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1.1

The notion of an “Effective Vapnik Chervonenkis (VC) dimension” dates back
to attempts to measure experimentally the VC dimension of a neural network
(Levin, Le Cun and Vapnik, 1992), (Vapnik, Levin and Le Cun, 1994). These
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Abstract

The very idea of an “Effective Vapnik Chervonenkis (VC) dimension”
(Vapnik, Levin and Le Cun, 1994) relies on the hypothesis that the rela-
tion between the generalization error and the number of training examples
can be expressed by a formula algebraically similar to the VC bound. This
hypothesis calls for a serious discussion since the traditional VC bound
widely overestimates the generalization error.

In this paper we describe an algorithm and data dependent measure
of capacity. We derive a confidence interval on the difference between
the training error and the generalization error. This confidence interval is
much tighter than the traditional VC bound.

A simple change of the formulation of the problem yields this extra
accuracy: our confidence interval bounds the error difference between
a training set and a test set, rather than the error difference between
a training set and some hypothetical grand truth. This “transductive”
approach allows for deriving a data and algorithm dependent confidence
interval.

Introduction.

Context.

experiments exhibited puzzling results.

According to the definition of the VC dimension, the most obvious approach
consists in searching the largest subset of examples that successfully can be

split in all possible ways by the network.



This approach must be discarded for practical reasons: It is neither computa-
tionally feasible to test all possible subsets, nor reliable to test a few random
subsets only, for fear to miss the largest subset. Finally, the network training
algorithm sometimes misses the existing network solutions.

Another idea consists in evaluating the VC dimension from cross-validation
experiments. The procedure described below relies on an average (instead of a
supremum) over all subsets of the set of examples. We can thus obtain stable
estimates with a few random subsets.

This procedure (Vapnik, Levin and Le Cun, 1994) operates on a set of random
examples belonging to two classes:

The class labels of a random half of the set of examples are switched and the
neural network is trained on both the correct examples and the mislabeled
examples. The error difference between both halves is then averaged on several
runs. This measure is then compared with a theoretical expression derived from
the Vapnik Chervonenkis bounds (Vapnik, 1982).

This procedure is certainly not rigorous:

e There is no simple evidence that switching random labels ensures that
the learning algorithm finds the set of weights which maximize the error
difference.

e This procedure assumes that the Vapnik Chervonenkis bounds are tight
enough to allow a successful interpretation.

On the other hand, this approach allows for studying data dependent and algo-
rithm dependent effects by tampering with the learning procedure or by using
specific examples (e.g. using character images instead of random patterns). This
procedure was in fact designed as an exploratory method rather than an exact
measure.

Experiments were first carried out on a linear network with the following results:

e By adding a scaling factor to the theoretical expressions, there is a good
fit between the experimental points and the curve.

e When the random examples are replaced by real examples, we must reduce
the value of the VC dimension parameter below its theoretical value. We
obtain then a perfect fit with the same scaling factor.

e When a regularization term (e.g. a weight decay) is added to the learning
procedure, there is a fit with again the same scaling factor and different
decreasing values for the VC dimension parameter with increasing values
of the regularization parameter.



Similar results have been obtained on multilayer networks (Cortes, personal
communication) although the lack of stability of the scaling parameter and the
training procedure strongly reduces their practical significance.

These results led us to conjecture that the relation between the generalization
error and the number of examples can be expressed by a formula algebraically
similar to the VC bound. The observed value of the VC dimension parameter
has then been named “Effective VC dimension”.

This empirically defined “Effective VC dimension” depends on both the problem
and the algorithm. It effectively displays the effects of pruning a neural network,
preprocessing the data or regularizing the training algorithm (Guyon et al.,
1992).

This conjecture calls for a serious discussion since the traditional VC bound
widely overestimates the generalization error.

1.2 Summary.

In this paper we describe an algorithm and data dependent measure of capacity.
We derive a confidence interval on the difference between the training error
and the generalization error. This confidence interval is much tighter than the
traditional VC bound.

A simple change of the formulation of the problem yields this extra accuracy: our
confidence interval bounds the error difference between a training set and a test
set, rather than the error deviation between a training set and some hypothetical
grand truth. This approach allows for deriving a data and algorithm dependent
confidence interval.

Learning from examples refers to the setting where all the available information
about a specific mapping is a pool of labeled patterns. Common learning theories
assume that the labels are the result of applying some noisy unknown function,
the grand iruth, to the patterns.

Most learning procedures built on this assumption perform two inference steps:
Induction consists in identifying the grand truth. Deduction consists in applying
this result to new data. Learning theories have concentrated on the induction
step. They attempt to predict how well the result of a learning algorithm
estimates the grand truth.

Unlike these theories, we use an approach related to the bootstrap methods
(Efron, 1979). Instead of assuming a grand truth distribution we consider all
possible partitions of a finite pool of example into a training set and a test set,
and study how well the performance on the training set estimates the perfor-
mance on the test set.

This theoretical framework is close to actual experimental settings. We call it
transduction because it bypasses the grand truth. An advantage of this approach



is that it drastically reduces the technical problems involved in the derivation
of a bound.

We first present the basic hypothesis of the transductive approach. We then
derive a data dependent and learning algorithm dependent notion of capacity
based on the VC dimension framework. We finally discuss how this theoreti-
cal result makes a stronger basis for the empirical notion of an “effective VC
dimension”.

2 Settings.

From the discrete, transductive point of view, the basic elements of a learning
problem are:

e An arbitrary set S of m =1+ n labeled examples 2z, -, z14,. There are
cl = % ways to split the data set S into a training set S; of size [ and

a test set Sy of size n.

e A deterministic learning algorithm A which produces a working device w*
using the split set of examples. Given a set S and a training set size [,
there is a finite set ©;(S) of possible devices returned by algorithm .A.

e A loss function Q(z;, w) which measures the performance of device w on
example z;. In this paper, we only consider the case of binary loss func-
tions. Such a loss function returns 1 in the case of a misclassification and
returns 0 otherwise:

0 if device w classifies example z; correctly,

@z, w) _{ 1 otherwise.

These definitions can be illustrated from a multilayer network. Each example
z; is a pair (z;,y;) composed of an input vector z; and an output vector y;.
The loss function Q(z;, w) indicates the performance of the network on pattern
(:L‘.i, yi)-

For each choice of a training set S; and a test set Sz, and for each device w in
set ©;(S), we can define the training error vy, the test error v; and the total
error v as:

nw) = 7Y Qw)
) = =3 Q)
v(w) = %ZQ(%,’UJ)



This paper presents a result involving the maximal deviation between the quan-
tities v1(w) and vy(w) simultaneously valid for all devices w € ;(S) reachable
by the training algorithm:

Max | va(u) ~(w) | (1)

In the rest of this paper, we refer to this deviation as the uniform error deviation.

The uniform error deviation depends on the training set S; and the test set Sy,
on which we measure respectively the training error »;(w) and the test error
va(w). We study the distribution of this deviation for all possible splits of the
total set S into a training set of size [ and a test set of size n:

Pr{ Max | va(w) — v(w) |>e}

we; (S)
or equivalently:

Pr{3w e (S), |va(w)—rvi(w) |> €} (2)
A few facts are worth noticing about this distribution:

e The uniform error deviation distribution is both data dependent and algo-
rithm dependent: set ;(S) is defined as the set of the possible outcomes
of applying algorithm A to all training sets of size [ extracted from the
data set S.

e The probability distribution is discrete: among the C!, possible choices of
a training set, Pr(H) x C!, choices only fulfill the condition .

We use the notation Pr(---) instead of P(---) to recall that we are only
using a discrete probability defined by all the possible splits of an example
set into a training set and a test set.

e The deviation |v(w) — v1(w)| takes on discrete values because both the
total error and the training error take on discrete values. Formula (2) thus
describes the discrete cumulative histogram of the uniform error deviation.

3 Uniform error deviation.

We now derive a bound for the distribution of uniform error deviation (1). We
then argue that this bound models closely of actually measured distributions,
and thus leads to accurate confidence intervals in this regime.



3.1 Preliminary result.

First we recall the definition of the hypergeometrical distribution and derive a
preliminary result.

A bag contains m balls, p of which are red. We extract [ balls simultaneously
from this bag. The probability that k& of these ! balls are red follows the hyper-
geometrical law:

ck ek,
h(m,Lp,k) = 2= 0<k< Max{l,p}

Consider an arbitrary but fixed corner g of the unit hypercube with m dimen-
sions. Let u(q) be the average of its m coordinates (g1, -, gm) € {0,1}™.

u(g) = %Z qi
=1

There are C!, possible splits of this set of coordinates into a set S; of size I and
a set Sy of size n. Let us denote as p1(g) (respectively pa(g)) the average of the
coordinates of the first set (respectively the second set):

1
p(g) = Yz‘h'
1€8;
p— 1 -
pa(g) = ﬁqu
1€S5

We obtain the cumulative distribution of the deviation between these two aver-
ages by counting the proportion of possible choices of I coordinates which fulfill
the condition | pa(q) — u1(q)| > e.

Pr{| pa(g) —pa(q) [ > €} = > h(m, 1, mu(q), k)
| (ma(a)=k)/m — k[l |>¢

where the running variable k denotes the number of non zero coordinates in set
S1. It is then practical to rewrite this inequality as:

Pr{| pa(q) — pi(q) | > e(u(g), lymym)} = n (3)

Alas, there is no simple analytical expression of e(y, [, m,n). There are however
numerous bounds or approximations. In particular, the following results hold
when both sets have the same size (i.e. m = 2] = 2n):



e A first result is derived from equation (A15) page 176 of (Vapnik, 1982).
This result gives an absolute upper bound. This bound is rather tight
when p = 0.5 and [ is large enough:

log(2
(1,2 n) < /820 (@
e A second result is derived from equation (A22) page 180 of (Vapnik, 1982).
This second result gives a relative upper bound. This bound is tighter
when p is small:

el b, 20,m) < 24w B0 (5)

There is much literature about such bounds. There are also numerical methods
for computing this quantity (Press et al., 1992) with a good accuracy. Therefore,
we consider in this paper that e(u, !, m,n) is known and tabulated.

3.2 Uniform bound.

Given a device w*, the loss function @(z,w*) maps the total set .S on a corner
of the unit hypercube in m dimensions:

Vz; € S; qi = Q(ZZ',’UJ*)

Two different choices of a training set can of course produce two different devices
which eventually map the examples on the same corner of the hypercube. We
can thus define equivalence classes on the choices of the training sets. Each
equivalence class gathers the choices that drive the total set of examples on the
same corner of the hypercube.

We define the quotient set A;(S) as the subset of the corners of the hypercube
reached by applying all the devices w* € Q;(S), obtained by running the training
algorithm on all possible training sets S; extracted from set S.

AZ(S) = {q:(Q(zl,w),---,Q(zm,w)), VwEQZ(S)}

Applying result (3) within each equivalence class produces then a bound for the
uniform error deviation (2):



Pr{ 3w € 0(S), | va(w) — v1(w) | > e(v(w),l,m,n) }
= Pr{3g € A(S), | p2(q) — m(q) | > €(u(q),, m,m) }

= Pr| (J {Im(e)—nq) | > e(ulg),l,m,n) }

geN;(S)

< Y Pr{|pa(e) —p(a) | > e(ule)l,m,m) }

ge N (S)
= 7 Card(A(S)) (6)

As before, the notation Pr(---) denotes a discrete probability. This bound
addresses the proportion of choices of a training set (within the total set of
examples S) that lead to an error deviation larger than €(u(g), I, m, n).

3.3 The uniform bound and the VC dimension.

Following (Vapnik, 1982), we next seek a bound on Card(A;(S)). Each corner
of the hypercube embodies a dichotomy of the total set of examples S. By
definition, the set A;(S) gathers the dichotomies implemented by one of the
devices produced by algorithm A. The cardinality of A;(S) is thus equal to the
number of dichotomies implemented by the family of functions reachable by the
training algorithm:

{z = Q(z,w), Ywe N(S)}

According to (Vapnik, 1982), this number is either 2™ or bounded by a polyno-
mial quantity of degree h, where h is a positive integer named the VC dimension
of the family of functions.

h h
Card(A((S)) < L5 < (%) (7)
We can thus write the following uniform bound, which is obviously related to
the usual uniform convergence results (Vapnik, 1982):

Pr{ 3w e W, va(w) — vi(w) > e(v(w),l,m,n) }
< n Card(a(s)) < n ()

s (8)

There are however several important differences between the usual uniform con-
vergence results and bound (8):



e The set of devices does not define a fixed family of functions with a fixed
VC dimension. The effective VC dimension depends on both the data set
S and the algorithm A. Our result is therefore both data dependent and
algorithm dependent.

e This result bounds the error deviation between two sets extracted from a
finite example set of size m. The standard Vapnik Chervonenkis results
bound the difference between the training error and the asymptotical gen-
eralization error.

The importance of these differences is easily displayed if we attempt to derive a
bound on the uniform error deviation when we randomly draw the training set
and the test set from a grand truth distribution P.

We consider the following equivalent procedure:

1) We first draw a random set S of m independent examples from the grand
truth distribution.

14) We randomly select a training subset of size I. The remaining examples
are then the testing set.

A confidence interval is obtained by taking the expectation of result (8) with
respect to the selection of the total set S of random examples.

P{ 3w e A(S), | va(w) —vi(w) | > e(v(w),l,m,n) }
< n E(Card(A(S))) (9)

where the notations P(---) and E(---) denote the probability and the expecta-
tion with respect to the selection of the training set and the test set from the
grand truth distribution.

In the case m = 2] = 2n, we can eliminate the quantity v(w) in this equation
by replacing the quantity e(v(w), I, m,n) by the approximations (4) or (5). We
obtain then an absolute bound and a relative bound, which are algebraically
similar to the usual bounds (Vapnik, 1982):

P{ 3w e A(S), | va(w) — vi(w) | > w } < n E(Card(A(S)))

P{ 3w e A(S), | "2(‘”);(1’;;(“’) 5y l°g(l2/ ") 3 < n B(Card(Ai(S)))

Again, there are two essential differences between these bounds and bounds
derived from the traditional Vapnik Chervonenkis results:



e The right hand side of the bounds derived from the usual results is typi-
cally proportional to the largest number of dichotomies that the family of
functions can achieve in a set of examples of size m = [ + n.

e We have here the average number of dichotomies reachable by our algo-
rithm on each data set of size m = [+ n.

3.4 Quality of the uniform bound.

The derivation of bound (6) contains only one bounding operation. Precisely,
the probability of a union of events is bounded by the sum of the probabilities
of the events. This error is smaller than the probability of overlaps between
these events.

This probability of overlap is related to the ultrametric properties of the set of
corners A;(S) in a rather complex way. The more identical the corners ¢ in set
Ay(S), the larger the overlap.

When m increases, we consider in fact the overlaps of a polynomial number of
exponentially improbable events:

e Both results (4) and (5) indeed show that the probability of these events
decreases exponentially when m increases.

e Result (7) shows that the number of events grows only polynomially with
the number of examples m.

Unless the corners g in set A;(S) have a very odd distribution, the probability
of the intersection of two events of probability n will be O(n?). Since there are
about Card(A;(S))?/2 possible overlaps, the total probability of the overlaps is
O(Card(A;(S))%n?).

Equation (6) can then be rewritten as

/

n

Pr{3w € u(S), | va(w) — v1i(w) | > e(v(w), 1, m, m

)} & n'+0(n'?)

This intuttive argument explain why bound (6) is likely to closely model the
tail of the distribution of the uniform error deviation. A rigorous proof of this
fact should however formalize the fact that the corners do not have a very odd
repartition. We have no such proof so far ...
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4 Discussion.

Let us recall and comment the VC dimension measurement procedure briefly
described above.

This procedures consists in dividing the set of examples in two halves. The
labels of the first set are switched. When a network is trained on both the
correct and the mislabeled examples, the network learns:

e to achieve a low error rate on the correct examples,

e to achieve a high error rate on the mislabeled examples, since it actually
learns to associate the example with the wrong class.

We average then this largest error deviation found by the training algorithm
between randomly selected halves of the total set of examples.

The procedure measures the expectation of the uniform error deviation (1) for
a given data set and a given! training procedure.

The Effective VC Dimension experiments become understandable if we believe,
as argued before, that result (9) models the tail of the uniform error deviation
distribution with a sufficient accuracy.

When the VC dimension is finite indeed, the quantity E(Card(A;(S))), bounded
by a polynomial expression, grows at most polynomially with the number of ex-
amples m. Since the distribution of the uniform error deviation only depends on
the logarithm of this quantity (see formulas 4 and 5), we mostly care about the
polynomial degree of this growth. This degree embodies most of the dependence
of the confidence intervals with the number of examples.

This degree is both data and algorithm dependent. It has the algebraic proper-
ties of a VC dimension. It is thus a good candidate for being the Effective VC
dimension.

5 Conclusion.

This work on the measure of the VC dimension has uncovered certain aspects
of the generalization problem:

e We have derived a tight bound for the uniform error deviation. This bound
unifies the various absolute and relative Vapnik Chervonenkis bounds with
a single call to the hypergeometrical distribution.

1In our framework, a training procedure computes a device using the split set of examples.
Regular training procedures attempt to learn the training set. Our framework however can
handle a paradoxical procedure which learns the first set and “mislearns” the second set.

11



e We have set theoretical grounds for the notion of an Effective VC Dimen-
sion. The algebraical expression of the Vapnik Chervonenkis bounds has
indeed a much larger validity than initially expected. These formula can
be used for performance improvement as explained in (Guyon et al., 1992).
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