
Learning using Large Datasets

Léon Bottoua and Olivier Bousquetb

a NEC Laboratories America, Princeton, NJ08540, USA
b Google Zürich, 8002 Zürich, Switzerland

Abstract. This contribution develops a theoretical framework that takes into ac-
count the effect of approximate optimization on learning algorithms. The anal-
ysis shows distinct tradeoffs for the case of small-scale andlarge-scale learning
problems. Small-scale learning problems are subject to the usual approximation–
estimation tradeoff. Large-scale learning problems are subject to a qualitatively dif-
ferent tradeoff involving the computational complexity of the underlying optimiza-
tion algorithms in non-trivial ways. For instance, a mediocreoptimization algo-
rithms, stochastic gradient descent, is shown to perform very well on large-scale
learning problems.

Keywords. Large-scale learning. Optimization. Statistics.

Introduction

The computational complexity of learning algorithms has seldom been taken into ac-
count by the learning theory. Valiant [1] states that a problem is “learnable” when there
exists a probably approximatively correct learning algorithm with polynomial complex-
ity. Whereas much progress has been made on the statistical aspect (e.g., [2,3,4]), very
little has been told about the complexity side of this proposal (e.g., [5].)

Computational complexity becomes the limiting factor whenone envisions large
amounts of training data. Two important examples come to mind:

• Data mining exists because competitive advantages can be achieved by analyz-
ing the masses of data that describe the life of our computerized society. Since
virtually every computer generates data, the data volume isproportional to the
available computing power. Therefore one needs learning algorithms that scale
roughly linearly with the total volume of data.

• Artificial intelligence attempts to emulate the cognitive capabilities of human be-
ings. Our biological brains can learn quite efficiently fromthe continuous streams
of perceptual data generated by our six senses, using limited amounts of sugar as
a source of power. This observation suggests that there are learning algorithms
whose computing time requirements scale roughly linearly with the total volume
of data.

This contribution finds its source in the idea that approximate optimization algo-
rithms might be sufficient for learning purposes. The first part proposes new decompo-
sition of the test error where an additional term representsthe impact of approximate
optimization. In the case of small-scale learning problems, this decomposition reduces to
the well known tradeoff between approximation error and estimation error. In the case of



large-scale learning problems, the tradeoff is more complex because it involves the com-
putational complexity of the learning algorithm. The second part explores the asymp-
totic properties of the large-scale learning tradeoff for various prototypical learning al-
gorithms under various assumptions regarding the statistical estimation rates associated
with the chosen objective functions. This part clearly shows that the best optimization al-
gorithms are not necessarily the best learning algorithms.Maybe more surprisingly, cer-
tain algorithms perform well regardless of the assumed ratefor the statistical estimation
error. Finally, the final part presents some experimental results.

1. Approximate Optimization

Following [6,2], we consider a space of input-output pairs(x, y) ∈ X ×Y endowed with
a probability distributionP (x, y). The conditional distributionP (y|x) represents the un-
known relationship between inputs and outputs. The discrepancy between the predicted
outputŷ and the real outputy is measured with a loss functionℓ(ŷ, y). Our benchmark
is the functionf∗ that minimizes the expected risk

E(f) =

∫

ℓ(f(x), y) dP (x, y) = E [ℓ(f(x), y)],

that is,

f∗(x) = arg min
ŷ

E [ℓ(ŷ, y)|x].

Although the distributionP (x, y) is unknown, we are given a sampleS of n indepen-
dently drawn training examples(xi, yi), i = 1 . . . n. We define the empirical risk

En(f) =
1

n

n
∑

i=1

ℓ(f(xi), yi) = En[ℓ(f(x), y)].

Our first learning principle consists in choosing a familyF of candidate prediction func-
tions and finding the functionfn = arg minf∈F En(f) that minimizes the empirical
risk. Well known combinatorial results (e.g., [2]) supportthis approach provided that
the chosen familyF is sufficiently restrictive. Since the optimal functionf∗ is unlikely
to belong to the familyF , we also definef∗

F
= arg minf∈F E(f). For simplicity, we

assume thatf∗, f∗
F

andfn are well defined and unique.
We can then decompose the excess error as

E [E(fn) − E(f∗)] = E [E(f∗

F ) − E(f∗)]
| {z }

+ E [E(fn) − E(f∗

F )]
| {z }

= Eapp + Eest

, (1)

where the expectation is taken with respect to the random choice of training set. Theap-
proximation errorEapp measures how closely functions inF can approximate the opti-
mal solutionf∗. Theestimation errorEest measures the effect of minimizing the empir-
ical riskEn(f) instead of the expected riskE(f). The estimation error is determined by
the number of training examples and by the capacity of the family of functions [2]. Large



families1 of functions havesmaller approximation errorsbut lead tohigher estimation
errors. This tradeoff has been extensively discussed in the literature [2,3] and lead to
excess error that scale between the inverse and the inverse square root of the number of
examples [7,8].

1.1. Optimization Error

Finding fn by minimizing the empirical riskEn(f) is often a computationally expen-
sive operation. Since the empirical riskEn(f) is already an approximation of the ex-
pected riskE(f), it should not be necessary to carry out this minimization with great
accuracy. For instance, we could stop an iterative optimization algorithm long before its
convergence.

Let us assume that our minimization algorithm returns an approximate solutionf̃n

that minimizes the objective function up to a predefined toleranceρ ≥ 0.

En(f̃n) < En(fn) + ρ

We can then decompose the excess errorE = E
[

E(f̃n) − E(f∗)
]

as

E = E [E(f∗

F ) − E(f∗)]
| {z }

+ E [E(fn) − E(f∗

F )]
| {z }

+ E
ˆ
E(f̃n) − E(fn)

˜

| {z }

= Eapp + Eest + Eopt

. (2)

We call the additional termEopt theoptimization error. It reflects the impact of the ap-
proximate optimization on the generalization performance. Its magnitude is comparable
to ρ (see section 2.1.)

1.2. The Approximation–Estimation–Optimization Tradeoff

This decomposition leads to a more complicated compromise.It involves three variables
and two constraints. The constraints are the maximal numberof available training exam-
ple and the maximal computation time. The variables are the size of the family of func-
tionsF , the optimization accuracyρ, and the number of examplesn. This is formalized
by the following optimization problem.

min
F,ρ,n

E = Eapp + Eest + Eopt subject to

{

n ≤ nmax

T (F , ρ, n) ≤ Tmax
(3)

The numbern of training examples is a variable because we could choose touse only a
subset of the available training examples in order to complete the optimization within the
alloted time. This happens often in practice. Table 1 summarizes the typical evolution of
the quantities of interest with the three variablesF , n, andρ increase.

The solution of the optimization program (3) depends critically of which budget
constraint is active: constraintn < nmax on the number of examples, or constraintT <
Tmax on the training time.

1We often consider nested families of functions of the formFc = {f ∈ H, Ω(f) ≤ c}. Then, for each
value ofc, functionfn is obtained by minimizing the regularized empirical riskEn(f)+λΩ(f) for a suitable
choice of the Lagrange coefficientλ. We can then control the estimation-approximation tradeoff by choosing
λ instead ofc.



Table 1. Typical variations whenF , n, andρ increase.

F n ρ

Eapp (approximation error) ց

Eest (estimation error) ր ց

Eopt (optimization error) · · · · · · ր

T (computation time) ր ր ց

• We speak ofsmall-scale learning problemwhen (3) is constrained by the maxi-
mal number of examplesnmax. Since the computing time is not limited, we can
reduce the optimization errorEopt to insignificant levels by choosingρ arbitrarily
small. The excess error is then dominated by the approximation and estimation
errors,Eapp andEest. Takingn = nmax, we recover the approximation-estimation
tradeoff that is the object of abundant literature.

• We speak oflarge-scale learning problemwhen (3) is constrained by the max-
imal computing timeTmax. Approximate optimization, that is choosingρ > 0,
possibly can achieve better generalization because more training examples can
be processed during the allowed time. The specifics depend onthe computational
properties of the chosen optimization algorithm through the expression of the
computing timeT (F , ρ, n).

2. The Asymptotics of Large-scale Learning

In the previous section, we have extended the classical approximation-estimation trade-
off by taking into account the optimization error. We have given an objective criterion to
distiguish small-scale and large-scale learning problems. In the small-scale case, we re-
cover the classical tradeoff between approximation and estimation. The large-scale case
is substantially different because it involves the computational complexity of the learning
algorithm. In order to clarify the large-scale learning tradeoff with sufficient generality,
this section makes several simplifications:

• We are studying upper bounds of the approximation, estimation, and optimiza-
tion errors (2). It is often accepted that these upper boundsgive a realistic idea
of the actual convergence rates [9,10,11,12]. Another way to find comfort in this
approach is to say that we study guaranteed convergence rates instead of the pos-
sibly pathological special cases.

• We are studying the asymptotic properties of the tradeoff when the problem size
increases. Instead of carefully balancing the three terms,we writeE = O(Eapp)+
O(Eest) +O(Eopt) and only need to ensure that the three terms decrease with the
same asymptotic rate.

• We are considering a fixed family of functionsF and therefore avoid taking into
account the approximation errorEapp. This part of the tradeoff covers a wide
spectrum of practical realities such as choosing models andchoosing features.
In the context of this work, we do not believe we can meaningfully address this
without discussing, for instance, the thorny issue of feature selection. Instead we
focus on the choice of optimization algorithm.

• Finally, in order to keep this paper short, we consider that the family of functions
F is linearly parametrized by a vectorw ∈ R

d. We also assume thatx, y andw



are bounded, ensuring that there is a constant B such that0 ≤ ℓ(fw(x), y) ≤ B

andℓ(·, y) is Lipschitz.

We first explain how the uniform convergence bounds provide convergence rates that
take the optimization error into account. Then we discuss and compare the asymptotic
learning properties of several optimization algorithms.

2.1. Convergence of the Estimation and Optimization Errors

The optimization errorEopt depends directly on the optimization accuracyρ. However,
the accuracyρ involves the empirical quantityEn(f̃n)−En(fn), whereas the optimiza-
tion errorEopt involves its expected counterpartE(f̃n) − E(fn). This section discusses
the impact on the optimization errorEopt and of the optimization accuracyρ on general-
ization bounds that leverage the uniform convergence concepts pioneered by Vapnik and
Chervonenkis (e.g., [2].)

In this discussion, we use the letterc to refer to any positive constant. Multiple oc-
curences of the letterc do not necessarily imply that the constants have identical values.

2.1.1. Simple Uniform Convergence Bounds

Recall that we assume thatF is linearly parametrized byw ∈ R
d. Elementary uniform

convergence results then state that

E

»

sup
f∈F

|E(f) − En(f)|

–

≤ c

r

d

n
,

where the expectation is taken with respect to the random choice of the training set.2 This
result immediately provides a bound on the estimation error:

Eest = E
ˆ `

E(fn) − En(fn)
´

+
`
En(fn) − En(f∗

F )
´

+
`
En(f∗

F ) − E(f∗

F )
´ ˜

≤ 2 E

»

sup
f∈F

|E(f) − En(f)|

–

≤ c

r

d

n
.

This same result also provides a combined bound for the estimation and optimization
errors:

Eest + Eopt = E
ˆ
E(f̃n) − En(f̃n)

˜
+ E

ˆ
En(f̃n) − En(fn)

˜

+ E [En(fn) − En(f∗

F )] + E [En(f∗

F ) − E(f∗

F )]

≤ c

r

d

n
+ ρ + 0 + c

r

d

n
= c

 

ρ +

r

d

n

!

.

Unfortunately, this convergence rate is known to be pessimistic in many important cases.
More sophisticated bounds are required.

2Although the original Vapnik-Chervonenkis bounds have theform c

q

d
n

log n
d

, the logarithmic term can
be eliminated using the “chaining” technique (e.g., [10].)



2.1.2. Faster Rates in the Realizable Case

When the loss functionsℓ(ŷ, y) is positive, with probability1 − e−τ for any τ > 0,
relative uniform convergence bounds state that

sup
f∈F

E(f) − En(f)
p

E(f)
≤ c

r

d

n
log

n

d
+

τ

n
.

This result is very useful because it provides faster convergence ratesO(log n/n) in the
realizable case, that is whenℓ(fn(xi), yi) = 0 for all training examples(xi, yi). We
have thenEn(fn) = 0, En(f̃n) ≤ ρ, and we can write

E(f̃n) − ρ ≤ c

q

E(f̃n)

r

d

n
log

n

d
+

τ

n
.

Viewing this as a second degree polynomial inequality in variable
√

E(f̃n), we obtain

E(f̃n) ≤ c

„

ρ +
d

n
log

n

d
+

τ

n

«

.

Integrating this inequality using a standard technique (see, e.g., [13]), we obtain a better
convergence rate of the combined estimation and optimization error:

Eest + Eopt = E

h

E(f̃n) − E(f∗

F )
i

≤ E

h

E(f̃n)
i

= c

„

ρ +
d

n
log

n

d

«

.

2.1.3. Fast Rate Bounds

Many authors (e.g., [10,4,12]) obtain fast statistical estimation rates in more general
conditions. These bounds have the general form

Eapp + Eest ≤ c

(

Eapp +

(

d

n
log

n

d

)α )

for
1

2
≤ α ≤ 1 . (4)

This result holds when one can establish the following variance condition:

∀f ∈ F E

[

(

ℓ(f(X), Y ) − ℓ(f∗
F (X), Y )

)2
]

≤ c

(

E(f) − E(f∗
F )

)2− 1

α

. (5)

The convergence rate of (4) is described by the exponentα which is determined by the
quality of the variance bound (5). Works on fast statisticalestimation identify two main
ways to establish such a variance condition.

• Exploiting the strict convexity of certain loss functions [12, theorem 12]. For
instance, Lee et al. [14] establish aO(log n/n) rate using the squared loss
ℓ(ŷ, y) = (ŷ − y)2.

• Making assumptions on the data distribution. In the case of pattern recognition
problems, for instance, the “Tsybakov condition” indicates how cleanly the pos-
terior distributionsP (y|x) cross near the optimal decision boundary [11,12]. The
realizable case discussed in section 2.1.2 can be viewed as an extreme case of
this.



Despite their much greater complexity, fast rate estimation results can accomodate
the optimization accuracyρ using essentially the methods illustrated in sections 2.1.1
and 2.1.2. We then obtain a bound of the form

E = Eapp + Eest + Eopt = E

h

E(f̃n) − E(f∗)
i

≤ c

„

Eapp +

„
d

n
log

n

d

«α

+ ρ

«

. (6)

For instance, a general result withα = 1 is provided by Massart [13, theorem 4.2]. Com-
bining this result with standard bounds on the complexity ofclasses of linear functions
(e.g., [10]) yields the following result:

E = Eapp + Eest + Eopt = E

h

E(f̃n) − E(f∗)
i

≤ c

„

Eapp +
d

n
log

n

d
+ ρ

«

. (7)

See also [15,4] for more bounds taking into account the optimization accuracy.

2.2. Gradient Optimization Algorithms

We now discuss and compare the asymptotic learning properties of four gradient opti-
mization algorithms. Recall that the family of functionF is linearly parametrized by
w ∈ R

d. Let w∗
F

andwn correspond to the functionsf∗
F

andfn defined in section 1. In
this section, we assume that the functionsw 7→ ℓ(fw(x), y) are convex and twice differ-
entiable with continuous second derivatives. Convexity ensures that the empirical const
functionC(w) = En(fw) has a single minimum.

Two matrices play an important role in the analysis: the Hessian matrixH and the
gradient covariance matrixG, both measured at the empirical optimumwn.

H =
∂2C

∂w2
(wn) = En

»
∂2ℓ(fwn(x), y)

∂w2

–

, (8)

G = En

»„
∂ℓ(fwn(x), y)

∂w

«„
∂ℓ(fwn(x), y)

∂w

«′ –

. (9)

The relation between these two matrices depends on the chosen loss function. In order to
summarize them, we assume that there are constantsλmax ≥ λmin > 0 andν > 0 such
that, for anyη > 0, we can choose the number of examplesn large enough to ensure that
the following assertion is true with probability greater than1 − η :

tr(G H−1) ≤ ν and EigenSpectrum(H) ⊂ [λmin , λmax ] (10)

The condition numberκ = λmax/λmin is a good indicator of the difficulty of the opti-
mization [16].

The conditionλmin > 0 avoids complications with stochastic gradient algorithms.
Note that this condition only implies strict convexity around the optimum. For in-
stance, consider the loss functionℓ is obtained by smoothing the well known hinge loss
ℓ(z, y) = max{0, 1−yz} in a small neighborhood of its non-differentiable points. Func-
tion C(w) is then piecewise linear with smoothed edges and vertices. It is not strictly
convex. However its minimum is likely to be on a smoothed vertex with a non singular
Hessian. When we have strict convexity, the argument of [12, theorem 12] yields fast
estimation ratesα ≈ 1 in (4) and (6). This is not necessarily the case here.

The four algorithm considered in this paper use informationabout the gradient of
the cost function to iteratively update their current estimatew(t) of the parameter vector.



• Gradient Descent (GD) iterates

w(t + 1) = w(t) − η
∂C

∂w
(w(t)) = w(t) − η

1

n

n
∑

i=1

∂

∂w
ℓ
(

fw(t)(xi), yi

)

whereη > 0 is a small enough gain. GD is an algorithm with linear conver-
gence [16]. Whenη = 1/λmax, this algorithm requiresO(κ log(1/ρ)) iterations
to reach accuracyρ. The exact number of iterations depends on the choice of the
initial parameter vector.

• Second Order Gradient Descent (2GD) iterates

w(t + 1) = w(t) − H−1 ∂C

∂w
(w(t)) = w(t) −

1

n
H−1

n
∑

i=1

∂

∂w
ℓ
(

fw(t)(xi), yi

)

where matrixH−1 is the inverse of the Hessian matrix (8). This is more favorable
than Newton’s algorithm because we do not evaluate the localHessian at each
iteration but simply assume that we know in advance the Hessian at the optimum.
2GD is a superlinear optimization algorithm with quadraticconvergence [16].
When the cost is quadratic, a single iteration is sufficient. In the general case,
O(log log(1/ρ)) iterations are required to reach accuracyρ.

• Stochastic Gradient Descent (SGD) picks a random training example(xt, yt) at
each iteration and updates the parameterw on the basis of this example only,

w(t + 1) = w(t) −
η

t

∂

∂w
ℓ
(

fw(t)(xt), yt

)

.

Murata [17, section 2.2], characterizes the meanES [w(t)] and varianceVarS [w(t)]
with respect to the distribution implied by the random examples drawn from the
training setS at each iteration. Applying this result to the discrete training set dis-
tribution forη = 1/λmin, we haveδw(t)2 = O(1/t) whereδw(t) is a shorthand
notation forw(t) − wn.
We can then write

ES [ C(w(t)) − inf C ] = ES

ˆ
tr
`
H δw(t) δw(t)′

´˜
+ o
`

1
t

´

= tr
`
H ES [δw(t)] ES [δw(t)]′ + H VarS [w(t)]

´
+ o
`

1
t

´

≤ tr(GH)
t

+ o
`

1
t

´
≤ νκ2

t
+ o
`

1
t

´
.

(11)
Therefore the SGD algorithm reaches accuracyρ after less thanνκ2/ρ + o(1/ρ)
iterations on average. The SGD convergence is essentially limited by the stochas-
tic noise induced by the random choice of one example at each iteration. Neither
the initial value of the parameter vectorw nor the total number of examplesn
appear in the dominant term of this bound! When the training set is large, one
could reach the desired accuracyρ measured on the whole training set without
even visiting all the training examples. This is in fact a kind of generalization
bound.



Table 2. Asymptotic results for gradient algorithms (with probability 1). Compare the second last column
(time to optimize) with the last column (time to reach the excess test errorǫ).
Legend: n number of examples;d parameter dimension;κ, ν see equation (10).

Algorithm Cost of one Iterations Time to reach Time to reach

iteration to reach ρ accuracy ρ E ≤ c (Eapp + ε)

GD O(nd) O
“

κ log 1
ρ

”

O
“

ndκ log 1
ρ

”

O
“

d2 κ

ε1/α log2 1
ε

”

2GD O
`

d2 + nd
´

O
“

log log 1
ρ

”

O
“

`

d2 + nd
´

log log 1
ρ

”

O
“

d2

ε1/α log 1
ε

log log 1
ε

”

SGD O(d) νκ2

ρ
+ o

“

1
ρ

”

O
“

dνκ2

ρ

”

O
“

d ν κ2

ε

”

The first three columns of table 2 report for each algorithm the time for a single
iteration, the number of iterations needed to reach a predefined accuracyρ, and their
product, the time needed to reach accuracyρ. These asymptotic results are valid with
probability1, since the probability of their complement is smaller thanη for anyη > 0.

The fourth column bounds the time necessary to reduce the excess errorE below
c (Eapp + ε) wherec is the constant from (6). This is computed by observing that choos-
ing ρ ∼

`
d
n

log n
d

´α in (6) achieves the fastest rate forε, with minimal computation time.
We can then use the asymptotic equivalencesρ ∼ ε andn ∼ d

ε1/α log 1
ε

. Setting the fourth
column expressions toTmax and solving forǫ yields thebest excess error achieved by
each algorithmwithin the limited timeTmax . This provides the asymptotic solution of
the Estimation–Optimization tradeoff (3) for large scale problems satisfying our assump-
tions.

These results clearly show that the generalization performance oflarge-scale learn-
ing systemsdepends on both the statistical properties of the estimation procedure and the
computational properties of the chosen optimization algorithm. Their combination leads
to surprising consequences:

• The SGD result does not depend on the estimation rateα. When the estimation
rate is poor, there is less need to optimize accurately. Thatleaves time to process
more examples. A potentially more useful interpretation leverages the fact that
(11) is already a kind of generalization bound: its fast ratetrumps the slower rate
assumed for the estimation error.

• Superlinear optimization brings little asymptotical improvements inε. Although
the superlinear 2GD algorithm improves the logarithmic term, the learning perfor-
mance of all these algorithms is dominated by the polynomialterm in(1/ε). This
explains why improving the constantsd, κ andν using preconditioning methods
and sensible software engineering often proves more effective than switching to
more sophisticated optimization techniques [18].

• The SGD algorithm yields the best generalization performance despite being the
worst optimization algorithm. This had been described before [19] in the case of
a second order stochastic gradient descent and observed in experiments.

In contrast, since the optimization errorEopt of small-scale learning systemscan be
reduced to insignificant levels, their generalization performance is solely determined by
the statistical properties of their estimation procedure.



Table 3. Results with linear SVM on the RCV1 dataset.

Model Algorithm Training Time Objective Test Error

Hinge loss,λ = 10−4

See [21,22].

SVMLight 23,642 secs 0.2275 6.02%

SVMPerf 66 secs 0.2278 6.03%

SGD 1.4 secs 0.2275 6.02%

Logistic loss,λ = 10−5

See [23].

LibLinear (ρ = 10−2) 30 secs 0.18907 5.68%

LibLinear (ρ = 10−3) 44 secs 0.18890 5.70%

SGD 2.3 secs 0.18893 5.66%

50

100

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost) 

LibLinear

SGD

0.25 Testing loss

0.20

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 10 100 1000

Testing loss

1

n=30000
n=100000

n=300000
n=781265n=10000

Training time (secs)

SGD

CONJUGATE GRADIENTS

Figure 1. Training time and testing loss as a
function of the optimization accuracyρ for SGD
and LibLinear [23].

Figure 2. Testing loss versus training time for
SGD, and for Conjugate Gradients running on
subsets of the training set.

3. Experiments

This section empirically compares the SGD algorithm with other optimization algorithms
on a well-known text categorization task, the classification of documents belonging to
theCCAT category in the RCV1-v2 dataset [20]. Refer tohttp://leon.bottou.org/

projects/sgd for source code and for additional experiments that could not fit in this
paper because of space constraints.

In order to collect a large training set, we swap the RCV1-v2 official training and
test sets. The resulting training sets and testing sets contain 781,265 and 23,149 examples
respectively. The 47,152 TF/IDF features were recomputed on the basis of this new split.
We use a simple linear model with the usual hinge loss SVM objective function

min
w

C(w, b) =
λ

2
+

1

n

n
∑

i=1

ℓ(yt(wxt + b)) with ℓ(z) = max{0, 1 − z} .

The first two rows of table 3 replicate earlier results [21] reported for the same data and
the same value of the hyper-parameterλ.

The third row of table 3 reports results obtained with the SGDalgorithm

wt+1 = wt − ηt

(

λw +
∂ℓ(yt(wxt + b))

∂w

)

with ηt =
1

λ(t + t0)
.

The biasb is updated similarly. Sinceλ is a lower bound of the smallest eigenvalue of
the hessian, our choice of gainsηt approximates the optimal schedule (see section 2.2 ).



The offsett0 was chosen to ensure that the initial gain is comparable withthe expected
size of the parameterw. The results clearly indicate that SGD offers a good alternative to
the usual SVM solvers. Comparable results were obtained in [22] using an algorithm that
essentially amounts to a stochastic gradient corrected by aprojection step. Our results
indicates that the projection step is not an essential component of this performance.

Table 3 also reports results obtained with the logistic lossℓ(z) = log(1 + e−z) in
order to avoid the issues related to the nondifferentiability of the hinge loss. Note that this
experiment uses a much better value forλ. Our comparison points were obtained with a
state-of-the-art superlinear optimizer [23], for two values of the optimization accuracyρ.
Yet the very simple SGD algorithm learns faster.

Figure 1 shows how much time each algorithm takes to reach a given optimization
accuracy. The superlinear algorithm reaches the optimum with 10 digits of accuracy
in less than one minute. The stochastic gradient starts morequickly but is unable to
deliver such a high accuracy. However the upper part of the figure clearly shows that the
testing set loss stops decreasing long before the moment where the superlinear algorithm
overcomes the stochastic gradient.

Figure 2 shows how the testing loss evolves with the trainingtime. The stochastic
gradient descent curve can be compared with the curves obtained using conjugate gra-
dients3 on subsets of the training examples with increasing sizes. Assume for instance
that our computing time budget is 1 second. Running the conjugate gradient algorithm
on a random subset of 30000 training examples achieves a muchbetter performance than
running it on the whole training set. How to guess the right subset size a priori remains
unclear. Meanwhile running the SGD algorithm on the full training set reaches the same
testing set performance much faster.

4. Conclusion

Taking in account budget constraints on both the number of examples and the compu-
tation time, we findqualitative differencesbetween the generalization performance of
small-scale learning systems and large-scale learning systems. The generalization prop-
erties of large-scale learning systems depend on both the statistical properties of the es-
timation procedure and the computational properties of theoptimization algorithm. We
illustrate this fact by deriving asymptotic results on gradient algorithms supported by an
experimental validation.

Considerable refinements of this framework can be expected.Extending the analysis
to regularized risk formulations would make results on the complexity of primal and
dual optimization algorithms [21,24] directly exploitable. The choice of surrogate loss
function [7,12] could also have a non-trivial impact in the large-scale case.

Acknowledgments

Part of this work was funded by NSF grant CCR-0325463.

3This experimental setup was suggested by Olivier Chapelle (personal communication). His specialized
variant of the conjugate gradients algorithm works nicely in this context because it converges superlinearly
with very limited overhead.



References

[1] Leslie G. Valiant. A theory of learnable.Proc. of the 1984 STOC, pages 436–445, 1984.
[2] Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer Series in Statistics.

Springer-Verlag, Berlin, 1982.
[3] Stéphane Boucheron, Olivier Bousquet, and Gábor Lugosi. Theory of classification: a survey of recent

advances.ESAIM: Probability and Statistics, 9:323–375, 2005.
[4] Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probability Theory and Related

Fields, 135(3):311–334, 2006.
[5] J. Stephen Judd. On the complexity of loading shallow neural networks. Journal of Complexity,

4(3):177–192, 1988.
[6] Richard O. Duda and Peter E. Hart.Pattern Classification And Scene Analysis. Wiley and Son, 1973.
[7] Tong Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-

mization.The Annals of Statistics, 32:56–85, 2004.
[8] Clint Scovel and Ingo Steinwart. Fast rates for support vector machines. In Peter Auer and Ron Meir,

editors,Proceedings of the 18th Conference on Learning Theory (COLT2005), volume 3559 ofLecture
Notes in Computer Science, pages 279–294, Bertinoro, Italy, June 2005. Springer-Verlag.

[9] Vladimir N. Vapnik, Esther Levin, and Yann LeCun. Measuring the VC-dimension of a learning ma-
chine.Neural Computation, 6(5):851–876, 1994.

[10] Olivier Bousquet.Concentration Inequalities and Empirical Processes Theory Applied to the Analysis
of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

[11] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning.Annals of Statististics,
32(1), 2004.

[12] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification and risk bounds.
Journal of the American Statistical Association, 101(473):138–156, March 2006.

[13] Pascal Massart. Some applications of concentration inequalities to statistics.Annales de la Faculté des
Sciences de Toulouse, series 6, 9(2):245–303, 2000.

[14] Wee S. Lee, Peter L. Bartlett, and Robert C. Williamson. The importance of convexity in learning with
squared loss.IEEE Transactions on Information Theory, 44(5):1974–1980, 1998.

[15] Shahar Mendelson. A few notes on statistical learning theory. In Shahar Mendelson and Alexander J.
Smola, editors,Advanced Lectures in Machine Learning, volume 2600 ofLecture Notes in Computer
Science, pages 1–40. Springer-Verlag, Berlin, 2003.

[16] John E. Dennis, Jr. and Robert B. Schnabel.Numerical Methods For Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983.

[17] Noboru Murata. A statistical study of on-line learning. In David Saad, editor,Online Learning and
Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

[18] Yann Le Cun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient backprop. InNeural
Networks, Tricks of the Trade, Lecture Notes in Computer Science LNCS 1524. Springer Verlag, 1998.

[19] Léon Bottou and Yann Le Cun. Large scale online learning. In Sebastian Thrun, Lawrence K. Saul,
and Bernhard Schölkopf, editors,Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

[20] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection for text
categorization research.Journal of Machine Learning Research, 5:361–397, 2004.

[21] Thorsten Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
International Conference, Philadelphia, PA, August 2006. ACM Press.

[22] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro.Pegasos: Primal estimated subgradient solver
for SVM. In Zoubin Ghahramani, editor,Proceedings of the 24th International Machine Learning
Conference, pages 807–814, Corvallis, OR, June 2007. ACM.

[23] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region newton methods for large-scale logis-
tic regression. In Zoubin Ghahramani, editor,Proceedings of the 24th International Machine Learning
Conference, pages 561–568, Corvallis, OR, June 2007. ACM.

[24] Don Hush, Patrick Kelly, Clint Scovel, and Ingo Steinwart. QP algorithms with guaranteed accuracy
and run time for support vector machines.Journal of Machine Learning Research, 7:733–769, 2006.


