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Abstract

We consider situations where training data is abundant and computing
resources are comparatively scarce. We argue that suitablydesigned on-
line learning algorithms asymptotically outperform any batch learning
algorithm. Both theoretical and experimental evidences are presented.

1 Introduction

The last decade brought us tremendous improvements in the performance and price of mass
storage devices and network systems. Storing and shipping audio or video data is now
inexpensive. Network traffic itself provides new and abundant sources of data in the form
of server log files. The availability of such large data sources provides clear opportunities
for the machine learning community.

These technological improvements have outpaced the exponential evolution of the com-
puting power of integrated circuits (Moore’s law). This remark suggests that learning al-
gorithms must process increasing amounts of data using comparatively smaller computing
resources.

This work assumes that datasets have grown to practically infinite sizes and discusses which
learning algorithms asymptotically provide the best generalization performance using lim-
ited computing resources.

• Online algorithms operate by repetitively drawing a fresh random example and
adjusting the parameters on the basis of this single exampleonly. Online algo-
rithms can quickly process a large number of examples. On theother hand, they
usually are not able to fully optimize the cost function defined on these examples.

• Batch algorithms avoid this issue by completely optimizingthe cost function de-
fined on a set of training examples. On the other hand, such algorithms cannot
process as many examples because they must iterate several times over the train-
ing set to achieve the optimum.

As datasets grow to practically infinite sizes, we argue thatonline algorithms outperform
learning algorithms that operate by repetitively sweepingover a training set.



2 Gradient Based Learning

Many learning algorithms optimize an empirical cost functionCn(θ) that can be expressed
as the average of a large number of termsL(z, θ). Each term measures the cost associ-
ated with running a model with parameter vectorθ on independent exampleszi (typically
input/output pairszi = (xi, yi).)

Cn(θ)
4
=

1

n

n
∑

i=1

L(zi, θ) (1)

Two kinds of optimization procedures are often mentioned inconnection with this problem:

• Batchgradient: Parameter updates are performed on the basis of the gradient and
Hessian information accumulated over a predefined trainingset:

θ(k) = θ(k − 1) − Φk
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whereΦk is an appropriately chosen positive definite symmetric matrix.

• Onlinegradient: Parameter updates are performed on the basis of a single sample
zt picked randomly at each iteration:

θ(t) = θ(t − 1) −
1

t
Φt

∂L

∂θ
(zt, θ(t − 1)) (3)

whereΦt is again an appropriately chosen positive definite symmetric matrix.
Very often the exampleszt are chosen by cycling over a randomly permuted train-
ing set. Each cycle is called anepoch. This paper however considers situations
where the supply of training samples is practically unlimited. Each iteration of
the online algorithm utilizes a fresh sample, unlikely to have been presented to the
system before.

Simple batch algorithms convergelinearly1 to the optimumθ∗n of the empirical cost. Care-
ful choices ofΦk make the convergencesuper-linearor evenquadratic2 in favorable cases
(Dennis and Schnabel, 1983).

Whereas online algorithms may converge to the general area ofthe optimum at least as fast
as batch algorithms (Le Cun et al., 1998), the optimization proceeds rather slowly during
the final convergence phase (Bottou and Murata, 2002). The noisy gradient estimate causes
the parameter vector to fluctuate around the optimum in a bowlwhose size decreases like
1/t at best.

Online algorithms therefore seem hopelessly slow. However, the above discussion com-
pares the speed of convergence toward the minimum of theempirical costCn, whereas one
should be much more interested in the convergence toward theminimumθ∗ of theexpected
costC∞, which measures the generalization performance:

C∞(θ)
4
=

∫

L(z, θ) p(z) dz (4)

Densityp(z) represents the unknown distribution from which the examples are drawn (Vap-
nik, 1974). This is the fundamental difference betweenoptimization speedand learning
speed.

1Linear convergence speed:log 1/|θ(k) − θ∗n|
2 grows linearly withk.

2Quadratic convergence speed:log log 1/|θ(k) − θ∗n|
2 grows linearly withk.



3 Learning Speed

Running an efficient batch algorithm on a training set of sizen quickly yields the empirical
optimumθ∗n. The sequence of empirical optimaθ∗n usually converges to the solutionθ∗

when the training set sizen increases.

In contrast, online algorithms randomly draw one examplezt at each iteration. When these
examples are drawn from a set ofn examples, the online algorithm minimizes the empirical
errorCn. When these examples are drawn from the asymptotic distribution p(z), it mini-
mizes the expected costC∞. Because the supply of training samples is practically unlim-
ited, each iteration of the online algorithm utilizes a fresh example. These fresh examples
follow the asymptotic distribution. The parameter vectorsθ(t) thus directly converge to the
optimumθ∗ of the expected costC∞.

The convergence speed of the batchθ∗n and onlineθ(t) sequences were first compared by
Murata and Amari (1999). This section reports a similar result whose derivation uncovers
a deeper relationship between these two sequences. This approach also provides a mathe-
matically rigorous treatment (Bottou and Le Cun, 2003).

Let us first define theHessianmatrixH andFisher informationmatrixG:

H
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Manipulating a Taylor expansion of the gradient ofCn(θ) in the vicinity of θ∗n−1
immedi-

ately provides the following recursive relation betweenθ∗n andθ∗n−1
.
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Relation (5) describes theθ∗n sequence as a recursive stochastic process that is essentially
similar to the online learning algorithm (3). Each iteration of this “algorithm” consists
in picking a fresh examplezn and updating the parameters according to (5). This is not a
practical algorithm because we have no analytical expression for the second order term. We
can however apply the mathematics of online learning algorithms to this stochastic process.

The similarity between (5) and (3) suggests that both the batch and online sequences con-
verge at the same speed for adequate choices of the scaling matrix Φt. Under customary
regularity conditions, the following asymptotic speed results holds when the scaling matrix
Φt converges to the inverseH−1 of the Hessian matrix.
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This convergence speed expression has been discovered manytimes. Tsypkin (1973) estab-
lishes (6) for linear systems. Murata and Amari (1999) address generic stochastic gradient
algorithms with a constant scaling matrix. Our result (Bottou and Le Cun, 2003) holds
when the scaling matrixΦt depends on the previously seen examples, and also holds when
the stochastic update is perturbed by unspecified second order terms, as in equation (5).
See the appendix for a proof sketch (Bottou and LeCun, 2003).

Result (6) applies to both the onlineθ(t) and batchθ(t) sequences. Not only does it es-
tablish that both sequences haveO (1/t) convergence, but also it provides the value of



the constant. This constant is neither affected by the second order terms of (5) nor by the
convergence speed of the scaling matrixΦt towardH−1.

In the Maximum Likelihood case, it is well known that bothH andG are equal on the
optimum. Equation (6) then indicates that the convergence speed saturates the Cramer-Rao
bound. This fact was known in the case of the natural gradientalgorithm (Amari, 1998). It
remains true for a large class of online learning algorithms.

Result (6) suggests that the scaling matrixΦt should be a full rank approximation of the
HessianH. Maintaining such an approximation becomes expensive whenthe dimension of
the parameter vector increases. The computational cost of each iteration can be drastically
reduced by maintaining only a coarse approximations of the Hessian (e.g. diagonal, block-
diagonal, multiplicative, etc.). A proper setup ensures that the convergence speed remains
O (1/t) despite a less favorable constant factor.

The similar nature of the convergence of the batch and onlinesequences can be summarized
as follows. Consider two optimally designed batch and online learning algorithms. The
best generalization error is asymptotically achieved bythe learning algorithm that uses the
most exampleswithin the allowed time.

4 Computational Cost

The discussion so far has established that a properly designed online learning algorithm
performs as well as any batch learning algorithm for a same number of examples. We
now establish that, given the same computing resources, an online learning algorithm can
asymptotically process more examples than a batch learningalgorithm.

Each iteration of a batch learning algorithm running onN training examples requires a time
K1N +K2. ConstantsK1 andK2 respectively represent the time required to process each
example, and the time required to update the parameters. Result (6) provides the following
asymptotic equivalence:

(θ∗N − θ∗)2 ∼
1

N
The batch algorithm must perform enough iterations to approximateθ∗N with at least the
same accuracy (∼ 1/N ). An efficient algorithm with quadratic convergence achieves this
after a number of iterations asymptotically proportional to log log N .

Running an online learning algorithm requires a constant timeK3 per processed example.
Let us callT the number of examples processed by the online learning algorithm using the
same computing resources as the batch algorithm. We then have:

K3T ∼ (K1N + K2) log log N =⇒ T ∼ N log log N

The parameterθ(T ) of the online algorithm also converges according to (6). Comparing
the accuracies of both algorithms shows that the online algorithm asymptotically provides
a better solution by a factorO (log log N).

(θ(T ) − θ∗)2 ∼
1

N log log N
�

1

N
∼ (θ∗N − θ∗)2

This log log N factor corresponds to the number of iterations required by the batch algo-
rithm. This number increases slowly with the desired accuracy of the solution. In practice,
this factor is much less significant than the actual value of the constantsK1, K2 andK3.
Experience shows however that online algorithms are considerably easier to implement.
Each iteration of the batch algorithm involves a large summation over all the available
examples. Memory must be allocated to hold these examples. On the other hand, each
iteration of the online algorithm only involves one random example which can then be
discarded.



5 Experiments

A simple validation experiment was carried out using synthetic data. The examples are
input/output pairs(x, y) with x ∈ R20 andy = ±1. The model is a single sigmoid unit
trained using the least square criterion.

L(x, y, θ) = (1.5y − f(θx))
2

wheref(x) = 1.71 tanh(0.66x) is the standard sigmoid discussed in LeCun et al. (1998).
The sigmoid generates various curvature conditions in the parameter space, including nega-
tive curvature and plateaus. This simple model represents well the final convergence phase
of the learning process. Yet it is also very similar to the widely used generalized linear
models (GLIM) (Chambers and Hastie, 1992).

The first component of the inputx is always1 in order to compensate the absence of a
bias parameter in the model. The remaining 19 components aredrawn from two Gaussian
distributions, centered on(−1,−1, . . . ,−1) for the first class and(+1, +1, . . . , +1) for the
second class. The eigenvalues of the covariance matrix of each class range from 1 to 20.

Two separate sets for training and testing were drawn with1 000 000 examples each. One
hundred permutations of the first set are generated. Each learning algorithm is trained using
various number of examples taken sequentially from the beginning of the permuted sets.
The resulting performance is then measured on the testing set and averaged over the one
hundred permutations.

Batch-Newton algorithm

The reference batch algorithm uses the Newton-Raphson algorithm with Gauss-Newton
approximation (Le Cun et al., 1998). Each iteration visits all the training and computes
both gradientg and the Gauss-Newton approximationH of the Hessian matrix.

g =
∑

i

∂L

∂θ
(xi, yi, θk−1) H =

∑

i

(f ′(θk−1xi))
2

xix
T

i

The parameters are then updated using Newton’s formula:

θk = θk−1 − H−1g

Iterations are repeated until the parameter vector moves byless than0.01/N whereN is
the number of training examples. This algorithm yields quadratic convergence speed.

Online-Kalman algorithm

The online algorithm performsa single sequential sweepover the training examples. The
parameter vector is updated after processing each example(xt, yt) as follows:

θt = θt−1 −
1

τ
Φt

∂L

∂θ
(xt, yt, θt−1)

The scalarτ = max (20, t − 40) makes sure that the first few examples do not cause
impractically large parameter updates. The scaling matrixΦt is equal to the inverse of a
leaky average of the per-example Gauss-Newton approximation of the Hessian.

Φt =

((

1 −
2

τ

)

Φ−1

t−1
+

(

2

τ

)

(f ′(θt−1xt))
2

xtx
T

t

)−1

The implementation avoids the matrix inversions by directly computingΦt from Φt−1

using the matrix inversion lemma. (see (Bottou, 1998) for instance.)

(

αA−1 + βuuT
)−1

=
1

α

(

A −
(Au)(Au)T

α/β + uTAu

)
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Figure 1: Average(θ−θ∗)2 as a function
of the number of examples. The gray line
represents the theoretical prediction (6).
Filled circles: batch. Hollow circles: on-
line. The error bars indicate a 95% con-
fidence interval.

Figure 2: Average(θ−θ∗)2 as a function
of the training time (milliseconds). Hol-
low circles: online. Filled circles: batch.
The error bars indicate a 95% confidence
interval.

The resulting algorithm slightly differs from the AdaptiveNatural Gradient algorithm
(Amari, Park, and Fukumizu, 1998). In particular, there is little need to adjust a learning
rate parameter in the Gauss-Newton approach. The1/t (or 1/τ ) schedule is asymptotically
optimal.

Results

The optimal parameter vectorθ∗ was first computed on the testing set using the batch-
newton approach. The matricesH andG were computed on the testing set as well in order
to determine the constant in relation (6).

Figure 1 plots the average squared distance between the optimal parameter vectorθ∗ and
the parameter vectorθ achieved on training sets of various sizes. The gray line represents
the theoretical prediction. Both the batch points and the online points join the theoretical
prediction when the training set size increases. Figure 2 shows the same data points as a
function of theCPU time required to run the algorithm on a standard PC. The online algo-
rithm gradually becomes more efficient when the training setsize increases. This happens
because the batch algorithm needs to perform additional iterations in order to maintain the
same level of accuracy.

In practice, the test set mean squared error (MSE) is usually more relevant than the accuracy
of the parameter vector. Figure 3 displays a logarithmic plot of the difference between the
MSE and the best achievableMSE, that is to say theMSE achieved by parameter vectorθ∗.
This difference can be approximated as(θ−θ∗)TH (θ−θ∗). Both algorithms yield virtually
identical errors for the same training set size. This suggests that the small differences shown
in figure 1 occur along the low curvature directions of the cost function. Figure 4 shows the
MSE as a function of theCPU time. The online algorithm always provides higher accuracy
in significantly less time.

As expected from the theoretical argument, the online algorithm asymptotically outper-
forms the super-linear Newton-Raphson algorithm3. More importantly, the online algo-
rithm achieves this result by performinga single sweepover the training data. This is a
very significant advantage when the data does not fit in central memory and must be se-
quentially accessed from a disk based database.

3Generalized linear models are usually trained using the IRLS method (Chambers and Hastie,
1992) which is closely related to the Newton-Raphson algorithm and requires similar computational
resources.
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Figure 3: Average testMSE as a function
of the number of examples (left). The
vertical axis shows the logarithm of the
difference between the error and the best
error achievable on the testing set. Both
curves are essentially superposed.

Figure 4: Average testMSE as a func-
tion of the training time (milliseconds).
Hollow circles: online. Filled circles:
batch. The gray line indicates the best
mean squared error achievable on the test
set.

6 Conclusion

Many popular algorithms do not scale well to large number of examples because they were
designed with small data sets in mind. For instance, the training time for Support Vector
Machines scales somewhere betweenN2 andN3, whereN is the number of examples.
Our baseline super-linear batch algorithm learns inN log log N time. We demonstrate that
adequate online algorithms asymptotically achieve the same generalization performance in
N time after a single sweep on the training set.

The convergence of learning algorithms is usually described in terms of asearchphase
followed by afinal convergencephase (Bottou and Murata, 2002). Solid empirical evi-
dence (Le Cun et al., 1998) suggests that online algorithms outperform batch algorithms
during the search phase. The present work provides both theoretical and experimental ev-
idence that an adequate online algorithm outperforms any batch algorithm during the final
convergence phase as well.

Appendix4: Sketch of the convergence speed proof

Lemma — Let (ut) be a sequence of positive reals verifying the following recurrence:

ut =

(

1 −
α

t
+ o

(

1

t

))

ut−1 +
β

t2
+ o

(

1

t2

)

(7)

The lemma states thatt ut −→
β

α−1
whenα > 1 andβ > 0. The proof is delicate because

the result holds regardless of the unspecified low order terms of the recurrence. However,
it is easy to illustrate this convergence with simple numerical simulations.

Convergence speed— Consider the following recursive stochastic process:

θ(t) = θ(t − 1) −
1

t
Φt

∂L

∂θ
(zt, θ(t − 1)) + O

(

1

n2

)

(8)

Our discussion addresses the final convergence phase of thisprocess. Therefore we assume
that the parametersθ remain confined in a bounded domainD where the cost function
C∞(θ) is convex and has a single non degenerate minimumθ∗ ∈ D. We can assume

4This section has been added for the final version



θ∗ = 0 without loss of generality. We writeEt (X) the conditional expectation ofX given
all that is known before timet, including the initial conditionsθ0 and the selected examples
z1, . . . , zt−1. We initially assume also thatΦt is a function ofz1, . . . , zt−1 only.

Using (8), we writeEt (θtθ
′
t) as a function ofθt−1. Then we simplify5 and take the trace.

Et

(

|θt|
2
)

= |θt−1|
2 −

2

t
|θt−1|

2 + o

(

|θt−1|
2

t

)

+
tr
(

H−1 G H−1
)

t2
+ o

(

1

t2

)

Taking the unconditional expectation yields a recurence similar to (7). We then apply the
lemma and conclude thattE(|θt|

2) −→ tr
(

H−1 G H−1
)

.

Remark 1 — The notationo (Xt) is quite ambiguous when dealing with stochastic pro-
cesses. There are many possible flavors of convergence, including uniform convergence,
almost sure convergence, convergence in probability, etc.Furthermore, it is not true in
general thatE (o (Xt)) = o (E (Xt)). The complete proof precisely defines the meaning
of these notations and carefully checks their properties.

Remark 2 — The proof sketch assumes thatΦt is a function ofz1, . . . , zt−1 only. In (5),
Ψt also depends onzt. The result still holds because the contribution ofzt vanishes quickly
whent grows large.

Remark 3 — The same1

t
behavior holds whenΦt → Φ∗ and whenΦ∗ is greater than

1

2
H−1 in the semi definite sense. The constant however is worse by a factor roughly equal

to ||HΦ∗||.
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