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Abstract A plausible definition of “reasoning” could be “algebraically manipulating pre-
viously acquired knowledge in order to answer a new question”. This definition covers first-
order logical inference or probabilistic inference. It also includes much simpler manipula-
tions commonly used to build large learning systems. For instance, we can build an optical
character recognition system by first training a character segmenter, an isolated character
recognizer, and a language model, using appropriate labelled training sets. Adequately con-
catenating these modules and fine tuning the resulting system can be viewed as an algebraic
operation in a space of models. The resulting model answers a new question, that is, con-
verting the image of a text page into a computer readable text.

This observation suggests a conceptual continuity between algebraically rich inference
systems, such as logical or probabilistic inference, and simple manipulations, such as the
mere concatenation of trainable learning systems. Therefore, instead of trying to bridge the
gap between machine learning systems and sophisticated “all-purpose” inference mecha-
nisms, we can instead algebraically enrich the set of manipulations applicable to training
systems, and build reasoning capabilities from the ground up.
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1 Introduction

Since learning and reasoning are two essential abilities associated with intelligence, machine
learning and machine reasoning have both received much attention during the short history
of computer science. The statistical nature of learning is now well understood (e.g., Vap-
nik 1995). Statistical machine learning methods are now commonplace (NIPS 1987–2010).
An internet search for “support vector machines” returns more than two million web pages.
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The nature of reasoning has proven more elusive. Although computer algorithms for logical
inference (Robinson 1965) share their roots with the foundations of mathematics, convert-
ing ordinary data into a consistent set of logical expressions has proved very challenging:
searching the discrete spaces of symbolic formulas often leads to a combinatorial explosion
(Lighthill 1973). Computer algorithms for general probabilistic inference (Pearl 1988) still
suffer from unfavorable computational properties (Roth 1996). However, there are practical
algorithms for many special cases of interest. These algorithms have gained considerable
popularity in the machine learning community. This practicality comes at the price of re-
duced expressive capabilities: since probabilistic inference is a mathematical construction,
it is naturally described using first order logic. However, expressing first order logic with
probabilistic inference is far from easy. In particular, expressing causality with probabilities
is challenging (Pearl 2000).

Human reasoning displays neither the limitations of logical inference nor those of prob-
abilistic inference. The ability to reason is often confused with the ability to make logical
inferences. When we observe a visual scene, when we hear a complex sentence, we are able
to explain in formal terms the relation of the objects in the scene, or the precise meaning of
the sentence components. However, there is no evidence that such a formal analysis neces-
sarily takes place: we see a scene, we hear a sentence, and we just know what they mean.
This suggests the existence of a middle layer, already a form of reasoning, but not yet for-
mal or logical. Investigating informal reasoning is attractive because we hope to avoid the
computational complexity issues associated with combinatorial searches in the vast space of
discrete logic propositions.

Minsky and Papert (1969) have shown that simple cognitive tasks cannot be implemented
using linear threshold functions but require multiple layers of computation. Recent advances
have uncovered effective strategies to train such deep models (Hinton et al. 2006). Deep
learning has attracted considerable interest in the machine learning community. Regular
workshops have been held during the NIPS and ICML conferences since 2007. The ability
to train deep machine learning models appears to be related to the appropriate definition of
unsupervised auxiliary tasks that help discovering internal representations in the inner layers
of the models (Bengio et al. 2007; Weston et al. 2008). Deep structures had been trained in
the past using supervised intermediate tasks (e.g., Bottou et al. 1997; LeCun et al. 1998).
The surprise of deep learning is that the same results can be achieved using very loosely
related auxiliary tasks. Deep learning is therefore intimately related to multi-task learning
(Caruana 1997).

This essay presents a couple of research directions that result from a long maturation
(Bottou 2008). Both deep learning and multi-task learning show that we can leverage aux-
iliary tasks to help solving a task of interest. This apparently simple idea can be interpreted
as a rudimentary form of reasoning. Enriching this algebraic structure then leads to higher
forms of reasoning. This provides a path to build reasoning abilities into machine learning
systems from the ground up.

2 Auxiliary tasks

One frequently mentioned problem is the scarcity of labeled data. This assertion is biased
because we usually build a learning machine to accomplish a valuable task. The correspond-
ing training labels are then expensive and therefore scarce. Conversely, labels available in
abundance are often associated with tasks that are not very valuable. But this does not make
these abundant labels useless: in the vicinity of an interesting and valuable task, less valuable
tasks provide opportunities to approach the initial problem.
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Fig. 1 Training a face
recognizer

Consider the task of identifying persons from face images. Despite the increasing avail-
ability of collaborative image tagging schemes (von Ahn 2006), it certainly remains expen-
sive to collect and label millions of training images representing the face of each subject
with a good variety of positions and contexts. However, it is easy to collect training data for
the slightly different task of telling whether two faces in images represent the same person
or not (Miller 2006): two faces in the same picture are likely to belong to different persons;
two faces in successive video frames are likely to belong to the same person. These two
tasks have much in common: image analysis primitives, feature extraction, part recognizers
trained on the auxiliary task can certainly help solving the original task.

Figure 1 outlines a transfer learning strategy involving three trainable modules. The pre-
processor P computes a compact face representation from the image. The comparator D
compares the representations associated with two images. The classifier C produces the per-
son label associated with an image representation. We first assemble two instances of the
preprocessor P and one comparator D and train the resulting model using the abundant la-
bels for the auxiliary task. Training simply works by minimizing a regularized loss function
using stochastic gradient descent. Then we assemble another instance of the preprocessor P
with the classifier C and train the resulting model using a restrained number of labeled ex-
amples for the original task. This works because the preprocessor P already performs useful
tasks and vastly simplifies the job of the classifier C. Alternatively we could simultaneously
train both assemblages by making sure that all instances of the preprocessor share the same
parameters. Comparable transfer learning systems have achieved high accuracies on vision
benchmarks (e.g., Ahmed et al. 2008).

We have designed a structurally more complex system to address various natural lan-
guage processing benchmark tasks (Collobert and Weston 2007; Collobert et al. 2011;
Collobert 2011). The word embedding module W computes a 50-dimensional representation
for each vocabulary word. Fixed length sequences of words are extracted from a large cor-
pus (900 million words). Incorrect sequences are created by randomly replacing the central
word. The auxiliary task consists in producing a score whose magnitude indicates whether
a sequence of words is genuine or incorrect. An assemblage of several word embedding
modules W and a ranking module R is trained on this task. The benchmark tasks are then
trained using smaller corpora of labelled sentences. Each sentence is processed by assem-
bling the word embedding components W and routing their outputs, together with ancillary
information, to classifiers that produce tags for the word(s) of interest (Fig. 2.)

This system reaches near state-of-the-art performance while running hundreds of times
faster than natural language processing systems with comparable performance. Many natural
language processing systems rely on the considerable linguistic knowledge that went into
the manual design of task specific input features. The system described above learns useful
features using an essentially unsupervised task trained on a very large corpus. Figure 3
illustrates the quality of the resulting word representation. Similar embedding techniques
have also been shown able to perform higher level knowledge extraction tasks (Bordes et al.
2011).
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Fig. 2 Training word representations for multiple natural language processing tasks

Fig. 3 Each column shows a query word, its frequency rank in the training corpus, and the ten words whose
representation is closest to that of the query word (Collobert et al. 2011)

3 Reasoning revisited

Although modular learning systems and their training algorithms have been researched ex-
tensively (e.g., Bottou and Gallinari 1991), little attention has been paid to the rules that de-
scribe how to assemble trainable modules in order to address a particular task. In fact, these
composition rules play an extremely important role. The dictionary of elementary trainable
modules and the composition operators form a simple algebraic system on a space of models.
The composition rules describe the algebraic manipulations that let us combine previously
acquired knowledge—in the form of models previously trained on auxiliary tasks—in order
to create a model that addresses a new task.

I would like at this point to draw a bold parallel: “algebraic manipulation of previously
acquired knowledge in order to answer a new question” is a plausible definition of the word
“reasoning”. There are significant differences: conventional reasoning operates on premises
and conclusions; composition rules operate on trainable modules. Yet we can easily argue
that the history of mathematics teaches that algebraic structures are more significant than
the objects on which they operate. In both the face recognition and the natural language
processing examples, the implicit composition rules derive from the assumption that internal
representations that can be learned on the auxiliary task and can benefit the task of interest.
These internal representations play the same role as reasoning abstractions, that is, concepts
that cannot be observed directly but are assumed relevant for multiple problems.

Composition rules can be described with very different levels of sophistication. Like
the face recognition and the natural language processing examples, most works discussing
multi-task learning (Caruana 1997) construct ad-hoc combinations justified by a semantic
interpretation of the internal representations. Works discussing structured learning systems
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Fig. 4 Graph transformer networks for handwritten text field segmentation. The illustrations represent how
graph transformations define the recognition and training architectures for the same example image. See
LeCun et al. (1998) for full details

(e.g., Bakır et al. 2007) often provide more explicit rules. For instance, graph transformer
networks (Bottou et al. 1997; LeCun et al. 1998, Sect. IV) construct specific recognition and
training models for each input image using graph transduction algorithms. The specification
of the graph transducers then should be viewed as a description of the composition rules
(Fig. 4).

4 Probabilistic models

The rich algebraic structure of probability theory plays an important role in the appeal of
probabilistic models in machine learning because it tells how to combine conditional prob-
ability distributions and how to interpret these combinations. However, in order to construct
an algebraic structure of probabilistic models, it is necessary to also discuss how probability
distributions are parametrized.

Graphical models (Pearl 1988) describe the factorization of a joint probability distri-
bution into elementary conditional distributions with specific conditional independence as-
sumptions. This factorization suggests to individually parametrize these elementary condi-
tional distributions. The probabilistic inference rules then induce an algebraic structure on
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Fig. 5 Plates. The left graph simply describes the factorization P(x, y) = P(x).P (y|x). The right graph
introduces the training set {(xi , yi )} and the model parameters θ using the plate notation. Bayesian inference
then gives the expression of P(y|x, {(xi , yi )})

the space of conditional probability distribution models describing relations between arbi-
trary subsets of random variables.

Many refinements have been devised to make the parametrization more explicit. The
plate notation (Buntine 1994) compactly represents large graphical models with repeated
structures that usually share parameters. Figure 5 shows how treating the parameters like a
random variable makes the parametrization even more explicit. More recent works propose
considerably richer languages to describe large graphical probabilistic models. Probabilistic
Relational Models (Friedman et al. 1999) and Relational Dependency Networks (Neville
and Jensen 2003) derive graphical probabilistic models from frame-based knowledge bases.
Markov Logic Networks (Richardson and Domingos 2006) derive graphical probabilistic
models from the clauses of a first order logic knowledge base. Such high order languages
for describing probabilistic models are expressions of the composition rules described in the
previous section.

5 Reasoning systems

We are clearly drifting away from the statistical approach because we are no longer fitting
a simple statistical model to the data. In fact, we are dealing with a more complex object
composed of (a) an algebraic space of models, and (b) composition rules that establish a
homomorphic correspondence between the space of models and the space of questions of
interest. We call such an object a reasoning system.

A potentially surprising consequence of this definition is the arbitrary nature of a rea-
soning system. Just like statistical models, reasoning systems vary in expressive power, in
predictive abilities, and in computational requirements. A few salient examples can illustrate
this diversity:

– First order logic reasoning—Consider a space of models composed of functions that pre-
dict the truth value of a first order logic formula as a function of the values of its free
variables. Such functions are usually represented by collections of fully instantiated pred-
icates. This space of functions is highly constrained by the algebraic structure of the first
order logic formulas: if we know some of these functions, we can apply logical inference
to deduct or constrain functions associated with other formulas and therefore represent-
ing different tasks. First order logic has very high expressive power because the bulk
of mathematics can formalized as first order logic statements (Hilbert and Ackermann
1928). This is not sufficient, however, to express the subtleties of natural language: every
first order logic formula is easily expressed in natural language; the converse is not true.
Finally, first order logic typically leads to computationally expensive algorithms because
they often involve combinatorial searches in vast discrete spaces.

– Probabilistic reasoning—Consider the space of models formed by all the conditional
probability distributions associated with a predefined collection of random variables.
These conditional distributions are highly constrained by the algebraic properties of the
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probability theory: if we know a subset of these conditional distributions, we can ap-
ply Bayesian inference to deduct or constrain additional conditional distributions and
therefore answer different questions (Pearl 1988). The continuous nature of probability
theory provides opportunities to avoid computationally expensive discrete combinatorial
searches. These improved computational requirements come at the price of reduced ex-
pressive capabilities: since probabilistic inference is a mathematical construction, it is
easily described using first order logic; the converse is not true. Despite this limitation,
inference in probabilistic models is a popular machine learning topic.

– Causal reasoning—Causality is a well known expressive limitation of probabilistic rea-
soning. For instance, we can establish a correlation between the events “it is raining”
and “people carry open umbrellas”. This correlation is predictive: if people carry open
umbrellas, we can be pretty certain that it is raining. But this correlation tells us little
about the consequences of an intervention: banning umbrellas will not stop the rain. This
is a serious limitation because causes and effects play a central role in our understanding
of the world. Pearl (2000) proposes to address this issue by enriching the probabilistic
machinery with a new construction: whereas P (X|Y = y) represents the distribution of
random variable X given the observation Y = y, the new construction P (X|do(Y = y))

represents the distribution of X when an intervention enforces the condition Y = y.
– Newtonian mechanics—Classical mechanics is an extremely successful example of causal

reasoning system. Consider the motion of point masses in various experimental setups.
Newton’s laws define the abstract concept of a force as the cause explaining any deviation
from the uniform motion. The second and third laws then describe how to compute the
consequences of interventions such as applying a new force or transferring a point mass
from one experimental setup into another. For instance, a first setup could be a weighing
device that measures the relative masses of point masses A and B; and a second setup
could involve the collision of point masses A and B.

– Spatial reasoning—How would a visual scene change if one changes the viewpoint or if
one manipulates one of the objects in the scene? Such questions clearly obey algebraic
constraints that derive from the bi-dimensional projection and from the relations between
objects. Spatial reasoning does not require the full logic apparatus but certainly benefits
from the definition of specific algebraic constructions (Aiello et al. 2007).

– Non-falsifiable reasoning—History provides countless examples of reasoning systems
with questionable predictive capabilities. Mythology interprets the world by applying a
social reasoning systems to abstract deities. Astrology attempts to interpret social phe-
nomena by reasoning about the motion of planets. Just like non-falsifiable statistical mod-
els, non-falsifiable reasoning systems are unlikely to have useful predictive capabilities
(Popper 1959; Vapnik 1995).

There are two ways to face such a universe of reasoning systems. One approach would be to
identify a single reasoning framework strictly more powerful than all others. Whether such
a framework exists and whether it leads to computationally feasible algorithms is unknown.
Symbolic reasoning (e.g., with first order logic) did not fulfill these hopes (Lighthill 1973).
Probabilistic reasoning is more practical but considerably less expressive. The second ap-
proach is to embrace this diversity as an opportunity to better match the reasoning models
to the applicative domain of interest: “when solving a given problem, try to avoid solving a
more general problem as an intermediate step” (Vapnik 1995).

It is therefore desirable to map the universe of reasoning systems. What are the poten-
tial algebraic structures? What is their footprint in terms of expressive power, suitability for
specific applications, computational requirements, and predictive abilities? Unfortunately
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we cannot expect such theoretical advances on schedule. We can, however, nourish our intu-
itions by empirically exploring the capabilities of algebraic structures designed for specific
applicative domains.

The replication of essential human cognitive processes such as scene analysis, language
understanding, and social interactions forms an important class of applications. These pro-
cesses probably involve some form of reasoning because we are able, after the facts, to
explain our conclusions with logical arguments. However, the actual processes usually hap-
pen without conscious involvement, suggesting that the full complexity of logic reasoning
may not be required. Which algebraic reasoning primitive are suitable for such applications?

The following sections describe more specific ideas investigating reasoning systems suit-
able for natural language processing and vision tasks. They define trainable modules that
provide the means to represent arbitrary hierarchical structures using fixed size representa-
tion vectors. Whether such vectors are the best representation for the task remains of course
to be proved. The goal of this example is to show that the algebraic set of operations defined
on the representation space is more important than the representation itself. The discussion
includes preliminary results on natural language processing tasks and potential directions
for vision tasks. Additional modules working on this space of representations are then pro-
posed. The last section describes some conceptual and algorithmic issues associated with
learning algorithms operating in this space.

6 Association and dissociation

We have already demonstrated the possibility to learn salient word embeddings using an
essentially non supervised task (Collobert et al. 2011). Can we learn salient embeddings for
any meaningful segment of a sentence?

A proven way to create a rich algebraic system is to define operations that take their inputs
in a certain space and produce outputs in the same space. The number of possible concate-
nations and their potential depth then becomes infinite. We consider again a collection of
trainable modules. The word embedding module W computes a continuous representation
for each word of the dictionary. In preliminary experiments, this is a simple lookup table that
specifies a vector in a 50-dimensional representation space for each word in the dictionary.
The coordinates of these vectors are determined by the training algorithm. The association
module is a trainable function that takes two vectors in the representation space and pro-
duces a single vector in the same space, which is expected to represent the association of the
two input vectors.

Given a sentence segment composed of n words, Fig. 6 shows how n − 1 applications of
the association module reduce the sentence segment to a single vector in the representation
space. We would like this vector to be a representation of the meaning of the sentence.
We would also like each intermediate result to represent the meaning of the corresponding
sentence fragment.

Fig. 6 Representing a sentence
by recursive application of the
association modules
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Fig. 7 The saliency scoring
module R scores the quality of a
sentence bracketing

Fig. 8 Unsupervised training (see text). The ranking loss function tries to make the “good” scores higher
than the“bad” scores

There are many ways to sequence the applications of the association module, each asso-
ciated with a particular way of bracketing the sentence into meaningful segments. Figure 6,
for instance, corresponds to the standard bracketing of the sentence “((the cat) (sat (on (the
mat))”. In order to determine which bracketing splits the sentence into the most meaning-
ful segments, we introduce an additional saliency scoring module R, which takes as input
a vector in the representation space and produces a score whose magnitude is expected to
measure how “meaningful” is the corresponding sentence segment (Fig. 7).

Applying the saliency scoring module R to all intermediate results and summing all
the resulting scores yields a global score measuring how meaningful is a particular way
to bracket a sentence. The most meaningful way to recursively apply the association mod-
ule can be determined by maximizing this global score. Specific parsing algorithms are
described later in this document.

The challenge is to train these modules in order to have them achieve the desired function.
Figure 8 illustrates a non-supervised training technique inspired by Collobert et al.

(2011). This is again a stochastic gradient procedure. During each iteration, a short sen-
tence segment is randomly picked from a large text corpus and bracketed as described above
(Fig. 8, left). An arbitrary word is then replaced by a random word from the vocabulary. As a
consequence certain intermediate results in the representation space are likely to correspond
to meaningless sentence fragments. We would like to make the associated scores smaller
than the scores associated with the genuine sentence segments. This can be expressed by
an adequate ranking loss function. The parameters of all modules are then adjusted using a
simple gradient descent step. Repeating this iterative procedure corresponds to the stochas-
tic gradient descent optimization of a well defined loss function. However, there is evidence
that training works much faster if one starts with short segments and a limited vocabulary
size.

Preliminary results have been obtained using a similar procedure (Etter 2009). Sentence
segments of length five were extracted from a dump of the English Wikipedia (600 M
words). The vocabulary was restricted to the 1000 most frequent words initialized with the
Collobert et al. (2011) embeddings. The initial sentence segment brackets were constructed
randomly. In order to investigate how the resulting system maps word sequences into the
representation space, all two-word sequences of the 500 most common words were con-
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Fig. 9 Neighbors of two-word sequences in the representation space (Etter 2009). Each column lists the two
word sequences whose representation is closest to that of the two word sequences shown in the header

Fig. 10 Navigating intermediate representations with the dissociation module

structed and mapped into the representation space. Figure 9 shows the closest neighbors in
representation space of some of these sequences. This analysis was restricted to two-word
sequences because the computational cost grows exponentially with the sequence length.

Socher et al. (2010, 2011) independently trained a similar system in a supervised manner
using the WSJ section of the annotated Penn TreeBank corpus. Although this is a much
smaller corpus (about 1 M words), they obtained meaningful representations. For instance
they report that the phrases “decline to comment” and “would not disclose the terms” are
close in the induced embedding space. The supervised training approach also provides a
more objective way to assess the results since one can compare the bracketing performance
of the system with that of established parsers. They report a bracketing performance that
compares with that of statistical parsing systems of the 2000 s.

Figure 9 also illustrates that one cannot hope to reduce meaning to the proximity of two
vectors. Despite semantic similarities, the difference between “four men” and “two women”
can be essential in many contexts. We do not argue that the vectorial representation is a
representation of the meaning. Instead we envision to train specialized modules that project
the vectorial representations into new representations more appropriate to the completion of
semantic tasks of interest. The topology of the vectorial representation space only serves as
an inductive bias that transfers some of the knowledge acquired on the unsupervised training
task.

There is therefore much work left to accomplish, including (i) robustly addressing all the
numerical aspects of the training procedure, (ii) seamlessly training using both supervised
and unsupervised corpora, (iii) assessing the value of the sentence fragment representations
using well known NLP benchmarks, and (iv) finding a better way to navigate these sentence
fragment representations. We now introduce a new module to address this last problem.

The dissociation module D is the inverse of the association module, that is, a trainable
function that computes two representation space vectors from a single vector. When its in-
put is a meaningful output of the association module, its output should be the two inputs of
the association module. Stacking one instance of the association module and one instance
of the dissociation module is equivalent to an auto-encoder (Fig. 10, left). Recursively ap-
plying the dissociation module provides convenient means for traversing the hierarchical
representations computed by a stack of association modules (Fig. 10, right). Such Recursive
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Auto-Associative Memory (RAAM) were proposed as a connectionist representation of in-
finite recursive structures (Pollack 1990). Comparable ideas have been proposed by Hinton
(1990) and Plate (1994).

The domain of definition of the dissociation module is not obvious. Given a vector in
representation space, we need to know whether it results from the association of two more
elementary vectors or whether it should be considered as atomic. Sperduti (1994) defines and
compares various labelling schemes for this purpose. However, it is probably simpler to use
the saliency scoring module (Fig. 7) to specify the domain of definition of the dissociation
module: only sufficiently meaningful associations can be dissociated.

The definition of the dissociation module implies that the association module is injective:
its output uniquely defines its inputs. This algebraic property is not enforced by the training
procedures outlined in the previous subsection. It is therefore necessary to simultaneously
train both the association and dissociation modules. This can be achieved by augmenting
the earlier loss function (Fig. 8) with terms that apply the dissociation module to each pre-
sumed meaningful intermediate representation and measure how close its outputs are from
the inputs of the corresponding association module.

The association and dissociation modules are similar to the primitives cons, car and
cdr, which are the elementary operations to navigate lists and trees in the Lisp computer
programming languages. These primitives can be used to construct and navigate arbitrary
propositional logic expressions. The main difference is the nature of the representation
space. Instead of a discrete space implemented with pointers and atoms, we are using vec-
tors in a continuous representation space. One the one hand, the depth of the structure we
can construct is limited by numerical precision issues. On the other hand, numerical prox-
imity in the representation space is meaningful (see Figs. 3 and 9). This property reduces
the computational cost of search algorithms. This is why the multilayer stochastic gradient
algorithms are able to discover meaningful intermediate representations in the first place.

Once we have constructed the means to represent arbitrary phrases using a continuous
representation, we can consider training a variety of modules. Consider for instance a train-
able module that converts the representation of a sentence in the present tense into a sentence
in the past tense. We can then parse an initial sentence and construct its representation, con-
vert the representation into the representation of the same sentence in the past tense, and use
the dissociation module to reconstruct the converted sentence. How far we can go with such
manipulations is an entirely open question.

Association and dissociation modules are not limited to natural language processing
tasks. A number of state-of-the-art systems for scene categorization and object recogni-
tion use a combination of strong local features, such as SIFT or HOG features, consoli-
dated along a pyramidal structure (e.g., Ponce et al. 2006). Similar pyramidal structures
have long been associated with the visual cortex (Wiesel and Hubel 1962; Riesenhuber and
Poggio 2003). Convolutional neural networks exploit the same idea (e.g., LeCun et al. 1998;
LeCun et al. 2004). Interpreting such pyramidal structures as the recursive application of an
association module is relatively straightforward (e.g., Lonardi et al. 1994).

The drawback of many pyramidal structures is the fixed geometry of their spatial pooling
layers. Since local features are aggregated according to a predefined pattern, the upper levels
of the pyramid represent data with poor spatial and orientation accuracy. This is why pyra-
midal recognition systems often work poorly as image segmentation tools. For instance, we
have designed a large convolutional neural network (Grangier et al. 2009) to identify and
label objects in the city scenes of the LabelMe corpus (Russell et al. 2008). This system
provides good object recognition accuracies but coarse segmentations (Fig. 11.)

The parsing mechanism described for the natural language processing system provides
an opportunity to work around this limitation. Let us attach intermediate representations to
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Fig. 11 Sample output of the scene labelling system described by Grangier et al. (2009). This large convo-
lutional network gives good recognition accuracies but very coarse segmentations

Fig. 12 Pixel level scene
segmentation and labeling using
recursive neural networks,
reproduced from Socher et al.
(2011). Compare with Fig. 11

image regions. Initially the image regions are the small patches used for the computation
of local features. Guided by a scoring module that evaluates the saliency of each potential
association, the association module can then opportunistically aggregate the representations
attached to two neighboring regions and produce a new representation attached with the
union of the input regions. Training such a system could be achieved in both supervised
and unsupervised modes, using the methods explained in the previous subsection. Socher
et al. (2011) obtains impressive pixel level image segmentation and labelling results using a
comparable scheme with supervised training (Fig. 12).1

Further algebraic constraints can enrich such a vision system. For instance, we could
consider modules that transform vectors in representation space to account for affine trans-
formations of the initial image. More interestingly maybe, we could consider modules that
transform the representation vectors to account for changes in the position of the viewer.
Since such viewpoint changes modify the occlusion patterns (e.g., Hoiem et al. 2007), such
modules provides an interpretation of the three-dimensional geometry of the scene. Since
viewpoint changes can also reveal or hide entire objects, such modules could conceivably

1However, a reviewer pointed out that Socher’s system relies on segmentation tools in complex ways that
could limit the significance of the result.
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provide a tool for constructing a vision system that implements object permanence (Piaget
1937).

Finally, we can also envision modules that convert image representations into sentence
representations and conversely. Training such modules would provide the means to associate
sentences and images. Given an image, we could then parse the image, convert the final
image representation into a sentence representation, and apply the dissociation module to
reconstruct the sentence. Conversely, given a sentence, we could produce a sketch of the
associated image by similar means. Much work is needed to specify the semantic nature of
such conversions.

7 Universal parser

Let us return to the problem of determining the most meaningful way to apply the association
module, which was tersely defined as the maximization of the sum of the scores computed
by the ranking component for all intermediate results.

Figure 13 illustrates a maximization algorithm template whose main element is a short-
term memory (STM) able to store a collection of representation vectors. The two possible
actions are (1) inserting a new representation vector into the short-term memory, and (2)
applying the association module A to two representation vectors taken from the short-term
memory and replacing them by the combined representation vector. Each application of the
association module is scored using the saliency scoring module R. The algorithm termi-
nates when neither action is possible, that is, when the short-term memory contains a single
representation vector and there are no more representation vectors to insert.

The main algorithm design choices are the criteria to decide which representation vector
(if any) should be inserted into the short-term memory, and which representation vectors
taken from the short-term memory (if any) should be associated. These design choices then
determine which data structure is most appropriate for implementing the short-term memory.

For instance, in the case of the English language, nearly all syntactically meaningful
sentence segments are contiguous sequences of words. It is therefore attractive to implement
the short-term memory as a stack and construct a shift/reduce parser: the first action (“shift”)
then consists in picking the next sentence word and pushing its representation on top of
the stack; the second action (“reduce”) consists in applying the association module to the
top two stack elements and replacing them by the resulting representation. The problem
then reduces to determining which sequence of actions to perform in order to maximize the
sum of saliency scores. Even in this simple case, the graph of the possible actions grows
exponentially with the length of the sentence.

Fortunately, heuristic beam search techniques are available to efficiently explore this
graph. They can also handle more complicated ways to organize the short-term memory,

Fig. 13 The short-term memory
(STM) holds a collection of
representation vectors. The two
possible actions are (1) inserting
a new representation vector into
the STM, and (2) replacing two
vectors from the STM by the
output of the association module
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often without dramatically increasing its computational complexity. The greedy parsing al-
gorithm is an extreme example which consists in first inserting all word representations into
the short-term memory, and repeatedly associating the two representation vectors with the
highest association saliency. Simple experimentation with various compromises can suggest
what works best for each application.

This parsing algorithm template is consistent with some views on short-term memory in
cognitive psychology. In particular, Miller (1956) argues that the human short-term memory
holds seven plus-or-minus two chunks of information. Chunks are loosely defined as pieces
of information that the subject recognizes as an entity. This definition depends on the knowl-
edge of the subject, that is, the contents of her long-term memory. In the case of the parsing
algorithm template, the long-term memory is represented by the trainable parameters of the
association module A and the scoring module R.

8 More modules

The previous sections essentially discuss the association and dissociation modules. They
also briefly mention a couple additional modules: modules that perform predefined transfor-
mations on natural language sentences; modules that implement specific visual reasoning
primitives; and modules that bridge the representations of sentences and the representation
of images. These modules enrich the algebraic reasoning structure by endowing the space
of representation vectors with additional semantics.

– There is a natural framework for such enhancements in the case of natural language pro-
cessing. Operator grammars (Harris 1968) provide a mathematical description of natural
languages based on transformation operators: starting from elementary sentence forms,
more complex sentences are described by the successive application of sentence trans-
formation operators. The structure and the meaning of the sentence is revealed as a side
effect of these successive transformations. Since the association and dissociation modules
provide the means to navigate the sentence structure, we have the necessary tools to repli-
cate the sentence transformation operators described by Harris and establish a connection
with this important body of linguistic work.

– There is also a natural framework for such enhancements in the case of vision. Modules
working on representation vectors can model the consequence of various interventions.
Viewpoint changes causes image rotations, image rescaling, perspective changes, and oc-
clusion changes. We could also envision modules modeling the representation space con-
sequences of direct interventions on the scene, such as moving an object.

There is also an opportunity to go beyond modules that merely leverage the structure of the
representation space. As explained earlier, the association and dissociation modules are alge-
braically equivalent to the Lisp primitives car, cdr, and cons, and, like these primitives,
provide the means to construct arbitrarily propositional logic expressions. Adding variables
and quantifiers would provide an implementation of first order logic. Although there are
connectionist and machine learning approaches to variable binding (e.g., Smolensky 1990;
Plate 1994; Khardon and Roth 1997), they cannot avoid the computational complexity of
first-order logic problems. Would it be possible instead to identify capabilities that are nec-
essary for the kind of informal and intuitive reasoning that humans carry out with ease?

Here are two examples:

– Anaphora resolution consists in identifying which components of a tree designate the
same entity. This amounts to identifying the multiple occurrences of a same variable in
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a first-order logic expression, or to resolving pronouns in the case of natural language
sentences. This could be approached by constructing an instantiation module that takes
the representation vector of a tree and applies a predefined substitution to all occurrences
of a designated entity in the tree.

– Identifying which instantiations make sense could be achieved by a trainable module
that returns a high score when there is a isKindOf relation between two representation
vectors. But such ontologies are often context dependent. For instance a cat and a turtle
are kinds of pets in the context of a household, and are members of different families in
the context of biological classification. The restricted entailment scoring module takes the
representations of two structurally similar trees and returns a high score if the first tree
is a valid instantiation of the second one. This score expresses the relation between the
differing tree branches in the context of the rest of the tree.

9 Representation space

Although the previous section presents the essential modules as functions operating on a rel-
atively low-dimensional vectorial space (e.g., 50-dimensional vectors), modules with similar
algebraic properties could be defined on different representation spaces. Such choices have
a considerable impact on the computational and practical aspects of the training algorithms.
An investigation is therefore necessary.

Our preliminary results were obtained using dense vectors with relatively low dimension,
ranging from 20 to 200 dimensions (e.g., Collobert et al. 2011). In order to provide sufficient
capabilities, the trainable functions must often be designed with a nonlinear parametriza-
tion. The training algorithms are simple extensions of the multilayer network training pro-
cedures, using gradient back-propagation and stochastic gradient descent. These nonconvex
optimization procedures are inherently complex and have often been criticized for their lack
of robustness. On the other hand, when properly implemented, they often turn out to be the
most effective methods available for large-scale machine learning problems.

Sparse vectors in much higher dimensional spaces are attractive because they provide
the opportunity to rely more on trainable modules with linear parametrization (e.g., Pacca-
naro and Hinton 2001; Mairal et al. 2010). The training algorithms can then exploit simpler
optimization procedures. In order to maintain good generalization abilities and good compu-
tational performance, sparsity inducing terms must be included in the optimization criteria.
Such terms also make the optimization more complex, potentially negating the benefits of
sparse high-dimensional vectors in the first place.

The representation space can also be a space of probability distributions defined on a
vector of discrete random variables. The learning algorithms are then often expressed as
stochastic sampling techniques such as Gibbs sampling, Markov-chain Monte-Carlo, con-
trastive divergence (Hinton et al. 2006), or herding (Welling 2009).

Regardless of the chosen representation space, a well designed GPU implementation can
considerably speed-up the experimentation cycle. For instance, training the language model
of Collobert et al. (2011) demands three to six weeks of computation on a standard processor.
Reducing this training time to a couple days changes the dynamics of the experimentation.

10 Conclusions

The research directions outlined in this document are intended as an effort towards the prac-
tical and conceptual understanding of the interplay between machine learning and machine
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reasoning. Instead of trying to bridge the gap between machine learning systems and so-
phisticated “all-purpose” inference mechanisms, we can instead algebraically enrich the set
of manipulations applicable to training systems, and build reasoning capabilities from the
ground up. This approach could provide opportunities to work around the limitations of
both logical and probabilistic inference in new ways. If this proves to be the case, we can
cautiously hope to make a couple steps along the path to Artificial Intelligence.
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