLTIEDIT algorithm itself could be iden-

tically defined for any classifier. This suggests (but dogspnove) that these properties
might remain valid for SVM classifiets

This contribution is arempirical attempt to endow Support Vector Ma-
chines with the properties of theuLTIEDIT algorithm.

Editing SVM training sets implicitly modifies the SVM lossrfction in a way that relates
to robust statistics. Editing alters the apparent distidiouof training examples such that
the class distribution®(x | y = 1) and P(z | y = —1) no longer overlap. If the class
distributions were known, this could be done by trimmingttiks of the class distributions.
A similar effect could be obtained by altering the SVM lossdtion (the hinge loss) into a
non convex loss function that gives less weight to outliers.

3 Cross-Training

Cross-Training is a representative algorithm of such comtimns of SVMs and editing
algorithms. It begins with creatingsubsets of the training set withexamples each. In-
dependent SVMs are then trained on each subset. The detisictions of these SVMs
are then used to discard two types of training examplesetivbsch are confidently recog-
nized, as iNCCONDENSE and those which are misclassified, asoLTIEDIT . A final SVM

is then trained using the remaining examples.

Algorithm 3 (C ROSSTRAINING ).
1 Creates subsets of size by randomly drawing-/2 examples of each class.
2 Trains independent SVM£i, . . ., fs using each of the subsets as the training set.
3 For each training exampléz;, y;) estimate the margin average; and variancev;:

mi= 130 yife(m)  vi= 13001 (mi = yife(wi)®

4 Discard all training examples for whictu; + v; < 0.

5 Discard all training examples for whictw; — v; > 1.

6 Train a final SVM on the remaining training examples.
The apparent simplicity of this algorithm hides a lot of hggerameters. The value of the
C parameters for the SVMs at steps [2] and [6] has a consitieedfect on the overall
performance of the algorithm.

For the first stage SVMs, we choose theparameter which yields the best performance
on training sets of size. For the second stage SVMs, we choose@hparameter which
yields the best overall performance measured on a sepaladation set.

Furthermore, we discovered that the discarding steps tepbtiuce a final set of training
examples with very different numbers of examples for eaalsscl Specific measures to
alleviate this problem are discussed in section 4.3.

3Further comfort comes from the knowledge that a SVM with the RBF keméwithout thresh-
old termb implements the 1-NN rule when the RBF radius tends to zero.
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Figure 3: Comparing LIBSVM and Cross-Training on a toy problem of two Gausslands for
increasing number of training points. Cross-Training gives an alnmstant number of support
vectors (left figure) for increasing training set size, whereas in MBEShe number of support vec-
tors increases linearly. The error rates behave similarly (middle figamel) Cross-Training gives an
improved training time (right figure). See section 4.1.

4 Experiments
4.1 Artificial Data

We first constructed artificial data, by generating two @agsom two Gaussian clouds in
10 dimensions with mear{$, 1,1,1,1,0,0,0,0,0) and(—1,-1,—1,—1,—1,0,0,0,0,0)
and standard deviation 4. We trained a linear SVM for diffgriamounts of training points,
selectingC via cross validation. We compare the performance of LIBS\MMith Cross-
Training using LIBSVM withs = 5, averaging over 10 splits. The results given in figure
3 show a reduction in SVs and computation time using Croagaifrg, with no loss in
accuracy.

4.2 Artificial Noise

Our second experiment involves the discrimination of digit and 8 in the MNIST
database. Atrtificial noise was introduced by swapping theltaof 0%, 5%, 10% and
15% of the examples. There are 11982 training examples a8l tE3ting examples. All
experiments were carried out using LIBSVM’sSVM (Chang and Lin, 2001) with the
RBF kernel { = 0.005). Cross-Training was carried out by splitting the 1198irey
examples into 5 subsets. Figure 4 reports our results faowsiamounts of label noise.
The number of SVs (left figure) increases linearly for thedtad SVM and stays constant
for the Cross-Training SVM. The test errors (middle figure@rs similar. Since our label
noise is artificial, we can also measure the misclassificatite on the unmodified test-
ing set (right figure). This measurement shows a slight ldsEouracy without statistical
significance.

4.3 Benchmark Data

Finally the cross-training algorithm was applied to redbdsets from both the ANU repos-
itory® and from the the UCI repositofy

Experimental results were quite disappointing until welizea that the discarding steps
tends to produce training sets with very different numbérmsxamples for each class. To
alleviate this problem, after training each SVM, we chodeealue of the thresholaf

4 http://www.csie.ntu.edu.tw/ ~cjlin/libsvm/
® http://yann.lecun.com/exdb/mnist
6 http://mlg.anu.edu.au/ ~raetsch/data/index.html

Tftp://ftp.ics.uci.edu/ pub/ machi ne-| ear ni ng- dat abases
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Figure 4: Number of SVs (left figure) and test error (middle figure) for vagyamounts of label
noise on the MNIST 3-8 discrimination task. Thexis in all graphs shows the amount of label noise;
white squares correspond to LIBSVM; black circles to Cross-Trainiiaghed lines to bagging the
first stage Cross-Training SVMs. The last graph (right figure) shibw test error measured without
label noise. See section 4.2

in (2) which achieves the best validation performance. Vge aftempt to balance the
final training set by re-inserting examples discarded dusitep [5] of the cross-training
algorithm.

Experiments were carried out using RBF kernels with the édewidth reported in the
literature. In the SVM experiments, the value of paraméteras determined by cross-
validation and then used for training a SVM on the full datase the cross-training ex-
periments, we make a validation set by takin@ examples from the training set. These
examples are only used for choosing the values ahd for adjusting the SVM thresholds.
Details and source code are avail&ble

Train Test SVM SVM XTrain XTrain  XTrain
Dataset Size Size Perf.[%] #SV Subsets  Perf.[%] #SV
Banana 400 490(0 89.0 111 5x200 88.2 51
Waveform 400 4600 90.2 172 5x200 88.7 87
Splice 1000 2175 90.0 601 5x300 89.9 522
Adult 3185 16280 84.2 1207 5x700 84.2 606
Adult 32560 16280 85.1 11325| 5x6000 84.8 1194
Forest 50000 5810( 90.3 12476 | 5x10000 89.2 7967
Forest 90000 5810( 91.6 18983 | 5x18000 90.7 13023
Forest 200000 5810 — — | 8x30000 92.1 19526

Table 1:Comparison of SVM and Cross-Training results on standard ben&toaga sets.

The columns in table 1 contain the dataset name, the sizeedfdining set used for the
experiment, the size of the test set, the SVM accuracy andauwf SVs, the Cross-
Training subset configuration, accuracy, and final numb&\s. Bold typeface indicates
which differences were statistically significant accogdin a paired test. These numbers
should be considered carefully because they are impact#deetgiscrete nature of the grid
search for parametér. The general trend still indicates that Cross-Trainingseata slight
loss of accuracy but requires much less SVs.

Our largest training set contains 200000 examples. Trainistandard SVM on such a
set takes about one week of computation. We do not reportehidt because it was not
practical to determine a good value@ffor this experiment. Cross-Training with specified
hyperparameters runs overnight. Cross-Training with hyg&meter grid searches runs in
two days.

We do not report detailled timing results because much ohtteal time can be attributed

8http://ww.kyb. t uebi ngen. npg. de/ bs/ peopl e/ gb/ xt rai ni ng



to the search for the proper hyperparameters. Timing eaudtld then depend on loosely
controlled details of the hyperparameter grid search #lyuos.

5 Discussion

We have suggested to combine SVMs and training set editoimiques to break the lin-
ear relationship between number of support vectors and auofiexamples. Such com-
binations raise interesting theoretical questions reggrthe relative value of each of the
training examples.

Experiments with a representative algorithm, namely Giioaining, confirm that both the
training and the recognition time are sharply reduced. @mother hand, Cross-Training

causes a minor loss of accuracy, comparable to that of rddiatenethods (Burges, 1996),
and seems to be more sensitive than SVMs in terms of paratnefag.

Despite these drawbacks, Cross-Training provides a pedatieans to construct kernel
classifiers with significantly larger training sets.
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