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Abstract

Very rarely are training data evenly distributed in the input space. Local learning algo-
rithms attempt to locally adjust the capacity of the training system to the properties of the
training set in each area of the input space.

The family of local learning algorithms contains known methods, like the k-Nearest Neigh-
bors method (kNN) or the Radial Basis Function networks (RBF'), as well as new algorithms.
A single analysis models some aspects of these algorithms. In particular, it suggests that
neither kNN or RBF, nor non local classifiers, achieve the best compromise between locality
and capacity.

A careful control of these parameters in a simple local learning algorithm has provided a
performance breakthrough for an optical character recognition problem. Both the error rate
and the rejection performance have been significantly improved.

1 Introduction.

Here is a simple local algorithm: For each testing pattern, (1) select the few training examples lo-
cated in the vicinity of the testing pattern, (2) train a neural network with only these few examples,
and (3) apply the resulting network to the testing pattern.

Such an algorithm looks both slow and stupid. Indeed, only a small part of the available
training examples is used to train our network. Empirical evidence however defeats this analysis.
With proper settings, this simple algorithm improves significantly the performance of our best
optical character recognition networks.

A few years ago, V. Vapnik devised a theoretical analysis for such local algorithms, briefly
discussed in (Vapnik, 1992). This analysis introduces a new component, named locality, in the
well known tradeoff between the capacity of the learning system and the number of available
examples.

This paper attempts to explain, and demonstrates, that such an algorithm might be very effi-
cient for certain tasks, and that its underlying ideas might be used with profit. The voluminous
equations of the theoretical analysis, however, will not be discussed in this paper. Their com-
plexity, mostly related to the imperfection of the current generalization theories, would introduce
unnecessary noise in this discussion.

In Section 2, we show that handling rejections in some pattern recognition problems requires
different properties for a learning device in different areas of the pattern space. In Section 3, we
present the idea of a local learning algorithm, discuss related approaches, and discuss the impact
of the locality parameter on the generalization performance. In Section 4, we demonstrate the
effectiveness of a local learning algorithm on a real size optical character recognition task.



Rejection by ambiguity.
The class of this pattern cannot
be determined with enough confidence.

Rejection by lack of data.

We have not enough examplesto
find a decision boundary in that area
with enough confidence.

Figure 1: This is a piece of an imaginary pattern space. Gray and black circles are examples of
two classes. Thin lines are the actual bayesian decision boundary between these two classes. Both
crosses represent rejected patterns.

2 Rejection.

An ideal isolated character recognition system always assigns the right symbolic class to a character
image. But a real recognizer might commit an error or perform a rejection.

Errors are very expensive to correct. A zipcode recognition system, for instance, might erro-
neously send a parcel to the other end of the world. Therefore, the system should reject a pattern
whenever the classification cannot be achieved with enough confidence. Having this pattern pro-
cessed by a human being is usually less expensive than fixing an error. Selecting a proper confidence
threshold reduces both the cost of handling the rejected patterns and the cost of correcting the
remaining errors.

The quality of such a pattern recognition system is measured by its rejection curve (cf. Fig-
ure 4.) This curve displays the possible compromises between the number of rejected patterns and
the numbers of remaining errors.

Two very different situations reduce the classification confidence and might cause a rejection
(cf. Figure 1.)

e Patterns might well be ambiguous. For instance, certain people write their “1” like other
people write their “7”.

This cause of rejection is inherent to the problem. Ambiguities arise because important
information, like the contextual knowledge of the writing style, is not provided as input to
the system.

Knowing exactly the probability distribution of the patterns and classes would not eliminate
such rejections. A pattern would still be rejected if its most probable class does not win by
a sufficient margin.

e Patterns might be unrelated to the training data used for defining the classifier. For instance,
many atypical writing styles are not represented in the training database.

Low probability areas of the pattern space are poorly represented in the training set. The
decision boundary of our classifier in such areas are mere side effects of the training algorithm.
These boundaries are just irrelevant.

This second cause of rejection is a direct consequence of the finite nature of the training
set. Knowing exactly the probability distribution of the pattern and classes would reveal
the exact Bayesian decision boundaries everywhere.



This latter cause of rejection has rarely been studied in the literature!. Its mere definition
involves non asymptotical statistics closely related to the generalization phenomenon.

e A high capacity learning system is able to model accurately and with high confidence the
parts of the decision boundary that are well described by the training examples. In these
areas, both rejections and misclassifications are rare.

The same system however produce unreliable high confidence decision boundaries in the
poorly sampled areas of the pattern space: Rejection are rare, but misclassifications are
frequent.

e Alternatively, a low capacity learning system builds low confidence boundaries in the poorly
sampled areas of the pattern space. This system rejects more atypical patterns, but reduces
the number of misclassifications.

Unfortunately, such a device performs poorly in the well sampled areas. Unable to take profit
of the abundant data, it builds poor decision boundaries, and rejects almost everything,
because everything looks too ambiguous.

In fact, different properties of the learning algorithm are required in different areas of the
input space. In other words, the “local capacity” of a learning device should match the density of
training examples.

3 Local learning algorithms.

It is now generally admitted that the generalization performance is affected by a global trade off
between the number of training examples and the capacity of the learning system.

Various parameters monotonically control the capacity of a learning system (Guyon et al.,
1992), including architectural parameters (e.g. the number of hidden units), preprocessing param-
eters (e.g. the amount of smoothing), or regularization parameters (e.g. the weight decay).

The best generalization is achieved for some optimal values of these capacity control param-
eters, which depend on the size of the training set. This fact holds for rejection or for raw
performance, in the case of pattern recognition, regression, or density estimation tasks.

Whenever the distribution of patterns in the input space is uneven, a proper local adjustment
of the capacity can significantly improve the overall performance. Such a local adjustment requires
the introduction of capacity control parameters whose impact is limited to individual regions of
the pattern space. Here are two ways to introduce such parameters:

e Our experiment (cf. Section 4) illustrates the first solution. For each testing pattern, we
train a learning system with the training examples located in a small neighborhood around
the testing pattern. Then we apply this trained system to the testing pattern itself.

The parameters of the locally trained system de facto affect only the capacity of the global
system in the small neighborhood defined around each testing pattern.

We shall show below that the k-Nearest-Neighbor (kNN) algorithm is just a particular case of
this approach. Like kNN, such systems are very slow. The recognition speed is penalized by

LA Bayesian approach has been suggested in (Denker and Le Cun, 1991) for estimating error-bars on the
outputs of a learning system. This useful information affects the interpretation of the outputs, and might improve
the rejection performance, as suggested by our reviewer. This method could as well improve the rejection of local
algorithms.
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Figure 2: A square kernel selects only those examples located in a specific neighborhood. A smooth
kernel gives a different weight to all examples, according to their position with respect to the kernel.
The locality parameter, b, measures the “size” of the neighborhood.

the selection of the closest training patterns and by the execution of the training algorithm
of the local learning system.

e In the second solution, the structure of the learning device ensures that each parameter
affects the capacity of the system in a small neighborhood only.

For example, we might use a separate weight decay per Radial Basis Function (RBF) unit
in a RBF network. Each weight decay parameter affects the capacity of the network only
locally. Similarly, architectural choices in a modular network (Jacobs et al., 1991) have a
local impact on the capacity of the global system.

Since such a system is trained at once, the recognition time is not affected by the local nature
of the learning procedure.

In the next subsections, we shall describe a general statement for local learning algorithms,
discuss related approaches, and explain how the locality parameter affects the generalization per-
formance.

3.1 Weighted cost function.

We present here a general statement for local learning algorithms. Let us define J(y, f,,(z)) as
the loss incurred when the network gives an answer f,, () for the input vector z, when the actual
answer is y.

The capacity control parameters « directly or indirectly define a subset W, of the weight space
(Guyon et al., 1992). A non local algorithm searches this subset for the weight vector w* () which

minimizes the empirical average of the loss over a training set (z1,y1),- -, (z1,y1)-
1d
w'(y) = ArgMin 53 J(i, fu(a:)) (1)
weWy i=1

For each neighborhood defined around a point xg, a local algorithm searches for a weight vector
w*(xo,b,7y) which minimizes a weighted empirical average of the loss over the training set.

w*(zo,b,v) = ArgMin
weEW,

l
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The weighting coefficients are defined by a kernel K (x — zg, b) of width b centered on point xg.
Various kernels might be used, including square kernels and smooth kernels (cf. Figure 2).

Since a separate minimization is performed in each neighborhood, the capacity control param-
eters v and the kernel width b can be adjusted separately for each neighborhood.

3.2 Related approaches.

This formulation allows for many variations concerning the class of function f,(x), the number
of neighborhoods, the shape of the kernels K(x — o, b), the scaling laws for the kernel width b or
the parameters ~.

Selecting the class of constant functions with respect to the input vectors z, and using a
quadratic loss J(y,9) = (y — §)? leads to several popular algorithms, like the kNN method or the
RBF networks. In each specific neighborhood, such algorithms try to find a constant approxima-
tion §* of the desired output:

S

1
g* = ArgMin Z K(z — x0,b) (yi — §)° (3)
y i=1

For instance, consider a pattern recognition problem. If the pattern #; belongs to the nt" class,
the n*® coefficient of the corresponding desired output §; is equal to 1; the others coefficients are
equal to 0.

e For each testing pattern xy, we consider a square kernel whose width is adjusted to contain
exactly k examples. The optimum § of (3) is the mean of the desired outputs of the k closest
patterns. Its highest coefficient, then, corresponds to the most represented class among the
k closest patterns to zg. This is the k-Nearest Neighbors algorithm (kNN).

If we use a smooth kernel instead of a square kernel, minimizing (3) for each testing pattern
o computes estimates of the posterior probability of the classes. This is the Parzen windows
algorithm.

e We consider now R fixed neighborhoods, defined by the centers z;}} and the standard de-
viation b} of their gaussian kernels. Minimizing (3) in each neighborhood computes the
weighted average ;" of the desired values of the training examples.

To evaluate the output Jgioba(z) of the complete system for an input pattern z, we merge
these weighted averages according to the values of the R kernels on x.

R
Jalobal (z) = Z g Kz —af,bf) (4)
r=1

This is a Radial Basis Functions (RBF) network (Broomhead and Lowe, 1988),(Moody and
Darken, 1989).

3.3 Locality and capacity.

Theoretical methods developed for non local algorithms apply to each local optimization. In
particular, the best value for the capacity control parameters (Guyon et al., 1992) depend on the
number of training examples.



In the context of a local algorithm, however, the effective number of training examples is
modulated by the width b of the kernels. For instance, a square kernel selects from the training
set a subset, whose cardinality depends on the local density of the training set and on the kernel
width b.

The classical tradeoff between capacity and number of examples must be reinterpreted as a
tradeoff between capacity and locality. If we increase the locality by reducing b, we implicitly
reduce the effective number of training examples available for training the local system.

kNN and the RBF networks use small kernels and a class of constant functions. There is no
reason, however, to believe that the best results are obtained with such a low capacity device.
Conversely, big multi-layer networks are non local (b = co), but have a high capacity.

Modular networks (Jacobs et al., 1991) sit somewhat between these two extremes. The kernel
functions are embodied by a “gating network”, which selects or combines the outputs of the
modules, according to the input data and sometimes the outputs of the modules themselves.

Another phenomenon makes the situation slightly more complex: The capacity control param-
eters can be adjusted separately in each neighborhood. This local adjustment is more accurate
when the kernel width is small. On the other hand, there is little to adjust in a very low capacity
device.

4 Experiments.

This section discusses experiments of a simple local learning algorithm on a real size pattern
recognition problem. Comparisons have been carried out (a) with a back-propagation network,
(b) with the kNN and Parzen windows algorithms.

e A back-propagation network is a non local algorithm, with a comparatively high capacity.
Comparison (a) shows that introducing locality and reducing the capacity improves the
resulting performance of such a network.

e A kNN classifier is an extremely local algorithm, with a very low capacity. Comparison (b)
shows that reducing the locality and increasing the capacity again improves the resulting
performance.

4.1 A simple local learning algorithm.

We have implemented a simple local algorithm:

For each testing pattern zg, a linear classifier is trained on the k closest training examples,
(x1,v1),---,(xk, Y ), for the Euclidian distance. This trained network then is applied to the testing
pattern xzg.

The effective number of examples, k, is much smaller than the number of weights in the linear
classifier. Therefore, a strong weight decay ~ is required to reduce the capacity of the linear
classifier. A weight decay, however, pulls the weights toward some arbitrary origin. For isotropy
reasons, the origin of the input space is translated on the testing pattern g, by subtracting z
from all the selected training patterns. This also has the advantage of reducing the eigenvalue
spread of the hessian matrix.

The training procedure computes the explicit minimum of a quadratic cost incorporating a
weight decay term. The positive weight decay v ensures that the required matrix inversion is
possible.
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Figure 3: “LeNet”: Layers i,ii,iii, and v compute 192 features. Layer v performs the classification.
In this paper, we replace layer v by a local algorithm.

k
w*(zo, k,7y) = ArgwMin { %;(yi_fw(xi —20))” + |w|’ } (5)

Since the new coordinate system is centered on the testing pattern, the output of the network
on this testing pattern is equal to the bias vector. The highest output determines which class
is selected for pattern zy. If however the difference between the highest output and the second
highest output is less than a certain threshold, the pattern is rejected.

A simple heuristic rule controls the capacity versus locality tradeoff within each neighborhood.
It adjusts the locality and leaves the capacity constant. In other words, the same value of the
weight decay parameter ~ is used in all neighborhoods. The locality is usually controlled by a
kernel size b which should increase when the density of training example decreases.

In fact, selecting the k closest training examples is equivalent to having a square kernel whose
size is somewhat adjusted according to the local density of training examples. We just use the
same value for k in all neighborhoods.

Although this system is extremely inefficient, it implements a wide range of compromises
between locality and capacity, according to the values of only two parameters, a locality parameter
k and a regularization parameter v. We have found that this quality was attractive for a first
experiment.

4.2 Results and comparisons.

We trained several system on the same training set composed of normalized 16x16 images of 7291
handwritten digits and 2549 printed digits. Performance has been measured on a test set of 2007
handwritten digits. The same database was used in (Le Cun et al., 1990).

Table 1 gives the raw error and the rejection at 1% error for various systems. The “raw error”
is the percentage of misclassifications when no rejection is performed. The “rejection for 1% error”
is the percentage of rejected pattern when the rejection threshold is adjusted to allow less than
1% misclassification on the remaining patterns.

The 2.5% human performance on the segmented and preprocessed digits provides a reference
point (Sackinger & Bromley, personal communication).

The nickname “LeNet” designates the network described in (Le Cun et al., 1990). This five
layer network performs both the feature extraction and the classification of 16x16 images of single
handwritten digits. Four successive convolutional layers extract 192 translation invariant features;



| | Raw Error | Rejection for 1% Error |

Human | (on segmented digits) =~ 2.5% n.a.
LeNet | (on segmented digits) 5.1% 9.6%
kNN (on LeNet features) 5.1% n.a.
Parzen | (on LeNet features) 4.7% 10.8%
Local (on LeNet features) 3.3% 6.2%

Table 1: Results on a optical character recognition task.

a last layer of 10 fully connected units performs the classification (cf. Figure 3). This network has
achieved 5.1% error and 9.6% rejection for 1% error?.

The 192 features computed by LeNet are used as inputs to three other pattern recognition
systems. These systems can be viewed as replacements for the last layer of LeNet. Therefore,
results can be directly compared.

The best kNN performance, 5.1% raw error, was obtained by using the three closest neighbors
only. These few neighbors allow no meaningful rejection strategy.

The Parzen system is similar to kNN. We just replace the square kernel by a gaussian kernel,
whose standard deviation is half the distance of the 4*" closest pattern. Several variations have
been tested; we report the best results only: 4.7% raw error and 10.8% rejection for 1% error.

Finally, we have tested the simple local learning algorithm described above, using the 200
closest patterns and a weight decay of 0.01. This weight decay is enough to train our 1920 weights
using 200 patterns. At this time, both the 3.3% raw error and the 6.2% rejection rate for 1% error
were the best performances reached on this data set.

A derivation reported in the appendix shows that this performance improvement is statistically
significant, Figure 4 compares the rejection curve of the local system with the rejection curve of
“LeNet.” The local system performs better for all values of the threshold. At 17% rejection, the
single remaining error is a mislabeled pattern.

With a proper adjustment of its locality and capacity parameters, this simple algorithm out-
performs both (a) a non local algorithm (i.e. the last layer of LeNet), and (b) two extremely local
algorithms (i.e. KNN or Parzen windows). Figure 5 shows how the raw error of the local system
changes around the best values of k and of the weight decay ~.

Finally, no significant performance changes have been obtained by using smooth kernels or
fancy heuristic for controlling the kernel width and the weight decay.

4.3 Recognition speed.

This simple system, however, spends 50 seconds for recognizing a single digit. Training a network
for each testing pattern is certainly not a practical approach to the optical character recognition
problem.
In Section 3, however, we have presented two solutions for building local learning algorithms.
We have deliberately chosen to implement the simpler one, which leads to very slow recognizers.
We could as well design systems based on our second solution, i.e. using a network structure
which allows a local control of the capacity of the system. Such a system would be slightly more

2This is slightly worse than the 4.6% raw error and 9% rejection for 1% error reported in (Le Cun et al., 1990).
This is due (%) to a slightly different definition of the rejection performance (1% error on the remaining patterns
vs. 1% error total), and (i%) to a more robust preprocessing code.
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Figure 4: Punting curve. This curve shows the error rates at various rejection rates for plain

LeNet (dashed curve) and our simple local algorithm operating on the features computed by LeNet
(plain curve).
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Figure 5: Evolutions of the raw error for the local system around the best values of k and of the
weight decay v. (In fact, the decay axis displays the product vk.)



complex to handle, but would have a much smaller recognition time.

5 Conclusion.

No particular architectural change is responsible for this performance breakthrough. In fact,
this system is linear, and replaces a linear decision layer in LeNet. The change concerns the
training procedure. The performance improvement simply results from a better control of the
basic tradeoffs involved in the learning process.

Although much remains to be understood about learning, we have some practical and theoreti-
cal knowledge of these basic tradeoffs. Understanding how these tradeoffs affect a specific learning
problem often allows us to take profit from their properties for practical applications.

Local learning algorithms are just a successful example of this strategy.
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Appendix: Confidence intervals.

This section presents the derivations establishing the significance of the results presented in this
paper. We first derive a non asymptotical formula for computing confidence when comparing two
classifiers on a same test set of N independent examples.

Each classifier defines certain decision boundaries in the pattern space. It is enough to compare
our classifiers on only those cases where one classifier is right and the other one is wrong. Let
us call p; and ps the conditional probabilities of error of each classifier, given that one classifier
only gives a wrong answer. Similarly, let us define n; and n» as the numbers of errors that each
classifier makes which the other classifier classifies correctly, and ni, as the number of common
errors.

According to the large number inequality (2.7) in (Hoeffding, 1963),

ni na _ 2
Plp —py> - —e) > 1 (min2)e 6
(pl P2 s ni+na ) = (6)

Furthermore, if we name v; and v» the measured error rates on our test set, we have
ny —nog = (’I’Ll + n12) - (TLQ + ’nu) = N(V1 - 1/2) (7)

By solving for € when the right hand side of inequality (6) is 1 — 7, we can compute the
minimum difference v; — v» which ensures that p; — ps is larger than 0 with probability 1 — 7.
Since comparing p; and py is enough to decide which classifier is better, the following result is
valid:

1
If vi—vy> N —(n1 +n2) Inn

then classifier 2 is better than classifier 1 with probability 1 — 7). (8)

In our case, all systems achieve less than 5.1% error on a test set of size N = 2007. The
quantity ny + ne is thus smaller than 10.2% of N, probably by a large margin. If we choose
n = 5%, we get a minimal significative error difference of 1.2%.

Measuring the actual value of n; + ns, would further reduce this margin. The significance of
the results presented in this paper, however, is established without such a refinement.
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