Large Scale Online Learning.

L éon Bottou Yann Le Cun
NEC Labs America NEC Labs America
Princeton NJ 08540 Princeton NJ 08540

| eon@ot tou. org yann@ ecun. com
Abstract

We consider situations where training data is abundant angpating
resources are comparatively scarce. We argue that sudablgned on-
line learning algorithms asymptotically outperform anydbalearning
algorithm. Both theoretical and experimental evidencegpagesented.

1 Introduction

The last decade brought us tremendous improvements in tfegipance and price of mass
storage devices and network systems. Storing and shippidig ®r video data is now

inexpensive. Network traffic itself provides new and aburtdmurces of data in the form
of server log files. The availability of such large data sesrprovides clear opportunities
for the machine learning community.

These technological improvements have outpaced the erpiahevolution of the com-

puting power of integrated circuits (Moore’s law). This r@rk suggests that learning al-
gorithms must process increasing amounts of data using a@tiyely smaller computing

resources.

This work assumes that datasets have grown to practicéilitansizes and discusses which
learning algorithms asymptotically provide the best galieation performance using lim-
ited computing resources.

e Online algorithms operate by repetitively drawing a freahdom example and
adjusting the parameters on the basis of this single exaomie Online algo-
rithms can quickly process a large number of examples. Oottier hand, they
usually are not able to fully optimize the cost function defiron these examples.

e Batch algorithms avoid this issue by completely optimizihg cost function de-
fined on a set of training examples. On the other hand, sudritims cannot
process as many examples because they must iterate savesbwer the train-
ing set to achieve the optimum.

As datasets grow to practically infinite sizes, we argue dmihe algorithms outperform
learning algorithms that operate by repetitively sweemginer a training set.



2 Gradient Based Learning

Many learning algorithms optimize an empirical cost fuacit’,, (6) that can be expressed
as the average of a large number of terh{s, ). Each term measures the cost associ-
ated with running a model with parameter vediarn independent examples (typically
input/output pairs; = (x4, y;).)

Al
Cu(t) = — ; L(z,6) (1)
Two kinds of optimization procedures are often mentionezbimection with this problem:

e Batchgradient: Parameter updates are performed on the basie gfaldient and
Hessian information accumulated over a predefined traisétyg

ok) = O(k—1)— @kaac;n Ok — 1))
= 01— @Y O 0k - 1) )

where®,, is an appropriately chosen positive definite symmetric matr

e Onlinegradient: Parameter updates are performed on the basisrafla sample
z; picked randomly at each iteration:
1_ 0L
0t) = 0(t—1) — = Dy —(2¢,0(t — 1 3
(t) ( ) t tae(zn( ) 3)
where @, is again an appropriately chosen positive definite symmetatrix.
Very often the examples are chosen by cycling over a randomly permuted train-
ing set. Each cycle is called apoch This paper however considers situations
where the supply of training samples is practically unledit Each iteration of
the online algorithm utilizes a fresh sample, unlikely tednaeen presented to the
system before.

Simple batch algorithms convergigearly® to the optimun®;; of the empirical cost. Care-
ful choices of®;, make the convergenseiper-linearor evenquadratic in favorable cases
(Dennis and Schnabel, 1983).

Whereas online algorithms may converge to the general artba optimum at least as fast
as batch algorithms (Le Cun et al., 1998), the optimizatimteeds rather slowly during

the final convergence phase (Bottou and Murata, 2002). Tisg geadient estimate causes
the parameter vector to fluctuate around the optimum in a bdwise size decreases like
1/t at best.

Online algorithms therefore seem hopelessly slow. Howebherabove discussion com-
pares the speed of convergence toward the minimum dadrtiggrical cosiC,,, whereas one
should be much more interested in the convergence towarditimum6* of theexpected
costC,, which measures the generalization performance:

Coul6) 2 / L(z.0)p(z) dz )

Densityp(z) represents the unknown distribution from which the examate drawn (Vap-
nik, 1974). This is the fundamental difference betwegtimization speedndlearning
speed

Linear convergence speeldg 1/|0(k) — 0;,|> grows linearly withk.
2Quadratic convergence speédg log 1/|0(k) — 0;)> grows linearly withk.



3 Learning Speed

Running an efficient batch algorithm on a training set of sizgiickly yields the empirical
optimum@’. The sequence of empirical optind3 usually converges to the solutidi
when the training set sizeincreases.

In contrast, online algorithms randomly draw one examplat each iteration. When these
examples are drawn from a setroéxamples, the online algorithm minimizes the empirical
errorC,,. When these examples are drawn from the asymptotic disoibpfz), it mini-
mizes the expected cost,,. Because the supply of training samples is practicallynunli
ited, each iteration of the online algorithm utilizes a frexample. These fresh examples
follow the asymptotic distribution. The parameter vectijrg thus directly converge to the
optimumé* of the expected cost...

The convergence speed of the bat;hand onlined(t) sequences were first compared by
Murata and Amari (1999). This section reports a similar iteshose derivation uncovers
a deeper relationship between these two sequences. Thizaappalso provides a mathe-
matically rigorous treatment (Bottou and Le Cun, 2003).

Let us first define thélessianmatrix H andFisher informationrmatrix G:

o B E<8§;9L(Z’9*)) GLE ({g_é’(z,e*)} [g—l&;(z,ﬁ*):lT>

Manipulating a Taylor expansion of the gradient¢f(0) in the vicinity of 07 _; immedi-
ately provides the following recursive relation betwéérando;

n—1-
« * I . 1
9n - anl - E\Dn%(’%’ﬂ nfl) + (@ <§> (5)
with .
A (1 02 1
\I/ = — —_— ; * i -
" <n 2 dgag "7 “1)> it

Relation (5) describes th# sequence as a recursive stochastic process that is efgentia
similar to the online learning algorithm (3). Each iteratiof this “algorithm” consists

in picking a fresh example,, and updating the parameters according to (5). This is not a
practical algorithm because we have no analytical expradsri the second order term. We
can however apply the mathematics of online learning algms to this stochastic process.

The similarity between (5) and (3) suggests that both thehband online sequences con-
verge at the same speed for adequate choices of the scaling @a Under customary
regularity conditions, the following asymptotic speedutesholds when the scaling matrix
®, converges to the invergg—! of the Hessian matrix.

B(ow o) +o (1) =B -0 o 1) = TOEIED g

This convergence speed expression has been discoveredimany Tsypkin (1973) estab-
lishes (6) for linear systems. Murata and Amari (1999) asklggeneric stochastic gradient
algorithms with a constant scaling matrix. Our result (Botand Le Cun, 2003) holds
when the scaling matrise; depends on the previously seen examples, and also holds when
the stochastic update is perturbed by unspecified secoret tadns, as in equation (5).
See the appendix for a proof sketch (Bottou and LeCun, 2003).

Result (6) applies to both the onlirkt) and batchd(t) sequences. Not only does it es-
tablish that both sequences ha®1/t) convergence, but also it provides the value of



the constant. This constant is neither affected by the sktoaer terms of (5) nor by the
convergence speed of the scaling madrixtoward? .

In the Maximum Likelihood case, it is well known that bagth and G are equal on the
optimum. Equation (6) then indicates that the convergepeed saturates the Cramer-Rao
bound. This fact was known in the case of the natural gracigatrithm (Amari, 1998). It
remains true for a large class of online learning algorithms

Result (6) suggests that the scaling mafbixshould be a full rank approximation of the
HessiarfH{. Maintaining such an approximation becomes expensive wiedimension of
the parameter vector increases. The computational costobfigeration can be drastically
reduced by maintaining only a coarse approximations of thesian (e.g. diagonal, block-
diagonal, multiplicative, etc.). A proper setup ensured the convergence speed remains
O (1/t) despite a less favorable constant factor.

The similar nature of the convergence of the batch and oséigeences can be summarized
as follows. Consider two optimally designed batch and enlearning algorithms. The
best generalization error is asymptotically achievedhigylearning algorithm that uses the
most examplewithin the allowed time.

4 Computational Cost

The discussion so far has established that a properly designline learning algorithm
performs as well as any batch learning algorithm for a sammben of examples. We
now establish that, given the same computing resourcesilaredearning algorithm can
asymptotically process more examples than a batch leaatgugithm.

Each iteration of a batch learning algorithm runninghétraining examples requires a time
K1 N+ K,. Constantd(; and K, respectively represent the time required to process each
example, and the time required to update the parametersaltR@&sprovides the following

asymptotic equivalence:

1
(b3 — 0" ~ ~
The batch algorithm must perform enough iterations to agprate 63, with at least the
same accuracy~ 1/N). An efficient algorithm with quadratic convergence ack®this

after a number of iterations asymptotically proportiomelo log N.

Running an online learning algorithm requires a constamt s per processed example.
Let us callT’ the number of examples processed by the online learningitidgousing the
same computing resources as the batch algorithm. We then hav

K3T ~ (KN + Ks)loglogN = T ~ N loglog N

The parametef(T) of the online algorithm also converges according to (6). Garimg
the accuracies of both algorithms shows that the onlineriéiigo asymptotically provides
a better solution by a fact@? (loglog V).

*\ 2 1 1 * *\ 2
(0(T) —07) NlogleN < N (Ox —07)
Thisloglog N factor corresponds to the number of iterations requirechiybatch algo-
rithm. This number increases slowly with the desired aacuod the solution. In practice,
this factor is much less significant than the actual valudefdonstantds,, K, and K.
Experience shows however that online algorithms are cerglidly easier to implement.
Each iteration of the batch algorithm involves a large sutionaover all the available
examples. Memory must be allocated to hold these examplesth®other hand, each
iteration of the online algorithm only involves one randorample which can then be
discarded.



5 Experiments

A simple validation experiment was carried out using sytithéata. The examples are
input/output pairgx, y) with z € R?° andy = +1. The model is a single sigmoid unit
trained using the least square criterion.

L(z,y,0) = (1.5y — f(62))°
wheref(x) = 1.71 tanh(0.66x) is the standard sigmoid discussed in LeCun et al. (1998).
The sigmoid generates various curvature conditions in#inarpeter space, including nega-
tive curvature and plateaus. This simple model represesitsive final convergence phase
of the learning process. Yet it is also very similar to the elydused generalized linear
models (GLIM) (Chambers and Hastie, 1992).

The first component of the input is always1 in order to compensate the absence of a
bias parameter in the model. The remaining 19 componentraven from two Gaussian
distributions, centered ofr-1,-1,...,—1) for the first class an¢+1, +1,...,+1) for the
second class. The eigenvalues of the covariance matrixcbf @ass range from 1 to 20.

Two separate sets for training and testing were drawn With0 000 examples each. One
hundred permutations of the first set are generated. Eactigalgorithm is trained using

various number of examples taken sequentially from thenmégg of the permuted sets.
The resulting performance is then measured on the testirgnsleaveraged over the one
hundred permutations.

Batch-Newton algorithm

The reference batch algorithm uses the Newton-Raphsomithigowith Gauss-Newton
approximation (Le Cun et al., 1998). Each iteration visltdtee training and computes
both gradieny and the Gauss-Newton approximatifihof the Hessian matrix.

oL
g = Z %(xi,yi,ek,l) H = Z (f/(9k71$i))2 .Z‘Zx;r

The parameters are then updated using Newton'’s formula:
0p =0p—1 — H 'g

Iterations are repeated until the parameter vector movdedsythar0.01/N whereN is
the number of training examples. This algorithm yields gqatid convergence speed.

i

Online-Kalman algorithm

The online algorithm performa single sequential sweewer the training examples. The
parameter vector is updated after processing each examplg ) as follows:

1 0L

Oy = 01 — —O—

t t—1 T t 89

The scalarr = max (20,t — 40) makes sure that the first few examples do not cause

impractically large parameter updates. The scaling mdiyiis equal to the inverse of a
leaky average of the per-example Gauss-Newton approximafithe Hessian.

b= ( (1 - %) P+ (%) (' (Br—120))> xtxtT>_1

The implementation avoids the matrix inversions by disectbmputing®, from &,
using the matrix inversion lemma. (see (Bottou, 1998) fstance.)

3 -1 1 (Au)(Au)T
(aA +ﬁuuT) = (A— m)

(l'tv Yt 97571)



le-1 le-1
le-2 le-2
le-3 le-3
le-4 le-4
1000 10000 100000 100 1000 10000

Figure 1: Averagéd —0*)? as a function
of the number of examples. The gray line
represents the theoretical prediction (6).
Filled circles: batch. Hollow circles: on-
line. The error bars indicate a 95% con-
fidence interval.

Figure 2: Averagéd —60*)? as a function

of the training time (milliseconds). Hol-
low circles: online. Filled circles: batch.
The error bars indicate a 95% confidence
interval.

The resulting algorithm slightly differs from the Adaptiwatural Gradient algorithm
(Amari, Park, and Fukumizu, 1998). In particular, therdttel need to adjust a learning
rate parameter in the Gauss-Newton approach.IThéor 1/7) schedule is asymptotically
optimal.

Results

The optimal parameter vectédr was first computed on the testing set using the batch-
newton approach. The matricesandG were computed on the testing set as well in order
to determine the constant in relation (6).

Figure 1 plots the average squared distance between theaygarameter vectat* and
the parameter vectdrachieved on training sets of various sizes. The gray lineessmts
the theoretical prediction. Both the batch points and tHamerpoints join the theoretical
prediction when the training set size increases. Figureo®stthe same data points as a
function of theCPUtime required to run the algorithm on a standard PC. The erdlgo-
rithm gradually becomes more efficient when the trainingst increases. This happens
because the batch algorithm needs to perform additioratioss in order to maintain the
same level of accuracy.

In practice, the test set mean squared em8E) is usually more relevant than the accuracy
of the parameter vector. Figure 3 displays a logarithmit pldhe difference between the
MSE and the best achievabl#SE, that is to say thé&SE achieved by parameter vectt.
This difference can be approximated(as-9*)"# (¢ — 6*). Both algorithms yield virtually
identical errors for the same training set size. This suggdkat the small differences shown
in figure 1 occur along the low curvature directions of the émsction. Figure 4 shows the
MSE as a function of th&€PUtime. The online algorithm always provides higher accuracy
in significantly less time.

As expected from the theoretical argument, the online &lyorasymptotically outper-
forms the super-linear Newton-Raphson algorithniviore importantly, the online algo-
rithm achieves this result by performirggsingle sweepver the training data. This is a
very significant advantage when the data does not fit in demieanory and must be se-
guentially accessed from a disk based database.

3Generalized linear models are usually trained using the IRLS method (@harand Hastie,
1992) which is closely related to the Newton-Raphson algorithm and recgiirélar computational
resources.



Mse*

+le-1
0.366
M, 0.362
Mee* 0.358
+le-3 0.354
Mse* 0.350
+le-4
0.346
0.342
1000 10000 100000 100 1000 10000
Figure 3: Average tesiSE as a function Figure 4: Average tes¥ISE as a func-

of the number of examples (left). The tion of the training time (milliseconds).
vertical axis shows the logarithm of the Hollow circles: online. Filled circles:
difference between the error and the best  batch. The gray line indicates the best
error achievable on the testing set. Both  mean squared error achievable on the test
curves are essentially superposed. set.

6 Conclusion

Many popular algorithms do not scale well to large numbexaheples because they were
designed with small data sets in mind. For instance, thaitgitime for Support Vector
Machines scales somewhere betwééhand N3, where N is the number of examples.
Our baseline super-linear batch algorithm learn¥itvog log IV time. We demonstrate that
adequate online algorithms asymptotically achieve theesgemeralization performance in
N time after a single sweep on the training set.

The convergence of learning algorithms is usually desdribeterms of asearchphase
followed by afinal convergenc@hase (Bottou and Murata, 2002). Solid empirical evi-
dence (Le Cun et al., 1998) suggests that online algorithutieecform batch algorithms
during the search phase. The present work provides bothetiesd and experimental ev-
idence that an adequate online algorithm outperforms atghtzdgorithm during the final
convergence phase as well.

Appendix*: Sketch of the convergence speed proof

Lemma — Let (u;) be a sequence of positive reals verifying the following reence:

ut<1(j+o(1)>ut_1+g+o<22) @)

The lemma states thatu, — % whena > 1 andg > 0. The proof is delicate because
the result holds regardless of the unspecified low orderdarinthe recurrence. However,
it is easy to illustrate this convergence with simple nuc@rsimulations.

Convergence speed— Consider the following recursive stochastic process:
1_ 0L 1

Our discussion addresses the final convergence phase pfabisss. Therefore we assume
that the paramete® remain confined in a bounded domdhwhere the cost function
C(0) is convex and has a single non degenerate minititine D. We can assume

“This section has been added for the final version



6* = 0 without loss of generality. We writE; (X) the conditional expectation o€ given
all that is known before timg including the initial conditiong, and the selected examples
z1,...,%Z;—1. We initially assume also thdt, is a function ofz,, ..., z;_1 only.

Using (8), we writeE, (;0,) as a function of),_,. Then we simplify and take the trace.

2 0, 1|2 tr (H'GH™! 1
B ) = - B o) 4 O (1)

Taking the unconditional expectation yields a recurenaglar to (7). We then apply the
lemma and conclude thatE(|0;|>) — tr (H~! G H™1).

Remark 1 — The notationo (X;) is quite ambiguous when dealing with stochastic pro-
cesses. There are many possible flavors of convergencadingluniform convergence,
almost sure convergence, convergence in probability, Etathermore, it is not true in
general thaE (o (X;)) = o (E (X})). The complete proof precisely defines the meaning
of these notations and carefully checks their properties.

Remark 2 — The proof sketch assumes thiatis a function ofz,,...,z;_; only. In (5),
U, also depends ory. The result still holds because the contributiompfanishes quickly
whent grows large.

Remark 3 — The same% behavior holds whe®; — ®* and whend* is greater than

%H—l in the semi definite sense. The constant however is worse éstarfroughly equal
to || HD*||.

Acknowledgments

The authors acknowledge extensive discussions with YoBkugio, Sami Bengio, Ronan
Collobert, Noboru Murata, Kenji Fukumizu, Susanna Stitid@arak Pearlmutter.

References

Amari, S. (1998). Natural Gradient Works Efficiently in LearnimM¢eural Computation10(2):251—
276.

Bottou, L. (1998). Online Algorithms and Stochastic Approximations, 9-#2Saad, D., editor,
Online Learning and Neural Network€ambridge University Press, Cambridge, UK.

Bottou, L. and Murata, N. (2002). Stochastic Approximations and Efficieearning. In Arbib,
M. A., editor, The Handbook of Brain Theory and Neural Networks, Second edifibe, MIT
Press, Cambridge, MA.

Bottou, L. and Le Cun, Y. (2003). Online Learning for Very Large Bata. NEC Labs TR-2003-
L039. To appearApplied Stochastic Models in Business and Indusiviey.

Chambers, J. M. and Hastie, T. J. (1993)atistical Models in SChapman & Hall, London.

Dennis, J. and Schnabel, R. B. (1983Jumerical Methods For Unconstrained Optimization and
Nonlinear EquationsPrentice-Hall, Inc., Englewood Cliffs, New Jersey.

Amari, S. and Park, H. and Fukumizu, K. (1998). Adaptive Metho®eélizing Natural Gradient
Learning for Multilayer Perceptrongyeural Computation12(6):1399-1409

Le Cun, Y., Bottou, L., Orr, G. B., and Mler, K.-R. (1998). Efficient Back-prop. INeural
Networks, Tricks of the Tradkecture Notes in Computer Science 1524. Springer Verlag.

Murata, N. and Amari, S. (1999). Statistical analysis of learning dyram&ignal Processing
74(1):3-28.

Vapnik, V. N. and Chervonenkis, A. (1974Fheory of Pattern Recognitigiin russian). Nauka.

Tsypkin, Ya. (1973)Foundations of the theory of learning systerAsademic Press.

°RecallE; (®: 25 (z¢,0)) = @25 (0) = ®+HO + 0 (|0]) = 0+ o (|0])



