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Abstract

In a previous publications (Bottou & Vapnik, 92, Vapnik, 92), we have described
local learning algorithms, which result on performance improvements for real problems.
We present here the theoretical framework on which these algorithms are based.

First, we present a new statement of certain learning problems, namely the Local
Risk Minimization. We review the basic results of the uniform convergence theory of
learning, and extend these results to local risk minimization.

We also extend the Structural Risk Minimization principle for both pattern recogni-
tion problems and regression problems. This extended induction principle is the basis
for a new class of algorithms.

1 Introduction.

The concept of learning is wide enough to encompass several mathematical statements. The
notions of risk minimization and of loss function (cf. Vapnik, 82), for instance, have unified
several problems, such as pattern recognition, regression, and density estimation.

The classical analysis of learning deals with the modelization of an hypothetical truth,
given a set of independent examples. In the classical statement of the pattern recognition
problem, for instance, we select a classification function given a training set. This selection
aims at keeping small the number of misclassifications observed when the selected function
is applied to new patterns extracted from the same distribution as the training patterns.

In this statement, the underlying distribution of examples plays the role of an hypothetical
truth, and the selected function models a large part of this truth, i.e. the dependence of the
class on the input data.

We introduce in this paper a different statement of the learning problem. In this local
statement, the selection of the classification function aims at reducing the probability of
misclassification for a given test pattern. This process, of course, can be repeated for any
particular test pattern. This is quite a different task: Instead of estimating a function, we
estimate the value of a function on a given point (or in the vicinity of a given point).

The difference between these two statements can be illustrated by a practical example. A
multilayer network illustrates the classical approach: The training procedure builds a model



using a training set. This model then is used for all testing patterns. On the other hand, the
nearest neighbor method is the simplest local algorithm: Given a testing point, we estimate
its class by searching the closest pattern in the training set. This process must be repeated
for each particular test pattern.

The statement of the problem defines the goal of the learning procedure. This goal is
evaluated a posteriori by the performance of the system on some test data. The training
data however does not even provide enough information to define this goal unambiguously.
We must then rely on an induction principle, i.e. a heuristic method for “guessing” a
general truth on the basis of a limited number of examples. Any learning algorithm assumes
explicitly or implicitly some induction principle, which determines the elementary properties
of the algorithm.

The simplest induction principle, namely the principle of empirical risk minimization
(ERM) is also the most commonly used. According to this principle, we should choose the
function which minimizes the number of errors on the training set.

The theory of empirical risk minimization was developed (Vapnik,82) in the 70’s. In the
case of pattern recognition, this theory provides a bound on the probability of errors, p,
when the classification function is chosen among a set of functions of finite VC dimension.
In the simplest case, with probability 1 — n the following inequality is true (Vapnik,82, page
156, Theorem 6.7).

p<v+D, (1)

where v is the frequency of error on the training set, and
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is a confidence interval, which depends on the number of training examples [, on the VC-
dimension A of the set of functions, and on the confidence 7.

When the VC-dimension of the set of functions increases, the frequency of error on the
training set decreases, but the width D of the confidence interval increases. This behavior
leads to a new induction principle, namely the principle of structural risk minimization
(SRM).

Consider a collection of subsets imbedded in the set of functions,
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where Si is a subset of functions with VC-dimension hg, and hy < hgy1.

For each subset S, a function f; minimizes the frequency of error on the training set,
and thus fulfils the inequality (1). Successive functions fy yield a decreasing number of errors
v on the training set, but have increasingly wider confidence interval D. The principle of
structural risk minimization consists in selecting the subset Sy« and the function fx« which
minimizes the right hand side of inequality (1), named the guaranteed risk.

The SRM principle requires the choice of a nested structure on the set of functions. An
adequate structure can significantly improve the generalisation performance; a poor structure
may have a limited negative impact.



In the local statement of the learning problem, we aim at selecting a valid function in the
vicinity of a given test point zy. On the basis of the training set, we will select a “width”
for this vicinity, as well as a function for classification vectors in this vicinity.

To solve this problem, an extended SRM principle will be considered. We will minimize
the guaranteed risk not only by selecting a subset Sg« and a function fy« € Si«, but also by
selecting the width 3 of the vicinity of the point zy. Using (8 as an additional parameter
allows us to find a deeper minimum of the guaranteed risk as demonstrated on a practical
application in (Bottou & Vapnik,92).

The paper is organized as follows: First, we state and discuss the problem of risk min-
imization and the problem of local risk minimization. In section 3, we derive a few useful
bounds for uniform convergence of averages to their expectations. In sections 4 and 5 we
derive bounds of the “local risk” for the problem for pattern recognition and the problem
of regression. In section 6, we extend the structural risk minimization principle to local
algorithms.

2 Global and Local Risk Minimization.

Like many illustrous scientists, we will assume, in this paper, that a metaphysical truth rules
both our training examples and our testing cases. Like many illustrous statisticians, we will
also assume that this truth can be represented, for our purposes, by an unknown probability
distribution F(z,y), defined on a space of input-output pairs (z,y) € R® x R'.

In the classical statement of global risk minimization, a parameter o € A defines a model
x — f(z,a) of the output y. A loss function, Q(y, f(z, @)), measurable with respect to
dF (z,y), quantifies the quality of the estimate f(x,«) for the outputs y. We wish then to
minimize the global risk functional

R(0) = [ QU f(w,0))dF(z,y) 2)

over all functions {f(z,a),a € A}, when the distribution F'(z,y) is unknown, but when a
random independent sample of size [

T1,Y15° 5T, Yt (3)

is given.

Let us introduce the statement of local risk minimization, in the vicinity of a given point
Zo. In this statement, we aim at modeling the truth in a small neighborhood around x;.

A nonnegative function K (z, z¢, 3) embodies the notion of vicinity. This function depends
on the point g, on a “locality” parameter 3 € [0, co[, and satisfies:

7') OSK(IE,JJ(),/B)S].,
7'7') K(~T07l‘07ﬁ) = 17

For example, both the “hard threshold” locality function (4) and the “normal” locality
function (5) meet these conditions.

1 if |z — x| < 5/2
0 otherwise

Kl ) = | (1)



Ky(w,m0,8) = exp {_M}

Y
Let us define the norm of locality function as

1K (@0, 8)]| = [ K (w30, 8)dP(z,y)

Let us consider again a parametric function f(z,«), and a measurable loss function,
Q(y, f(z,a)). We want to minimize the local risk functional

K(Jt, Lo, ﬂ)
R(a, 8,30) = [ Qy, f(z,0)) =200 AP (w, ) (6)
|| K (0., B)I]
over the parameters o and (3, when the distribution function F'(z,y) is unknown, but when
a random independent sample x1,y1, ..., 2, y; is given.

In most cases, the knowledge of the distribution F(z,y) would make this problem trivial.
For example, if the locality function is either the hard threshold locality function (4), or
the normal locality function (5), we would select 3 = 0, and adjust « to get the “right”
value for f(zo,a). The true distribution, F'(z,y), however, is unknown. Selecting a non
trivial value for the locality parameter § might reduce the generalization error induced by
the unavoidable inaccuracy of parameter a. A new induction principle has been developed
to take advantage of this fact. It is described in section 6.

Let us apply the statement of local risk minimization to the problems of pattern recog-
nition and regression.

In the case of pattern recognition, the outputs y take only two values 0 or 1 and
{f(z,a), a € A} is a set of indicator functions. The simplest loss function
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merely indicates the presence or absence of classification error. The risk functional (2) then
measures the probability of classification error for the function f(z,«). The global pattern
recognition problem consists in selecting, on the basis of the training set, a function f(z, o)
which guarantees a small probability of classification error.

Now, let us consider the local risk functional (6), using the hard threshold locality function
(4). This functional measures the conditional probability of classification error knowing
||z = ol < 57/2.

The local pattern recognition problem consists in selecting, on the basis of the training
set, a value for the locality parameter §* and a function f(z,a*) which guarantee a small
probability of classification error in ||z — || < %

In the case of the regression problem, the outputs y are real values, and {f(z,«),a € A}
is a set of real functions. We will consider a quadratic loss function,

Q. f(z,0)) = (y — f(z,0))" (7)

The minimum of the global risk functional (2) is achieved by the closest function of the
class {f(z, @), € A} to the regression function

r@)=Ely|2) = [ydFy]| ) ®)
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using a quadratic metric

P ) = [(h(@) = (@) dP ()

The minimum of the local risk functional (6), using the locality function (4) is achieved
by the closest function of the class {f(z,a),a € A} to the regression function, r(z) using a
metric

P (f1f2) = [(fi(a) = fa(@))? dF (@ 120, 9)), ©)
where
_ K(:L.aanﬂ) T
dF (xz,z0, ) = —||K(33,$0,5)||dF( ).

The local regression problem consists, on the basis of the training set, in selecting a value
for the locality parameter 3* and a function f(z,a*) which guarantees a small conditional
quadratic error.

3 Theory of Uniform Convergence.

For simplicity, we will refer to the pairs (x,y) as a vector z, and we will denote the loss
function Q(y, f(z,a)) as Q(z,«). The notation F(z) denotes a probability distribution on
the pairs (z,y).

First, we will review uniform convergence results for the global risk functional

R(a) = / Q(z, @)dF () (10)

These results are then extended to the the local risk functional, using a transformation of
the probability distribution F'(z). The global risk can be made local by “oversampling” the
probability distribution around the point ;.

We already have stressed the fact that optimizing (10) is generally impossible, unless we
know F'(z) exactly. If our knowledge of F'(z) is limited to a random independent sample

Rl "y Rl (11)

we must rely on an induction principle, like the empirical risk minimization (ERM), or the
structural risk minimization (SRM). A good induction principle should provide a way to
select a value af which guarantees a small value for the risk R(«;). More precisely, two
questions should be answered:

1. When is the method of empirical risk minimization consistent? In other words, does
the generalization risk R(c;) converge to the minimum of the risk functional R(«)
when the size [ of the training set increases?

2. How fast is this convergence? In general, the number of training examples is limited,
and the answer to this question is of crucial practical importance.



Many induction principles, including SRM and ERM, rely on the empirical risk functional

1 l
Eifa) = 7> Q) (12)
i=1
which estimates the risk R(«) using the training set (11). In these cases, the answers to the
two questions stated above depend on the quality of the estimation (12). More precisely,

1. Does the empirical risk functional E;(«) converge to the risk functional R(«) when the
size of the training set increases, uniformly over the set of functions {Q(z, o), € A}?
The uniform convergence takes place if

Ve >0 lim P{sup |R(a)— Ei(a)] > €} =0
l—o0 aEA

2. What is the rate of this convergence?

The theory of uniform convergence of empirical risk to actual risk developed in the
70‘s and 80’s (cf. Vapnik, 82), contains a necessary and sufficient condition for uniform
convergence, and provides bounds on the rate of uniform convergence. These bounds do
not depend on the distribution function F(z); they are based on a measure of the capacity
(VC-dimension) of the set of functions {Q(z, a)), o € A}.

Definition 1. The VC-dimension of the set of indicator functions {Q(z,a),a € A} is
the maximum number h of vectors zy, ..., 2, that functions of the set {Q(z, ), o € A} can
separate into two classes in all 2" possible ways.

Definition 2. The VC-dimension of the set of real functions {Q(z,a), o € A} is the
defined as the VC-dimension of the following set of indicator functions

U(z,a,0) =0(Q(z,a) +0), a €A, §€ (—00,00)
where

1 ifu>0
Ou) = { 0 otherwise.
Two theorems are valid for a set of indicator loss functions. We assume here that the
loss functions Q(z, ), € A are set indicator functions defined in z-space.
Theorem 1. Let the set of indicator functions {Q(z, ), o € A} have VC-dimension h.
Then the following inequality is true:

Plsup|R(a) - Eia)| > ¢} < 9(%)13{—{} (13

This theorem is proven in (Vapnik,82, page 170, Theorem A.2). The quantity (21)"/h!
has been bounded by the more convenient quantity (2le/h)", using Stirling’s formula.

Bound (13), however, is limited by the behavior of the absolute difference between the
risk and the empirical risk when the risk R(«) is close to 1/2. Theorem 2 provides a bound
on the “relative” difference between the risk and the empirical risk.
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Theorem 2. Let the set of indicator functions {Q(z, ), o € A} have VC-dimension h.
Then the following inequality is true:

R(a) — Ej(«) 21e\" €2l
P{iléRW >e} < 12 (T) exp{—z} (14)

This theorem is proven in (Vapnik,82, page 176, Theorem A.3.). Again, the quantity
(20)"/h! has been bounded by the more convenient quantity (2le/h)", using Stirling’s formula.

Both Theorem 1 and 2 can be generalized to the case of uniformly bounded loss functions.
We assume now that the loss functions Q(z, ) are nonnegative, and satisfy the condition

0<Q(z,0) < B, a €A (15)

Theorem 3. Let the uniformly bounded set of real functions (15) have VC-dimension
h. Then the following bound is true:

Plsup|Rla) ~ Ei(e)] > ¢ <9(%?)emﬁ—§§ (16)

This theorem (16) is proved in Appendix 1.
Theorem 4. Let a uniformly bounded set of functions (15) have VC-dimension A. Then
the following bound is valid:

R(a) — Ey(a) 2le\" €2l
P{(sllég W >e} < 12 <7> exp{—ﬁ (17)

This theorem (17) is proved in Appendix 2.

Finally, we need a bound on the rate of uniform convergence for a set of unbounded real
functions {Q(z, @), a € A}. Such a bound requires some restriction on the large deviations
of the set of loss functions. This is also true for the classical bounds. Although the law
of large numbers says that the average of random values converges to their mathematical
expectation, the rate of convergence could be slow.

Next example shows that even in the case when the set of functions contains only one
function it is impossible to bound the rate of convergence without additional information.

Consider a random variable ¢ which takes two values: 0 with probability 1 — € and 1/¢?
with probability €. The expectation of this random variable is

BQ)=(-0+ 5=

e €
The empirical average is null if all [ observations are 0. The probability of this event is

P(0)=(1-¢f



For a small ¢, the expectation F(() is large, but the empirical average is null with a high
probability.

In Theorems 1 to 4, we have assumed a uniform bound (1 or B) on the losses Q(z, a).
This bound forbids large deviations.

We consider now the case of nonnegative, unbounded losses, which satisfy the following
mild restriction:

VI @z 0)dF ()
sup
ach [ Q(z,Q)dF(2)
This condition reflects a restriction on the “tails” of the distribution of the losses Q(z, a).
For instance, let Q(z, @) be a quadratic loss (y — f(z,a))?. If the random variable

Ca:y_f(xaa)

is distributed according to normal law, the ratio of moments in condition (18) is equal to
V3 (independ of values of parameters). If the random variable (, is distributed according
to Laplace law, this ratio is equal to /2 (also independ of value of parameters).

The following result has been proved in (Vapnik,82, page 202, 3rd equation).

Theorem 5. Let {Q(z,«), a € A} be a set of nonnegative real functions with VC-
dimension h. Then the following bound is true:

(18)

R(a) — Ei(o)
P{su
e VI Q(z,0)dF (2)

a(e):,h_%lne

In this formulation again, (21)"/h! has been bounded by (2le/h)". We obtain a uniform
bound for the relative difference between the risk and the empirical risk by applying condition
(18) to this result.

> ea(e)} < 12 <%he> exp{—ﬁ} (19)

where

P{sup %j@ > rea(e)} < 12 <2—}lf> exp{—j ) (20)

a€EA

Let us extend this inequality to the case of local algorithms. First, for any fixed value of
« and (3, note that the local risk functional

K(z xo,ﬂ)

Rl o) = [ Qe

F(z) = [Q(za)dF(zp)

is equal to the expectation of the loss function Q(z, @) with respect to a new distribution
function F(z, 3) defined by

K(Zal‘()aﬂ)

o i (oo, ) &

VO C R, /Q dF (2, )



We will consider the set of functions Q(z,«), a € A and the set of probability distribution

functions F'(z, 3), B € [0, oo] which satisfy the following inequality .

. VI @ (2, 0)dF (2, B)
wi | Q(z,0)dF(z, B)

(21)

Let us define the unnormalized local risk, R(a, 3, z¢), and the unnormalized empirical local

risk, & (a, B, xg),as follows:
R(aaﬂa :CO) = /Q(za Of)K(x,.’L'(),,B)dF(Z),
!
o f70) = 73 @z @)K (50, ).
i=1

We will show that under condition (21) the following inequality is true

R, B, 10) — E(a, B, 1) Tea(e) (216)’“ €2l
P — xp{——
{sup Rlo .20 > \\K(xo,ﬁ)\l} < 12{5-) ex{=}

where h; is VC-dimension of the set of functions
{Q(Z,OJ)K(.T,.Q?O,ﬂ), o€ Aa ﬂ € [07 OO[}
To prove this inequality, we note that theorem 5 implies the following inequality.

> ea(e)} < 12 (%)hl eXp{—ﬁ}

R(a, B, 1) — &, B, o)
P{s
{QER \/f Q?*(z, ) K2 (2, 9, B)dF (2)

Moreover, since 0 < K (z,zo, 3) < 1, we have

\//Q2zaK2(mx0, dF (> \//Q2za (z, o, B)dF(2)

< |[f @ aliKE sl

and according to (21), the following inequality is true for any g3 € [0, ool

(a ﬂ,l‘o)

\//Q2zadF <T/QzadF( ) = KBl

Inequality (22) is derived from inequalities (23), (24) and (25).

(23)

(24)

(25)



4 Bounds for the Local Risk in Pattern Recognition.

In this section, we apply the previous results to the problem of pattern recognition. Consider
the set of integrands of the unnormalized local risk functional, R(«, 3, xo):

{ Q(z,0)K(z,z0,08), €A, p€]0,00] } (26)

where Q(z, «) is an indicator function and K (z,z¢, #) a nonnegative real function.

Let hy be the VC-dimension of the set of indicator loss functions {Q(z, ), o € A}. Let
ho be the VC-dimension of the set of nonnegative real functions {K(zx,zo, 8), B € [0, c0l[}.
Since Q(z, «) takes only the values 0 or 1, the following equality is true for any nonnegative
real function r(z, 3).

0{Q(z,a)r(z,8) + ¢} = Q(z,a)0{r(z,5) + ¢} a €A, g€l0,00]

Moreover, it is known that VC-dimension of the product of two sets of indicator functions
does not exceed the sum of the VC-dimension of each set of indicator functions. Therefore,
the definition of the VC-dimension of a set of real function implies that the VC-dimension
of the set of functions

{ Q(z,0)K(z,10,8), €A, f€]0,00] }

does not exceed hy + hy. Let us apply Theorem 4 to this set of functions.

hi1+ha 2
— 2
P{ sup R(a,ﬂ,.’ﬂo) gl(aaﬂ:xO) > 6} < 12 ( le > exp{_e l}
a€A, BE[0,00] R(«, 3, x0) hy + hy 4

Let n/2 denote the right hand side of this inequality. By solving the equation

oe \MH el
12 _2Yy = )2
(h1 i h2> exp{ 1 } =/

and replacing the result into our inequality, we obtain an equivalent formulation: With
probability 1 —n/2, the following inequality is true for all functions in {Q(z, ), a € A, €
[0, 00}

R(Of, /67 .Z'()) S gl(aa ﬂa .T()) + { (1 + \/1 + %gl(aa ﬁa $0)) (27)

where

2(h1 + h2) (]Il h1?|fh2 + 1) —In %

l
By dividing both sides of inequality (27) by || K (o, 8)||, we obtain

(28)

1 4
R(a, B,10) < m (El(a, B, 1) + 0 (1 + \/1 + 5&(04, B, xo))) ) (29)
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The value of || K (zg, #)|| in the right hand side of inequality (29) depends on the distribution
function F(z). A lower bound for the value ||K(z¢, 3)|| is obtained by using the empirical
functional:

1 l
ZZIK(xi:anﬂ)

where z; = (x;,y;) are the elements of the training set (11). Applying Theorem 3 to the set
of uniformly bounded functions {K (z, zo, 3), 5 € [0, 00[} result in

P{ sup ‘HK ||——2sz,xo 5

BE0,00[

> < 9(2,fj) exp{-L)

In other words, the following inequality is simultaneously true for all § € [0,00[, with
probability 1 — n/2:

ho(ln 22 +1) —In 2
1K (20, ) >( > K. ) 2J TR (30)

_|_

where (u), = Max{0,u}. Let us define K(zo,3) as the right hand side of inequality (30).

ho(ln 22 +1) —In L
.Z'() ﬂ ( ZK x27x07 2\] 2( ho l ) 18) (31)

+

By combining inequalities (29) and (30), we obtain the following theorem, which provides a
bound for the local risk functional in the case of pattern recognition.

Theorem 6. Let the VC-dimension of the set of indicator functions {Q(z, @), a € A} be
hy. Let the VC-dimension of the set of real functions {K(z,xq, 3), B € [0,00[} be hy. The
following equality is simultaneousely fulfilled for all & € A and g € [0, o[, with probability

1—mn:

1 4
R(a, B,z0) < m (El(a,ﬂ, xo) + 0 (1 + \/1 + 551(04, ﬂ,x@)) (32)

(M +h2)(lnh St —Ing
B l

where

As expected, the VC-dimension h; and h, affect the quantity e, which controls the second
term of the sum. The VC-dimension hy of the set of locality functions {K(z, o, 3), B €
[0, 00[}, however, also affects the first term of the sum, which is the empirical estimate of
the local risk functional.

Therefore, it seems extremely advisable to use Monotonic Radial Basis Functions for
defining the vicinity of a point xy. In fact, the VC-dimension of the set of Radial Basis
Functions

{K (x, z0, 8) = Kp(||z — zo[])}
where the K4(r) are the monotonically decreasing functions of r, is equal to 1.
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5 Bounds of the Local Risk in Regression Estimation.

In this section we apply the results presented in section 3 to the problem of local regression
estimation. The loss functions Q(z, «) are now real functions.

In the case of pattern recognition, the loss functions were indicator functions. In this case,
we have proved that the VC-dimension of the set {Q(z,a)K(z,z0,0), o € A, [ € [0,00][}
does not exceed the sum of the VC-dimensions of the sets of functions {Q(z, @), a € A} and
{K(z,z9,0), B€]0,00[}.

This is no longer true in the case of real loss functions. For example, let {Q(z, «), o € A}
be the set of monotonically increasing functions, and {K(z,zo, ), 8 € [0,00[} be the set
of monotonically decreasing functions. Although the VC-dimension of both sets is 1, the
VC-dimension of the product of these sets is infinite.

In order to apply the uniform convergence results, we will assume that the VC-dimension
hy of the set of function {Q(z, ) K(z, o, ), « € A, B € [0,00[} is finite. We also assume
that the functions Q(z, «) are nonnegative, and satisfy condition (21).

From inequality (22) we derive the following inequality, which is simultaneously valid for
all « € A, g €0, 00[, with probability 1 — /2.

R(a, B,0) < Ll IO)l Ko A (%)
|| K (0, 8)|| (1 —rey/1- fk
where
hl(ln}?_l + 1) - ln 27)_4
¢ J UK (o, 8)|| .

In section 4, we have proved that inequality (31) is true. Using (31) and (33), we obtain
the following result:
Theorem 7. Let the VC-dimension of the set of nonnegative real functions

{Q(Z,&)K(.T,.Zo,ﬂ), o€ Aa ﬂe [0700[}
be hy. Let the VC-dimension of the set of locality functions
{K(x:anﬂ)a ﬂe [0,00[}

be hs. The following inequality is simultaneously valid for all & € A, € [0,00], with
probability 1 — n,

gl(aa /65 33'0)

K(z0,8) (1 = rey/1 — BK)

24 hi(n 2 4+1) —Inf
6:
l ,C(anﬂ)

R(a, B,x0) < (35)

+
where

and KC(z, 3) is defined in (31).

This result provides a bound on the local risk functional for the case of regression esti-
mation.
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6 Local Structural Risk Minimization.

We can now formulate the principle of local structural risk minimization, using the bounds
provided by theorem 6 and 7. In this section, the Local Structural Risk Minimization (LSRM)
principle is formulate for pattern recognition. The regresion case is essentially similar.

Let us consider a nested structure on the set of indicator functions {Q(z, ), « € A},

S1C S C, -, C S, ={Q(2,0), a€A}. (36)
Let the VC-dimension of each subset S, be h,, with
hi < hy <---<h,.
We have proved, in section 4, that the VC-dimension of the set of functions
{Q(z,0)K(z, 20, 8), a € Ay, B €[0,00[}

is smaller than h, + h*, where h* denotes the VC-dimension of the set of real functions
{K(.T, Zo, ﬂ)7 ﬁ € [O; OO[}

According to theorem 6, the following inequality is simultaneously valid for all element
Sp of the structure, with probability 1 — nn:

1 4
R(O&, ﬂ,xo) S m <El(a,ﬂ, SE()) + ’19 (1 + \/1 + 55[(0&, ﬂ,$0)>> (37)

where
g (hp + h*)(In hpilh* +1) —In g
l 7
1 l
gl(a, ﬂa 370) = 7 Z Q(Zia O!)K(CC,‘, Zo, /6)’
=1

I T -
K(xo,8) = (%ZK(%JO,@ _ 2\/h (In ;3 +l1) In %) |
i=1 N

Principle. The Local Structural Risk Minimization Principle consists in choosing the
element of structure S, and the parameters o € A, and # € [0, 00 which minimize the
guaranteed risk as defined by the right hand side of inequality (37).

The various constants in bound (37) are the result of technical properties of the bounding
derivations. The “proven” value is irrelevant to practical problems. Therefore, it is advisable
to design experiments to measure these constants, and to use these measured values instead
of using the “proven” values.
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Appendix 1: Proof of Theorem 3.
Using Lebesgue’s sums, we can write:

K = sup|R(a) - Ei(a)|

a€A

1.
= sup /Q(z, a)dP(z,0) — 3> Q(z, )
a€A l i=1
B N-1 Bn, N-1
= Ao L Pl > -
where v{Q(z, o) > } denotes the frequency of the event {Q(z, a) > £2}, obtained on the
basis of the sample zl, . Then
K < Jim 2o S |P(Q ) > B - 0(@(z0) > B0
< Nl_r)nooﬁilég 2 Z, o v{Q(z, «
< B sw  |P{Q(50a)> 8} — v{Q(5a) > B}

a€A, pe[0,B]

B sup
a€A, B€[0,B]

/O{Q z,a) — B}dF(2) ZH{Q Zi, & 5}‘

Using Theorem 1 and this inequality, we obtain

P{ilég /QzadF ——ZQZZ, )| > €}
< P{ sup /9{Q (z,) — B}dF(2) ZH{Q (zi, ) — B} > %}
a€A, B€[0,B]

2le €’
o (%) expt-.

where h is the VC-dimension of the set of indicator functions

{ O(Q(Z, a) _ﬂ)’ o€ Aaﬂ € [O’B] }

According to definition 2, this quantity is the VC-dimension of the set of real loss functions
{Q(z,a), a € A}. Theorem 3 is thus proven.

Appendix 2: Proof of Theorem 4.

Again, consider a set real functions {Q(z,a),a € A} of VC-dimension h, and assume 0 <
Q(z,a) < B. The following result is proven in (Vapnik,82, page 197, Lemma).

R(a) — Eye) (20)" €2l
P{su 12 expi——— 38
RS e e A T =
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Using Cauchy inequality, we can write

[ 1 /PlQEa) > dy < \/ [ vay [ P(QG0) > Ny = \/BR().

We replace this result in inequality (46); we bound (2{)"/h! by the more convenient expression
(2le/h)"; and obtain:

€2l

Su R(a)_El(a) € % heX _—
P{sup 5 >\/§}<12< ) pi=—7}

h

Theorem 4 is thus proven.
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