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Abstract. This contribution presents an overview of the theoretical and
practical aspects of the broad family of learning algorithms based on
Stochastic Gradient Descent, including Perceptrons, Adalines, K-Means,
LVQ, Multi-Layer Networks, and Graph Transformer Networks.

1 Introduction

This contribution reviews some material presented during the “Stochastic Learn-
ing” lecture given at the 2003 Machine Learning Summer School in Tübingen. It
defines a broad family of learning algorithms that can be formalized as stochas-
tic gradient descent algorithms and describes their common properties. This in-
cludes numerous well known algorithms such as Perceptrons, Adalines, K-Means,
LVQ, and Multi-Layer Networks.

Stochastic learning algorithms are also effective for training large systems
with rich structure, such as Graph Transformer Networks [8, 24]. Such large
scale systems have been designed and industrially deployed with considerable
success.

– Section 2 presents the basic framework and illustrates it with a number of
well known learning algorithms.

– Section 3 presents the basic mathematical tools for establishing the conver-
gence of stochastic learning algorithms.

– Section 4 discusses the learning speed of stochastic learning algorithms ap-
plied to large datasets. This discussion covers both statistical efficiency and
computational requirements.

These concepts were previously discussed in [9, 10, 14, 12]. Readers interested
by the practice of stochastic gradient algorithms should also read [25] and inves-
tigate applied contributions such as [39, 37, 46, 6, 24, 26].

2 Foundations

Almost all of the early work on Learning Systems focused on online algorithms
[18, 34, 44, 2, 19]. In these early days, the algorithmic simplicity of online algo-
rithms was a requirement. This is still the case when it comes to handling large,
real-life training sets [23, 30, 25, 26].
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The early Recursive Adaptive Algorithms were introduced during the same
years [33] and very often by the same people [45]. First developed in the engi-
neering world, recursive adaptation algorithms have turned into a mathematical
discipline, namely Stochastic Approximations [22, 27, 7].

2.1 Expected Risk Function

In [40, 41], the goal of a learning system consists of finding the minimum of a
function C(w) named the expected risk function1. This function is decomposed
as follows:

C(w)
4
= Ez Q(z, w)

4
=

∫

Q(z, w) dP (z) (1)

The minimization variable w is meant to represent the part of the learning
system which must be adapted as a response to observing events z occurring
in the real world. The loss function Q(z, w) measures the performance of the
learning system with parameter w under the circumstances described by event z.
Common mathematical practice suggests to represent both w and z by elements
of adequately chosen spaces W and Z.

2.2 Gradient Based Learning

The expected risk function (1) cannot be minimized directly because the grand
truth distribution is unknown. It is however possible to compute an approxima-
tion of C(w) by simply using a finite training set of independent observations
z1, . . . , zL.

C(w) ≈ ĈL(w)
4
=

1

L

L
∑

n=1

Q(zn, w) (2)

General theorems [42] show that minimizing the empirical risk ĈL(w) can pro-
vide a good estimate of the minimum of the expected risk C(w) when the training
set is large enough. This line of work has provided a way to understand the gen-
eralization phenomenon, i.e. the ability of a system to learn from a finite training
set and yet provide results that are valid in general.

Batch Gradient Descent. Minimizing the empirical risk ĈL(w) can be achieved
using a batch gradient descent algorithm. Successive estimates wt of the optimal
parameter are computed using the following formula

wt+1 = wt − γt∇w ĈL(wt) = wt − γt

1

L

L
∑

i=1

∇w Q(zn, wt) (3)

1 The origin of this statistical framework is unclear. It has been popularized by Vap-
nik’s work [42] but was already discussed in Tsypkin’s work [40] or even [16]. Vapnik
told me that “someone wrote this on the blackboard during a seminar”; he does not
remember who did.



Stochastic Learning 155

where the learning rate γt is a positive number.
The properties of this optimization algorithm are well known: When the

learning rate γt are small enough2, the algorithm converges towards a local min-
imum of the empirical risk ĈL(w). Each iteration of the batch gradient descent
algorithm however involves a burdening computation of the average of the gra-
dients of the loss function ∇w Q(zn, w) over the entire training set. Significant
computer resources must be allocated in order to store a large enough training
set and compute this average.

Online Gradient Descent. The elementary online gradient descent algorithm
is obtained by dropping the averaging operation in the batch gradient descent
algorithm (3). Instead of averaging the gradient of the loss over the complete
training set, each iteration of the online gradient descent consists of choosing an
example zt at random, and updating the parameter wt according to the following
formula.

wt+1 = wt − γt∇w Q(zt, wt) (4)

Averaging this update over all possible choices of the training example zt would
restore the batch gradient descent algorithm. The online gradient descent sim-
plification relies on the hope that the random noise introduced by this procedure
will not perturbate the average behavior of the algorithm. Significant empirical
evidence substantiate this hope.

delay
wt

wt+1

tz
World −γ∆

Q

Fig. 1. : Online Gradient Descent. The parameters of the learning system are updated
using information extracted from real world observations.

Many variants of (4) have been defined. Parts of this contribution discuss two
significant variants: Section 2.4 replaces the gradient ∇w Q(z, w) by a general
term U(z, w) satisfying Ez U(z, w) = ∇w C(w). Section 4 replaces the learning
rates γt by positive symmetric matrices (equation (27).)

Online gradient descent can also be described without reference to a training
set. Instead of drawing examples from a training set, we can directly use the
events zt observed in the real world, as shown in Figure 1. This formulation

2 Convergence occurs for constant learning rates, smaller than a critical learning rate
related to the maximal curvature of the cost function. See [25] for instance.
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is particularly adequate for describing adaptive algorithms that simultaneously
process an observation and learn to perform better. Such adaptive algorithms
are very useful for tracking a phenomenon that evolves in time.

Formulating online gradient descent without reference to a training set also
presents a theoretical interest. Each iteration of the algorithm uses an example
zt drawn from the grand truth distribution instead of a finite training set. The
average update therefore is a gradient descent algorithm which directly opti-
mizes the expected risk. This shortcuts the usual discussion about differences
between optimizing the empirical risk and the expected risk [42, 43]. Proving
the convergence of an online algorithm towards the minimum of the expected
risk provides an alternative to the Vapnik proofs of the consistency of learning
algorithms. Non-asymptotic bounds for online algorithms are rare.

2.3 Examples: Online Least Mean Squares

World

w’.x
x

y(x)^

y

γ

Fig. 2. : Widrow’s Adaline. The adaline computes a binary indicator by thresholding
a linear combination of its input. Learning is achieved using the delta rule.

Widrow’s Adaline. The Adaline [44] is one of the few learning systems de-
signed at the very beginning of the computer age. Online gradient descent was
then a very attractive proposition requiring little hardware. The adaline could fit
in a refrigerator sized cabinet containing a forest of potentiometers and electrical
motors.

The Adaline (Figure 2) learning algorithm adapts the parameters of a sin-
gle threshold unit. Input patterns x are recognized as class y = +1 or y = −1
according to the sign of w′x + β. It is practical to consider an augmented in-
put pattern x containing an extra constant coefficient equal to 1. The bias β
then is represented as an extra coefficient in the parameter vector w. With this
convention, the output of the threshold unit can be written as

ŷw(x)
4
= sign(w′x) = sign

∑

i

wixi (5)

During training, the Adaline is provided with pairs z = (x, y) representing input
patterns and desired output for the Adaline. The parameter w is adjusted after
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using the delta rule (the “prime” denotes transposed vectors):

wt+1 = wt − γt(yt − w′

txt)
′xt (6)

This delta rule is nothing more than an iteration of the online gradient descent
algorithm (4) with the following loss function:

Qadaline(z, w)
4
= (y − w′x)

2
(7)

This loss function does not take the discontinuity of the threshold unit (5) into ac-
count. This linear approximation is a real breakthrough over the apparently more
natural loss function (y− ŷw(x))2. This discontinuous loss function is difficult to
minimize because its gradient is zero almost everywhere. Furthermore, all solu-
tions achieving the same misclassification rate would have the same cost C(w),
regardless of the margins separating the examples from the decision boundary
implemented by the threshold unit.

Multi-Layer Networks. Multi-Layer Networks were initially designed to over-
come the computational limitation of the threshold units [29]. Arbitrary binary
mappings can be implemented by stacking several layers of threshold units, each
layer using the outputs of the previous layers as inputs. The Adaline linear
approximation could not be used in this framework, because ignoring the dis-
continuities would make the entire system linear regardless of the number of
layers. The key of a learning algorithm for multi-layer networks [35] consisted of
noticing that the discontinuity of the threshold unit could be represented by a
smooth non-linear approximation.

sign(w′x) ≈ tanh(w′x) (8)

Using such sigmoid units does not reduce the computational capabilities of a
multi-layer network, because the approximation of a step function by a sigmoid
can be made arbitrarily good by scaling the coefficients of the parameter vector
w.

A multi-layer network of sigmoidal units implements a differentiable function
f(x, w) of the input pattern x and the parameters w. Given an input pattern x
and the desired network output y, the back-propagation algorithm, [35] provides
an efficient way to compute the gradients of the mean square loss function.

Qmse(z, w) =
1

2
(y − f(x, w))

2
(9)

Both the batch gradient descent (3) and the online gradient descent (4) have been
used with considerable success. On large, redundant data sets, the online version
converges much faster then the batch version, sometimes by orders of magnitude
[30]. An intuitive explanation can be found in the following extreme example.
Consider a training set composed of two copies of the same subset. The batch
algorithm (3) averages the gradient of the loss function over the whole training
set, causing redundant computations. On the other hand, running online gradient
descent (4) on all examples of the training set would amount to performing two
complete learning iterations over the duplicated subset.
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2.4 Examples: Non Differentiable Loss Functions

Many interesting examples involve a loss function Q(z, w) which is not differen-
tiable on a subset of points with probability zero. Intuition suggests that this is
a minor problems because the iterations of the online gradient descent have zero
probability to reach one of these points. Even if we reach one of these points, we
can just draw another example z.

This can be formalized as replacing the gradient ∇wQ(z, w) in equation (4)
by an update term U(z, w) defined as follows:

U(z, w) =

{

∇wQ(z, w) when differentiable
0 otherwise

(10)

The convergence study (Section 3) shows that this works if the expectation of
the update term U(z, w) is equal to gradient of the cost C(w):

EzU(z, w)
?
= ∇wC(w)

∫

∇wQ(z, w) dP (z)
?
= ∇w

∫

Q(z, w) dP (z) (11)

The Lebesgue integration theory provides a sufficient condition for swapping the
integration (

∫

) and differentiation (∇w) operators as in (11). For each parameter
value w reached by the online algorithm, it is sufficient to find an integrable
function Φ(z, w) and a neighborhood ϑ(w) of w such that:

∀z, ∀ v∈ ϑ(w), |Q(z, v) − Q(z, w)| ≤ |w − v|Φ(z, w) (12)

This condition (12) tests that the maximal slope of the loss function Q(z, w) is
conveniently bounded. This is obviously true when the loss function Q(z, w) is
differentiable and has an integrable gradient. This is obviously false when the
loss function is not continuous. Given our previous assumption concerning the
zero probability of the non differentiable points, condition (12) is a sufficient
condition for safely ignoring a few non differentiable points.

Rosenblatt’s Perceptron. During the early days of the computer age, the
Perceptron [34] generated considerable interest as a possible architecture for
general purpose computers. This interest faded after the disclosure of its com-
putational limitations [29]. Figure 3 represents the perceptron architecture. An
associative area produces a feature vector x by applying predefined transforma-
tions to the retina input. The feature vector is then processed by a threshold
unit (cd. Adaline).

The perceptron learning algorithm adapts the parameters w of the threshold
unit. Whenever a misclassification occurs, the parameters are updated according
to the perceptron rule.

wt+1 = wt + 2γtyt xt (13)
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Treshold element

Fig. 3. : Rosenblatt’s Perceptron is composed of a fixed preprocessing and of a trainable
threshold unit.

This learning rule can be derived as an online gradient descent applied to the
following loss function:

Qperceptron(z, w) = (sign(w′x) − y)w′x (14)

Although this loss function is non differentiable when w′x is null, is meets con-
dition (12) as soon as the expectation E(x) is defined. We can therefore ignore
the non differentiability and apply the online gradient descent algorithm:

wt+1 = wt − γt(sign(w′

txt) − yt)xt (15)

Since the desired class is either +1 or −1, the weights are not modified when
the pattern x is correctly classified. Therefore this parameter update (15) is
equivalent to the perceptron rule (13).

The perceptron loss function (14) is zero when the pattern x is correctly
recognized as a member of class y = ±1. Otherwise its value is positive and
proportional to the dot product w′x. The corresponding cost function reaches
its minimal value zero when all examples are properly recognized or when the
weight vector w is null.

Such hinge loss functions [17, 36] have recently drawn much interest because
of their links with the Support Vector Machines and the AdaBoost algorithm.

K-Means. The K-Means algorithm [28] is a popular clustering method which
dispatches K centroids w(k) in order to find clusters in a set of points x1, . . . , xL.
This algorithm can be derived by performing the online gradient descent with
the following loss function.

Qkmeans(x, w)
4
=

K

min
k=1

(x − w(k))2 (16)

This loss function measures the quantification error, that is to say the error on the
position of point x when we replace it by the closest centroid. The corresponding
cost function measures the average quantification error.
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W(1)
W(2)

W(3)

Fig. 4. : K-Means dispatches a predefined number of cluster centroids in a way that
minimizes the quantification error.

This loss function is not differentiable on points located on the Voronöı
boundaries of the set of centroids, but meets condition (12) as soon as the ex-
pectations E(x) and E(x2) are defined. On the remaining points, the derivative
of the loss is the derivative of the distance to the nearest centroid w−. We can
therefore ignore the non-differentiable points and apply the online gradient de-
scent algorithm.

w−

t+1 = w−

t + γt(xt − w−

t ) (17)

This formula describes an elementary iteration of the K-Means algorithm. A
very efficient choice of learning rates γt will be suggested in Section 4.6.

Decision
boundary

Class 1 centroids

Class 2 centroids

Fig. 5. : Kohonen’s LVQ2 pattern recognition scheme outputs the class associated with
the closest reference point to the input pattern.

Learning Vector Quantization 2. Kohonen’s Learning Vector Quantization
2 (LVQ2) rule [20] is a powerful pattern recognition algorithm. Like K-Means,
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it uses a fixed set of reference points w(k). A class y(k) is associated with each
reference point. As shown in Figure 5, an unknown pattern x is then recognized
as a member of the class associated with the nearest reference point.

Given a training pattern x, let us denote w− the nearest reference point and
denote w+ the nearest reference point among those associated with the correct
class y. Adaptation only occurs when the closest reference point w− is associated
with an incorrect class while the closest correct reference point w+ is not too far
away:

if

{

x is misclassified (w− 6= w+)

and (x − w+)2 < (1 + δ)(x − w−)2

then

{

w−

t+1 = w−

t − εt(x − w−

t )
w+

t+1 = w+
t + εt(x − w+

t )

(18)

Reference points are only updated when the pattern x is misclassified. Further-
more, the distance to the closest correct reference point w+ must not exceed the
distance to the closest (incorrect) reference point w− by more than a percentage
defined by parameter δ. When both conditions are met, the algorithm pushes
the closest (incorrect) reference point w− away from the pattern x, and pulls
the closest correct reference point w+ towards the pattern x.

This intuitive algorithm can be derived by performing an online gradient
descent with the following loss function:

Qlvq2(z, w)
4
=











0 if x is well classified (w+ = w−)

1 if (x − w+)2 ≥ (1 + δ)(x − w−)2

(x−w
+)2−(x−w

−)2

δ(x−w−)2 otherwise

(19)

This function is a continuous approximation to a binary variable indicating
whether pattern x is misclassified. The corresponding cost function therefore
is a continuous approximation of the system misclassification rate [9]. This anal-
ysis helps understanding how the LVQ2 algorithm works.

Although the above loss function is not differentiable for some values of w, it
meets condition (12) as soon as the expectations E(x) and E(x2) are defined. We
can therefore ignore the non-differentiable points and apply the online gradient
descent algorithm:

if

{

x is misclassified (w− 6= w+)

and (x − w+)2 < (1 + δ)(x − w−)2

then

{

w−

t+1 = w−

t − γtk1(x − w−

t )
w+

t+1 = w+
t + γtk2(x − w+

t )

(20)

with k2 =
1

δ(x − w−)2
and k1 = k2

(x − w+)2

(x − w−)2
(21)

This online gradient descent algorithm (20) is similar to the usual LVQ2 learning
algorithm (18). The difference between the two scalar coefficients k1 and k2 can
be viewed as a minor variation on the learning rates.
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3 Convergence

Given a suitable choice of the learning rates γt, the batch gradient descent al-
gorithm (3) is known to converge to a local minimum of the cost function. This
local minimum is a function of the initial parameters w0. The parameter trajec-
tory follows the meanders of the local attraction basin and eventually reaches
the corresponding minimum.

The random noise introduced by stochastic gradient descent (4) disrupts this
deterministic picture. The parameter trajectory can jump from basin to basin.
One usually distinguish a search phase that explores the parameter space and a
final phase that takes place in the vicinity of a minimum.

– The final phase takes place in the vicinity of a single local minimum w∗ where
the cost function is essentially convex. This is discussed in Section 3.1.

– Our understanding of the search phase is still very spotty. Section 3.2 presents
sufficient conditions to guarantee that the convergence process will eventu-
ally reach the final phase.

3.1 Final convergence phase

The following discussion rely on the general convexity assumption3. Everywhere
in the parameter space, the opposite of the gradient must point toward a unique
minimum w∗.

∀ε > 0, inf
(w−w∗)2>ε

(w − w∗) ∇wC(w) > 0 (22)

Such a strong assumption is only valid for a few simple learning algorithms such
as the Adaline, Section 2.3). Nevertheless these results are useful for understand-
ing the final convergence phase. The assumption usually holds within the final
convergence region because the cost function is locally convex.

The parameter updates γt∇wQ(z, w) must become smaller and smaller when
the parameter vector w approaches the optimum w∗. This implies that either
the gradients or the learning rates must vanish in the vicinity of the optimum.

More specifically one can write:

Ez

[

∇wQ(z, w)2
]

= Ez

[

(∇wQ(z, w) −∇wC(w))
2
]

+ ‖∇wC(w)‖2

The first term is the variance of the stochastic gradient. It is reasonable to
assume that it does not grow faster than the norm of the real gradient itself. In
the vicinity of w∗ we can write:

‖∇wC(w)‖2
= ‖∇wC(w) −∇wC(w∗)‖2 ≤ 1

2
‖∇∇wC(w∗)‖2 ‖w − w∗‖2

3 The optimization literature often defines such extended notions of convexity. Small
details are important. For instance, in (22), one cannot simply replace the infimum
by ∀w 6= w∗. Consider function C(w) = 1 − exp(−||w||2) as a counter-example.
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It is therefore reasonable to assume that ||∇wC(w)||2 behaves quadratically
within the final convergence region. Both assumptions are conveniently expressed
as follows:

Ez

[

∇wQ(z, w)2
]

< A + B (w − w∗)
2

with A ≥ 0, B ≥ 0 (23)

The constant A must be greater than the residual variance Ez

[

∇wQ(z, w∗)2
]

of the gradients at the optimum. This residual variance can be zero for certain
rare noiseless problems where w∗ simultaneously optimizes the loss for every
examples. It is strictly positive in most practical cases. The average norm of
the gradients then does not vanish when the parameter vector w approaches the
optimum. Therefore one must use decreasing learning rates, e.g.:

∑

γ2
t < ∞ (24)

The presence of constant A in (23) marks a critical difference between stochastic
and ordinary gradient descent. There is no such constant in the case of the
ordinary gradient descent. A simple analysis then yields an expression for the
maximal constant learning rate [25]. In the stochastic gradient case, this analysis
suggests that the parameter vector eventually hovers around the minimum w∗

at a distance roughly proportional to γt. Quickly decreasing the learning rate
is therefore tempting. Suppose however that the learning rates decrease so fast
that

∑

γt = R < ∞. This would effectively maintain the parameters within
a certain radius of their initial value. It is therefore necessary to enforce the
following condition:

∑

γt = ∞ (25)

Convex convergence theorem. The general convexity (22) and the three
conditions (23), (24) and (25) are sufficient conditions for the almost sure con-
vergence of the stochastic gradient descent (4) to the optimum w∗.

The following discussion provides a sketch of the proof. This proof is simply
an extension of the convergence proofs for the continuous gradient descent and
the discrete gradient descent.

The continuous gradient descent proof studies the convergence of the function
w(t) defined by the following differential equation:

dw

dt
= −∇wC(w)

This proof follows three steps:

A) Definition of a Lyapunov function — A Lyapunov function is a function
whose convergence to zero implies the convergence of w(t) to w∗ when t grows
to the infinity. For the continuous gradient we simply use h(t) = (w −w∗)2.

B) Convergence of the Lyapunov function — Using (22), it is easy to see that
dh/dt = 2(w − w∗)∇wC(w) ≤ 0. Function h(t) converges because it is both
positive and decreasing.
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C) The limit of the Lyapunov function must be zero. We know that dh/dt → 0
because h(t) converges. Assumption (22) then implies that (w − w∗)2 → 0.

The convergence proofs for both the discrete (3) and stochastic (4) gradient
descents follow the same three steps. Each step requires increasingly sophisti-
cated mathematical tools summarized in the following table.

Continuous Discrete Stochastic

Step A

Define Lyapunov
criterion.

Function
h(t) = (w(t) − w

∗)2
Sequence

ht = (wt − w
∗)2

Random Process
ht = (wt − w

∗)2

Step B

Lyapunov criterion
converges.

Decreasing positive
function

Positive sequence
with bounded

positive increments

Positive
quasi-martingales

Step C

Lyapunov criterion
converges to zero.

General Convexity

Full details can be found in [9, 10].

3.2 Search phase

This section discusses the convergence of the stochastic gradient algorithm (4)
without the general convexity assumption (22). Since the cost function C(w)
can have several local minima, this discussion encompasses the search phase.
Although our understanding of the search phase is still very incomplete, empir-
ical and theoretical evidence indicate that stochastic gradient algorithms enjoy
significant advantages over batch algorithms. Stochastic gradient descent benefit
from the redundancies of the training set. Consider the extreme case where a
training set of size 1000 is inadvertently composed of 10 identical copies of a
set with 100 samples. Averaging the gradient over all 1000 patterns gives the
exact same result as computing the gradient based on just the first 100. Batch
gradient descent is wasteful because it re-computes the same quantity 10 times
before one parameter update. On the other hand, stochastic gradient will see a
full epoch as 10 iterations through a 100-long training set.

In the case of the continuous and discrete gradient descent, it is usually
sufficient to partition the parameter space into several attraction basins, discuss
the conditions under which the algorithm confines the parameters wt in a single
attraction basin, define a suitable Lyapunov criterion [21], and proceed as in the
convex case. This approach does not work well with stochastic gradient because
the parameter trajectory can always jump from basin to basin.

Let us instead assume that the cost function becomes large when one wanders
far from the origin. The global landscape then looks like a single large attraction
basin. The local minima structure only shows when one gives a closer look to in
the vicinity of the apparent minimum.
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This situation can be expressed by the following assumptions:

i.) inf C(w) > −∞
ii.) ∃D > 0, inf

w2>D
w ∇wC(w) > 0

iii.) Ez(∇wQ(z, w))2 ≤ A + Bw2

iv.) ∃E > D, ∀z, sup
w2<E

||∇wQ(z, w)|| ≤ Constant

Assumption (i) indicates that the cost is bounded from below. Assumption (ii)
indicates that the gradient far away from the origin always drives us back towards
the origin. Assumptions (iii) and (iv) limit the variance of the stochastic gradient
and the asymptotic growth of the real gradients4.

Global confinement theorem: The four assumptions (i) to (iv) above, and
the two learning rate assumptions (24) and (25) guarantee that the parameter wt

defined by the stochastic gradient update (4) will almost surely remain confined
within distance

√
E of the origin.

This global confinement result [10] is obtained using the same proof tech-
nique as in the convex case. The Lyapunov criterion is simply defined as ht =
max(E, w2

t ).
Global confinement shows that wt evolves in a compact domain where nothing

dramatic can happen. In fact, it even implies that the stochastic gradient descent
will soon or later reach the final convergence phase. This is formalized by the
following result:

Gradient convergence theorem. The four assumptions (i) to (iv) above,
and the two learning rate assumptions (24) and (25) guarantee that the gradients
∇wC(wt) converges almost surely to zero.

The proof of this final convergence result [10] again is very similar to the
convergence proofs for the convex case with suitable choices for the Lyapunov
criterion. The details of the proof extensively rely on the global confinement
result.

4 Convergence speed and learning speed

The main purpose of this section is to illustrate a critical difference between op-
timization algorithms and learning algorithm. It will then appear that stochastic
gradient descent is simultaneously a very poor optimization algorithm and a very
effective learning algorithm.

4.1 Convergence speed for batch gradient descent

Simple batch gradient descent enjoy linear5 convergence speed (see for instance
Section 5 of [25]). The convergence speed of batch gradient descent drastically

4 See also the discussion for convex assumption (23).
5 Linear convergence speed: (log 1/(wt − w∗)2) grows linearly with t.
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improves when one replaces the scalar learning rates γt by a definite positive
symmetric matrix Φt that approximates the inverse of the Hessian of the cost
function.

Φt ≈ H−1(wt), H(w) = ∇∇wC(w) (26)

This leads to very effective optimization algorithms such as Newton’s algorithm,
Levemberg-Marquardt, Conjugate Gradient and BFGS (see [15] for a review).
These algorithms achieve superlinear or even quadratic6 convergence speeds.

4.2 Convergence speed for stochastic algorithms

Whereas online algorithms may converge to the general area of the optimum at
least as fast as batch algorithms [25], the optimization proceeds rather slowly
during the final convergence phase [14]. The noisy gradient estimate causes the
parameter vector to fluctuate around the optimum in a bowl whose size depends
on the decreasing learning rates and is therefore constrained by (25). It can be
shown that this size decreases like 1/t at best7.

Stochastic gradient descent nevertheless benefits from using similar second
order methods. The gradient vector is rescaled using a positive symmetric matrix
Φt that approximates the inverse hessian (26) in a manner analogous to Newton’s
algorithm8. The same convergence results apply as long as the eigenvalues of the
scaling matrix Φt are bounded.

wt+1 = wt −
1

t
Φt ∇w Q(zt, wt) (27)

For simplicity, this section only addresses the case γt = 1/t which satisfies both
conditions (24) and (25). It is however important to understand that the second
order stochastic algorithm (27) still experiences the stochastic noise resulting
from the random selection of the examples zt. Its convergence speed still depends
on the choice of decreasing learning rates γt and is therefore constrained by
condition (25). This is a sharp contrast with the case of batch algorithms where
the same scaling matrix yields superlinear convergence.

Stochastic gradient descent is a hopeless optimization algorithm. It is tempt-
ing to conclude that it is also a very poor learning algorithm. Yet experience
suggests otherwise [4].

4.3 Optimization versus Learning

This apparent contradiction is resolved when one considers that the above dis-
cussion compares the speed of two different convergences:

– Batch algorithms converge towards a minimum of the empirical risk ĈL(w),
which is defined as an average on L training examples (2).

6 Quadratic convergence speed: (log log 1/(wt − w∗)2) grows linearly with t.
7 Convergence speed of stochastic gradient: (1/(wt − w∗)2) grows linearly with t.
8 Such second order stochastic approximations are standard practice in the Stochastic

Approximation literature [22, 27, 7].
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– Stochastic algorithms converge towards a minimum of the expected risk
C(w), which is defined as an expectation with respect to the probability
distribution from which we draw the examples (1).

In a learning problem, we are interested in knowing the speed of convergence
towards the minimum of the expected risk C(w) because it reflects the gener-
alization error. Replacing the expected risk C(w) by the empirical risk ĈL(w)
is by itself an approximation. As shown in the next section, this approximation
spoils the potential benefits of running an optimization algorithm with ambitious
convergence speed.

4.4 Optimizing the empirical risk is a stochastic process

We consider in this section an infinite sequence of independent training examples
(z1, . . . , zt, . . . ). Let w∗

t be the minimum of the empirical risk Ĉt(w) defined on
a training set composed of the first t examples (z1, . . . , zt). We assume that all
the w∗

t are located in the vicinity of the minimum w∗ of the expected risk C(w).
Manipulating a Taylor expansion of the gradient of Ĉt+1(w) in the vicinity

of w∗
t provides the following recursive relation:

w∗

t+1 = w∗

t − 1

t + 1
Ψt∇wQ(zt, w

∗

t ) + O
(

1

t2

)

(28)

with

Ψt

4
=

(

1

t + 1

t+1
∑

i=1

∇∇wQ(zi, w
∗

t )

)−1

−→
t→∞

H−1(w∗

t )

The similarity between (28) and (27) suggests that both the batch sequence
(w∗

t ) and online sequence (wt) converge at the same speed for adequate choices
of the scaling matrix Φt. Theoretical analysis indeed shows that [31, 13]:

E
[

(w∗

t − w∗)2
]

=
K

t
+ o

(

1

t

)

(29)

Φt −→
t→∞

H−1(w∗) =⇒ E
[

(wt − w∗)2
]

=
K

t
+ o

(

1

t

)

(30)

where

K = trace
(

H−1(w∗) · Ez

[

(∇wQ(z, w∗)) (∇wQ(z, w∗))
′
]

· H−1(w∗)
)

Not only does this result establish that both sequences have O (1/t) convergence,
but also it provides the value of the common constant K. This constant is neither
affected by the second order terms of (28) nor by the convergence speed of the
scaling matrix Φt towards the inverse Hessian [13].

Following [40], we say that a second order stochastic algorithm is optimal
when Φt converges to H−1(w∗). Figure 6 summarizes the behavior of such opti-
mal algorithms. After t iterations on fresh examples, the point wt reached by an
optimal stochastic learning algorithm is asymptotically as good as the solution
w∗

t of a batch algorithm trained on the same t examples.
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≅ K/t

w
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E
ˆ

(wt − w∗)2
˜

∼ E
ˆ

(w∗

t − w∗)2
˜

∼ K

t

Fig. 6. : After t iterations on fresh examples, the point wt reached by an optimal
stochastic learning algorithm is asymptotically as good as the solution w∗

t of a batch
algorithm trained on the same t examples.

4.5 Comparing computational complexities

The discussion so far has established that a properly designed online learning
algorithm performs as well as any batch learning algorithm for a same number
of examples. We now establish that, given the same computing resources, a
stochastic learning algorithm can asymptotically process more examples than a
batch learning algorithm.

Each iteration of a batch learning algorithm running on N training examples
requires a time K1N + K2. Constants K1 and K2 respectively represent the
time required to process each example, and the time required to update the
parameters. Result (29) provides the following asymptotic equivalence:

E
[

(w∗

N − w∗)2
]

∼ 1

N

The batch algorithm must perform enough iterations to approach the empir-
ical optimum w∗

N
with at least the same accuracy (∼ 1/N). A very efficient

algorithm with quadratic convergence achieves this after a number of iterations
asymptotically proportional to (log log N).

Running a stochastic learning algorithm requires a constant time K3 per
processed example. Let us call T the number of examples processed by the
stochastic learning algorithm using the same computing resources as the batch
algorithm. We then have:

K3T ∼ (K1N + K2) log log N =⇒ T ∼ N log log N

The parameter wT of the stochastic algorithm also converges according to
(30). Comparing the accuracies of both algorithms shows that the stochastic
algorithm asymptotically provides a better solution by a factor ∼ (log log N).

E
[

(wT − w∗)2
]

∼ 1

N log log N
� 1

N
∼ E

[

(w∗

N − w∗)2
]

(31)

This (log log N) factor corresponds to the number of iterations required by
the batch algorithm. This number increases slowly with the desired accuracy
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of the solution. In practice, this factor is much less significant than the actual
value of the constants K1, K2 and K3. Experience shows however that stochastic
algorithms are considerably easier to implement. Each iteration of the batch
algorithm involves a large summation over all the available examples. Memory
must be allocated to hold these examples. On the other hand, each iteration of
the stochastic algorithm only involves one random example which can then be
discarded.

4.6 Examples

Optimal Learning Rate for K-Means. Second derivative information can
be used to determine very efficient learning rates for the K-Means algorithm
(Section 2.4). A simple analysis of the loss function (16) shows that the Hessian
of the cost function is a diagonal matrix [11] whose coefficients λ(k) are equal to
the probabilities that an example x is associated with the corresponding centroid
w(k).

These probabilities can be estimated by simply counting how many examples
n(k) have been associated with each centroid w(k). Each iteration of the corre-
sponding stochastic algorithm consists in drawing a random example xt, finding
the closest centroid w(k), and updating both the count and the centroid with the
following equations:

[

nt+1(k) = nt(k) + 1
wt+1(k) = wt(k) + 1

nt+1(k) (xt − wt(k))
(32)

Algorithm (32) very quickly locates the relative position of clusters in the data.
Terminal convergence however is slowed down by the noise implied by the ran-
dom choice of the examples. Experimental evidence [11] suggest that the best
optimization speed is achieved by first using the stochastic algorithm (32) and
then switching to a batch super-linear version of K-means.

Kalman Algorithms. The Kalman filter theory has introduced an efficient
way to compute an approximation of the inverse of the Hessian of certain cost
functions. This idea is easily demonstrated in the case of linear algorithms such
as the Adaline (Section 2.3). Consider stochastic gradient descent applied to the
minimization of the following mean square cost function:

C(w) =

∫

Q(z, w) dP (z) with Q(z, w)
4
= (y − w′x)2 (33)

Each iteration of this algorithm consists of drawing a new pair zt = (xt, yt) from
the distribution dP (z) and applying a parameter update formula similar to (27):

wt+1 = wt − H−1
t ∇wQ(zt, wt) = wt − H−1

t (yt − w′

txt)
′xt (34)

where Ht denotes the Hessian of an empirical estimate Ct(w) of the cost function
C(w) based on the examples z1, . . . , zt observed so far.

Ct(w)
4
=

1

2

t
∑

i=1

Q(zi, w) =
1

2

t
∑

i=1

(yi − w′xi)
2 (35)



170 Léon Bottou

Ht

4
= ∇2

wCt(w) =

t
∑

i=1

xix
′

i (36)

Directly computing the matrix H−1
t at each iteration would be very expensive.

We can take advantage however of the recursion Ht = Ht−1 + xtx
′
t using the

well known matrix equality:

(A + BB′)−1 = A−1 − (A−1B) (I + B′A−1B)−1 (A−1B)′ (37)

Algorithm (34) then can be rewritten recursively using the Kalman matrix Kt =
H−1

t−1. The resulting algorithm (38) converges much faster than the delta rule
(6) and yet remains quite easy to implement:







Kt+1 = Kt −
(Ktxt)(Ktxt)

′

1 + x′
tKtxt

wt+1 = wt − Kt+1 (yt − w′
txt)

′xt

(38)

Gauss Newton Algorithms. Non linear least mean square algorithms, such as
the multi-layer networks (Section 2.3) can also benefit from non-scalar learning
rates. The idea consists of using an approximation of the Hessian matrix. The
second derivatives of the loss function (9) can be written as:

1

2
∇2

w (y − f(x, w))
2

= ∇wf(x, w)∇′

wf(x, w) − (y − f(x, w))∇2
wf(x, w)

≈ ∇wf(x, w)∇′

wf(x, w) (39)

Approximation (39), known as the Gauss Newton Approximation, neglects the
impact of the non linear function f on the curvature of the cost function. With
this approximation, the Hessian of the empirical stochastic cost takes a very
simple form.

Ht(w) ≈
t
∑

i=1

∇wf(xi, w)∇′

wf(xi, w) (40)

Although the real Hessian can be negative, this approximated Hessian is always
positive, a useful property for convergence. Its expression (40) is reminiscent of
the linear case (36). Its inverse can be computed using similar recursive equa-
tions.

Natural Gradient. Information geometry [1] provides an elegant description
of the geometry of the cost function. It is best introduced by casting the learning
problem as a density estimation problem. A multilayer perceptron f(x, w), for
instance, can be regarded as a parametric regression model y = f(x, w) + ε
where ε represents an additive Gaussian noise. The network function f(x, w)
then becomes part of the Gaussian location model:

p(z|w) = Cσ exp

(

− (y − f(x, w))2

2σ2

)

(41)



Stochastic Learning 171

The optimal parameters are found by minimizing the Kullback-Leibler diver-
gence between p(z|w) and the ground truth P (z). This is equivalent to the
familiar optimization of the mean square loss (9):

Ez log
P (z)

p(z|w)
=

1

σ2
EzQmse(z, w) + Constant (42)

The essential idea consists of endowing the space of the parameters w with
a distance that reflects the proximity of the distributions p(z|w) instead of the
proximity of the parameters w. Multilayer networks, for instance, can implement
the same function with very different weights vectors. The new distance distorts
the geometry of the parameter space in order to represent the closeness of these
weight vectors.

The infinitesimal distance between distributions p(z|w) and p(z|w + dw) can
be written as follows:

D(w||w + dw) ≈ dw′G(w)dw (43)

where G(w) is the Fisher Information matrix:

G(w)
4

=

Z

`

∇w log p(z|w)∇w log p(z|w)′
´

p(z|w)dz

The determinant |G(w)| of the Fisher information matrix usually is a smooth
function of the parameter w. The parameter space is therefore composed of
Riemannian domains where |G(w)| 6= 0 separated by critical sub-spaces where
|G(w)| = 0.

The Natural Gradient algorithm [3] provides a principled way to search a
Riemannian domain. The gradient ∇wC(w) defines the steepest descent direction
in the Euclidean space. The steepest descent direction in a Riemannian domain
differs from the Euclidexan one. It is defined as the vector dw which maximizes
C(w) − C(w + dw) in the δ-neighborhood:

D(w||w + dw) ≈ dw′G(w)dw ≤ δ. (44)

A simple derivation then shows that multiplying the gradient by the inverse of the
Fisher Information matrix yields the steepest Riemannian direction. The Natural
Gradient algorithm applies the same correction to the stochastic gradient descent
algorithm (4):

wt+1 = wt − γtG−1(wt)∇w Q(z, wt), (45)

The similarity between the update rules (27) and (45) is obvious. This link
becomes clearer when the Fisher Information matrix is written in Hessian form,

G(w)
4
=

∫

−
(

∇2
w log p(z|w)

)

p(z|w)dz

where ∇2
w denotes a second derivative. When the parameter approaches the

optimum, distribution p(z|w) becomes closer to the ground truth dP (z), and the
Fisher Information matrix G(w) aligns with the Hessian matrix ∇2

wEzQ(z, w).
The natural gradient asymptotically behaves like a second order algorithm.
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Remark. The above algorithms are all derived from (27) and suffer from the
same limitation. The number of coefficients in matrix Φt scales like the square
of the number of parameters. Manipulating such large matrices often requires
excessive computer time and memory.

Result (30) holds when Φt −→ H−1(w∗). This implies that Φt must be a full
rank approximation of H−1. Suppose instead that Φt converges to a more eco-
nomical approximation of H−1 involving a limited number of coefficients. With
a proper choice of learning rates γt, such an approximate second order stochas-
tic gradient algorithm keeps the O (1/t) behavior (30) with a worse constant
KA > K. Such a stochastic algorithm will eventually outperform batch algo-
rithms because (log log N) will eventually become larger than the ratio KA/K.
In practice this can take a very long time. . .

Approximate second order stochastic algorithms are still desirable because it
might be simply impossible to simply store a full rank matrix Φt, and because
manipulating the approximation of the Hessian might bring computational gains
that compare well with ratio KA/K. The simplest approximation [5] involves a
diagonal approximation of Φt. More sophisticated schemes [32, 38] attempt to
approximate the average value of Φt∇wQ(z, wt) using simpler calculations for
each example.

5 Conclusion

A broad family of learning algorithms can be formalized as stochastic gradient
descent algorithms. It includes numerous well known algorithms such as Per-
ceptrons, Adalines, K-Means, LVQ, and Multi-Layer Networks as well as more
ambitious learning systems such as Graph Transformer Networks.

All these algorithms share common convergence properties. In particular,
stochastic gradient descent simultaneously is a very poor optimization algorithm
and a very effective learning algorithm.

References

1. S.-I. Amari. Differential-geometrical methods in statistics. Springer Verlag, Berlin,
New York, 1990.

2. S.I. Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Elec-
tronic Computers, EC-16:299–307, 1967.

3. Sun-Ichi Amari. Natural learning in structured parameter spaces – natural rie-
mannian gradient. In Neural Information Processing Systems, volume 9, pages
127–133, Cambridge, MA., 1996. MIT Press.

4. Roberto Battiti. First- and second-order methods for learning: Between steepest
descent and newton’s method. Neural Computation, 4:141–166, 1992.

5. S. Becker and Y. Le Cun. Improving the convergence of back-propagation learning
with second-order methods. In D. Touretzky, G. Hinton, and T Sejnowski, editors,
Proceedings of the 1988 Connectionist Models Summer School, pages 29–37, San
Mateo, 1989. Morgan Kaufman.



Stochastic Learning 173

6. Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. Lerec: A nn/hmm hybrid for on-line
handwriting recognition. Neural Computation, 7(6), November 1995.

7. A. Benveniste, M. Metivier, and P. Priouret. Adaptive Algorithms and Stochastic
Approximations. Springer Verlag, Berlin, New York, 1990.

8. L. Bottou, Y. Le Cun, and Y. Bengio. Global training of document processing sys-
tems using graph transformer networks. In Proc. of Computer Vision and Pattern
Recognition, pages 489–493, Puerto-Rico, 1997. IEEE.
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