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Abstract

Bordes et al. (2005) describe the efficient online LASVM algorithm using selective sampling.
On the other hand, Loosli et al. (2005) propose a strategy for handling invariance in SVMs,
also using selective sampling. This paper combines the two approaches to build a very
large SVM. We present state-of-the-art results obtained on a handwritten digit recognition
problem with 8 millions points on a single processor. This work also demonstrates that
online SVMs can effectively handle really large databases.

Keywords: Large scale SVM, online learning, active selection, selective sampling, LASVM,
Invariances, MNIST.

1. Introduction

Because many patterns are insensitive to certain transformations such as rotations or trans-
lations, it is widely admitted that the quality of a pattern recognition system can be im-
proved by taking into account invariance. Very different ways to handle invariance in ma-
chine learning algorithms have been proposed (Fukushima, 1988; Lang and Hinton, 1988;
Simard et al., 2000; Leen, 1995; Schölkopf et al., 1996).

In the case of kernel machines, three general approaches have been proposed. The
first approach consists of learning orbits instead of points. It requires costly semi-definite
programming algorithms (Graepel and Herbrich, 2004). The second approach involves spe-
cialized kernels. This turns out to be equivalent to mapping the patterns into a space
of invariant features (Chapelle and Schölkopf, 2002). Such features are often difficult to
construct. The third approach is the most general. It consists of artificially enlarging the
training set by new examples obtained by deforming the available input data (Schölkopf and
Smola, 2001). This approach suffers from high computational costs. Very large datasets can
be generated this way. For instance, by generating 134 random deformations per digit, we
have increased the MNIST training set size from 60,000 to more than 8 millions of examples.
A batch optimization algorithm working on the augmented database needs to go several
times through the entire dataset until convergence. Either we store the whole dataset or
we compute the deformed examples on demand, trading reduced memory requirements for
increased computation time.
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We propose two tools to reduce these computational costs:

• Selective sampling lets our system select informative points and discard useless ones.
This property would reduce the amount of samples to be stored.

• Unlike batch optimization algorithms, online learning algorithms do not need to access
each example again and again until convergence. Such repeated access are particu-
larly costly when the deformed examples are computed on demand. This is even
more wasteful because most examples are readily discarded by the selective sampling
methods.

1.1 Large scale learning

Running machine learning algorithms on very large scale problems is still difficult. For
instance, Bennett and Campbell (2000) discuss the problem of scaling SVM “to massive
datasets” and point out that learning algorithms are typically quadratic and imply several
scans of the data. Three factors limit machine learning algorithms when both the sample size
n and the input dimension d grow very large. First, the training time becomes unreasonable.
Second, the size of the solution affects the memory requirements during both the training
and recognition phases. Third, labeling the training examples becomes very expensive.
To address those limitations, there has been a lot of clever studies on solving quadratic
optimization problems (Chang and Lin, 2001; Joachims, 1999), on online learning (Bottou,
1998; Kivinen et al., 2002; Crammer et al., 2004), on sparse solutions (Vincent and Bengio,
2002), and on active learning (Cohn et al., 1995; Campbell et al., 2000).

The notion of computational complexity discussed in this paper is tied to the empirical
performance of algorithms. Three common strategies can be distinguished to reduce this
practical complexity (or observed training time). The first strategy consists in working
on subsets of the training data, solving several smaller problems instead of a large one,
as in the SVM decomposition method (Osuna et al., 1997). The second strategy consists
in parallelizing the learning algorithm. The third strategy tries to design less complex
algorithms that give an approximate solution with equivalent or superior performance. For
instance, early stopping approximates the full optimization without compromising the test
set accuracy. This paper focuses on this third strategy.

1.2 Learning complexity

The core of many learning algorithms essentially amounts to solving a system of linear
equations of the form Ax = b where A is an n × n input matrix, b an output vector and
x is an unknown vector. There are many classical methods to solve such systems (Golub
and Van Loan, 1991). For instance, if we know that A is symmetric and semi-definite
positive, we can factorize as A = LL> where L is a lower triangular matrix representing
the square root of A. The factorization costs O(n3) operations. Similarly to this Cholesky
factorization, there are many methods for every kind of matrices A such as QR, LU, etc.
Their complexity is always O(n3). They lead to the exact solution, even though in practice,
some are more numerically stable or slightly faster. When the problem becomes large, a
method with a cubic complexity is not a realistic approach.
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Iterative methods are useful for larger problems. The idea is to start from some initial
vector x0 (null or random) and to iteratively update it by performing steps of size ρk along
direction dk, that is xk+1 = xk + ρkdk. Choosing the direction is the difficult part. The
optimization literature suggests that the first order gradients yield very poor directions.
Finding a second order direction costs O(n2) operations (conjugate gradients, etc.) and
provides the exact solution in n iterations, for a total of O(n3) operations. However we
obtain an approximate solution in fewer steps. Therefore these algorithms have a practical
complexity of O(kn2) where k is the number of steps required to have a good enough
approximation. Hence we have algorithms for larger problems, but they remain too costly
for really very large datasets.

Additional progress can be achieved by exploiting sparsity. The idea is to constrain the
number of non null coefficients in vector x. Approximate computations can indicate which
coefficients will be zero with high confidence. Then the remaining subsystem can be solved
with any of the previously described methods. This approach corresponds to the fact that
many examples bring very little additional information. The hope is then to have a solution
with an empirical complexity O(nd) with d close to 2. This idea is exploited by modern
SVM algorithms.

During his optimization lecture, Nemirovski (2005) said that the extremely large-scale
case (n � 105) rules out all advanced convex optimization technics. He argues that there is
only one option left, first order gradient methods. We are convinced that other approximate
techniques can exploit the stochastic regularities of learning problems. For instance the
LASVM method (Bordes and Bottou, 2005; Bordes et al., 2005) seems considerably more
efficient than the first order online SVMs discussed in (Kivinen et al., 2002).

1.3 Online learning

Online learning algorithms are usually associated with problems where the complete training
set is not available beforehand. However their computational properties are very useful for
large scale learning. A well designed online algorithm needs less computation to reach the
same test set accuracy as the corresponding batch algorithm (Murata and Amari, 1999;
Bottou and LeCun, 2004).

Two overlapping frameworks have been used to study online learning algorithms, by
leveraging the mathematics of stochastic approximations (Bottou, 1998), or by refining the
mathematics of the Perceptron (Novikoff, 1962). The Perceptron seems a natural starting
point for online SVM. Algorithms derived from the Perceptron share common character-
istics. Each iteration consists of two steps. First one decides if the new point xt should
influence the decision rule and then one updates the decision rule. The Perceptron, for
instance, only updates its parameter wt−1 if the point xt is misclassified. The updated
parameters are obtained by performing a step along direction xt, that is wt = wt−1 + ytxt.
Compared to maximum margin classifiers such as SVM, the Perceptron runs much faster
but does not deliver as good a generalization performance.

Many authors (Freund and Schapire, 1998; Frieß et al., 1998; Gentile, 2001; Li and Long,
2002; Crammer et al., 2004) have modified the Perceptron algorithm to ensure a margin.
Older variants of the Perceptron, such as minover and adatron in (Nadal, 1993), are also
very close to SVMs.
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1.4 Active learning

Active learning addresses problems where obtaining labels is expensive (Cohn et al., 1995).
The learner has access to a vast pool of unlabeled examples, but is only allowed to obtain
a limited number of labels. Therefore it must carefully choose which examples deserve the
labeling expense.

Even when all labels are available beforehand, active learning is useful because it leads
to sparser solutions (Schohn and Cohn, 2000; Bordes et al., 2005). Moreover, the criteria
for asking or not a label may be cheaper to compute than trying a labeled point.

1.5 Outline of the paper

Section 2 briefly presents the SVMs and describes how the LASVM algorithm combines
online and active characteristics. Section 3 discusses invariance and presents selective sam-
pling strategies to address them. Finally, section 4 reports experiments and results on a
large scale invariant problem.

2. Online algorithm with selective sampling

This section first discusses the geometry of the quadratic optimization problem and its suit-
ability to algorithms, such as SMO (Platt, 1999), that iterate feasible direction searches.
Then we describe how to organize feasible direction searches into an online learning algo-
rithm amenable to selective sampling (Bordes et al., 2005).

Consider a binary classification problem with training patterns x1 . . . xn and associated
classes y1 . . . yn ∈ {+1,−1}. A soft margin SVM (Cortes and Vapnik, 1995) classifies a
pattern x according to the sign of a decision function

f(x) =
∑

i

αi 〈x, xi〉 + b (1)

where the notation 〈x, x′〉 represents the dot-product of feature vectors associated with the
patterns x and x′. Such a dot-product is often defined implicitly by means of a Mercer
kernel (Cortes and Vapnik, 1995). The coefficients αi in (1) are obtained by solving the
following quadratic optimization (QP)1problem:

max
α

W (α) =
∑

i

αiyi −
1

2

∑

i j

αiαj 〈xi, xj〉

with







∑

i

αi = 0

0 ≤ yiαi ≤ C

(2)

A pattern xi is called “support vector” when the corresponding coefficient αi is non zero.
The number s of support vectors asymptotically grows linearly with the number n of ex-
amples (Steinwart, 2004).
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Equality Constraint

A

B
Box Constraints

Feasible
Polytope

Figure 1: Geometry of the SVM dual QP problem (2). The box constraints 0 ≤ yiαu ≤ C

restrict the solutions to a n–dimensional hypercube. The equality constraint
∑

αi = 0 further restricts the solutions to a (n−1)–dimensional polytope, that
is segment [AB] in this 2-dimensional figure.

BA BA

Figure 2: Performing a line search inside the feasible space of the SVM dual QP problem.
The quadratic cost function restricted to the search line might reach its maximum
inside (left) or outside the box constraints (right.)

2.1 Feasible direction algorithms

The geometry of the SVM QP problem (2) is summarized in figure 1. The box constraints
0 ≤ yiαi ≤ C restrict the solutions to a n–dimensional hypercube. The equality constraint
∑

αi = 0 further restricts the solutions to a (n−1)–dimensional polytope F .

1. Note that αi is positive when yi = +1 and negative when yi = − 1.

5



Loosli, Bottou and Canu

Consider a feasible point αt ∈ F . A direction ut indicates a feasible direction if the
half-line {αt+λut, λ ≥ 0} intersects the polytope in points other than αt. Feasible direction
algorithms iteratively update αt by first choosing a feasible direction ut and searching the
half-line for the feasible point αt+1 that maximizes the cost function. The optimum is
reached when no further improvement is possible (Zoutendijk, 1960).

The quadratic cost function restricted to the half-line search might reach its maximum
inside or outside the polytope (see figure 2). The new feasible point αt+1 is easily derived
from the differential information in αt and from the location of the bounds A and B induced
by the box constraints.

αt+1 = αt + max {A, min {B, C}} ut

with C =
d W (αt + λut)

d λ

(

d2 W (αt + λut)

d λ2

)−1 (3)

Computing these derivatives for arbitrary directions ut is potentially expensive because it
involves all n2 terms of the dot-product matrix 〈xi, xj〉. However, it is sufficient to pick
ut from a well chosen finite set of directions (Bordes et al., 2005, appendix), preferably
with many zero coefficients. The SMO algorithm (Platt, 1999) exploits this opportunity by
only considering feasible directions that only modify two coefficients αi and αj by opposite
amounts. The most common variant selects the pairs (i, j) that define the successive search
directions using a first order criterion:

i = arg max
s

{
∂W

∂αs

s.t. αs < max(0, ys C)}

j = arg min
s

{
∂W

∂αs

s.t. αs > min(0, ys C)}
(4)

The time required for solving the SVM QP problem grows like nβ with 2 ≤ β ≤ 3 (Bordes
et al., 2005, section 2.1) when the number of examples n increases. Meanwhile the kernel
matrix 〈xi, xj〉 becomes too large to store in memory. Computing kernel values on the fly
vastly increases the computing time. Modern SVM solvers work around this problem using
a cache of recently computed kernel matrix coefficients.

2.2 Learning is easier than optimizing

The SVM quadratic optimization problem (2) is only a sophisticated statistical proxy, de-
fined on the finite training set, for the actual problem, that is classifying future patterns
correctly. Therefore it makes little sense to optimize with an accuracy that vastly exceeds
the uncertainty that arises from the use of a finite number of training examples.

Online learning algorithms exploit this fact. Since each example is only processed once,
such algorithms rarely can compute the optimum of the objective function. Nevertheless,
many online learning algorithms come with formal generalization performance guarantees.
In certain cases, it is even possible to prove that suitably designed online algorithms out-
speed the direct optimization of the corresponding objective function (Bottou and LeCun,
2004): they do not optimize the objective function as accurately, but they reach an equiv-
alent test error more quickly.

Researchers therefore have sought efficient online algorithms for kernel machines. For
instance, the Budget Perceptron (Crammer et al., 2004) demonstrates that online kernel
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algorithms should be able to both insert and remove support vectors from the current kernel
expansion. The Huller (Bordes and Bottou, 2005) shows that both insertion and deletion
can be derived from incremental increases of the SVM objective function W (α).

2.3 The LASVM online SVM algorithm

Bordes et al. (2005) describe an online SVM algorithm that incrementally increases the dual
objective function W (α) using feasible direction searches. LASVM maintains a current
coefficient vector αt and the associated set of support vector indices St. Each LASVM
iteration receives a fresh example (xσ(t), yσ(t)) and updates the current coefficient vector αt

by performing two feasible direction searches named “process” and “reprocess”.

• Process is a SMO direction search (3) along the direction defined by the pair formed
with the current example index σ(t) and another index chosen among the current
support vector indices St using the first order criterion (4). Example σ(t) might be a
new support vector in the resulting α

′
t and S ′

t.
• Reprocess is a SMO direction search (3) along the direction defined by a pair of indices

(i, j) chosen among the current support vectors S ′
t using the first order criterion (4).

Examples i and j might no longer be support vectors in the resulting αt+1 and St+1.

Repeating LASVM iterations on randomly chosen training set examples provably converges
to the SVM solution with arbitrary accuracy. Empirical evidence indicates that a single
presentation of each training example is sufficient to achieve training errors comparable
to those achieved by the SVM solution. After presenting all training examples in random
order, it is useful to tune the final coefficients by running reprocess until convergence.

Online LASVM

1: Initialize α0

2: while there are training examples left do
3: Select an unseen training example (xσ(t), yσ(t))
4: Process(σ(t))
5: Reprocess
6: end while
7: Finish: repeat reprocess until convergence

This single pass algorithm runs faster than SMO and needs much less memory. Useful orders
of magnitude can be obtained by evaluating how large the kernel cache must be to avoid the
systematic recomputation of kernel values. Let n be the number of examples and s be the
number of support vectors which is smaller than n. Furthermore, let r ≤ s be the number
of free support vectors, that is, support vectors such that 0 < yiαi < C. Whereas the SMO
algorithm requires n r cache entries to avoid the systematic recomputation of kernel values,
the LASVM algorithm only needs s r entries (Bordes et al., 2005).

2.4 Selective sampling

Each iteration of the above algorithm selects a training example (xσ(t), yσ(t)) randomly.
More sophisticated example selection strategies yield further scalability improvements. Bor-
des et al. (2005) suggest four example selection strategies:
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• Random Selection : Pick a random unseen training example.

• Gradient Selection : Pick the most poorly classified example (smallest value of yk f(xk))
among 50 randomly selected unseen training examples. This criterion is very close to
what is done in (Loosli et al., 2004).

• Active Selection : Pick the training example that is closest to the decision boundary
(smallest value of |f(xk)|) among 50 randomly selected unseen training examples.
This criterion chooses a training example independently of its label.

• Autoactive selection : Randomly sample at most 100 unseen training examples but
stop as soon as 5 of them fall inside the margins (any of these examples would be
inserted in the set of support vectors). Pick among these 5 examples the one closest
to the decision boundary (smallest value of |f(xk)|.)

Empirical evidence shows that the active and autoactive criterion yield comparable or better
performance level using a smaller number of support vectors. This is understandable because
the linear growth of the number of support vectors is related to fact that soft margin
SVMs make a support vector with every misclassified training example. Selecting training
examples near the boundary excludes a large number of examples that are uninformative
outliers. The reduced number of support vectors further improves both the learning speed
and the memory footprint.

The following section presents the challenge set by invariance and discusses how the low
memory requirements and the selective sampling capabilities of LASVM are well suited to
the task.

3. Invariance

Many pattern recognition problems have invariance properties: the class remains largely
unchanged when specific transformations are applied to the pattern. Object recognition in
images is invariant under lighting changes, translations and rotation, mild occlusions, etc.
Although humans handle invariance very naturally, computers do not.

In machine learning, the a priori knowledge of such invariance properties can be used to
improve the pattern recognition accuracy. Many approaches have been proposed (Simard
et al., 1993; Wood, 1996; Schölkopf et al., 1996; Leen, 1995). We first propose an illustra-
tion of the influence of invariance. Then we describe our selective sampling approach to
invariance, and discuss practical implementation details.

3.1 On the influence of invariance

Let us first illustrate how we propose to handle invariance. Consider points in the plane
belonging to one of two classes and assume that there is an uncertainty on the point co-
ordinates corresponding to some rotation around the origin. The class labels are therefore
expected to remain invariant when one rotates the input pattern around the origin. Fig-
ure 3(a) shows the points, their classes and a prospective decision boundary. Figure 3(b)
shows the example orbits, that is, the sets of all possible positions reached by applying the
invariant transformation to a specific example. All these positions should be given the same
label by the classifier. Figure 3(c) shows a decision boundary that takes into account all the
potential transformations of the training examples. Figure 3(d) shows that this boundary
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can be obtained by selecting adequate representatives for the orbits corresponding to each
training example.
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Figure 3: Those figures illustrate the influence of point variations on the decision boundary
for a toy example. Plot (a) shows a typical decision boundary obtained by only
considering the training examples. Plot (b) shows “orbits” describing the possible
transformations of the training examples. All these variations should be given
the same label by the classifier. Plot (c) shows a decision boundary that takes
into account the variations. Plot (d) shows how this boundary can be obtained
by selecting adequate representants for each orbit.

This simple example illustrates the complexity of the problem. Learning orbits leads
to some almost intractable problems (Graepel and Herbrich, 2004). Adding virtual exam-
ples (Schölkopf et al., 1996) requires considerable memory to simply store the transformed
examples in memory. However, figure 3(d) suggests that we do not need to store all the
transformed examples forming an orbit. We only need to add a few well chosen transformed
examples.

The LASVM algorithm (section 2) displays interesting properties for this purpose. Be-
cause LASVM is an online algorithm, it does not require storing all the transformed exam-
ples. Because LASVM uses selective sampling strategies, it provides the means to select
the few transformed examples that we think are sufficient to describe the invariant decision
boundaries. We therefore hope to solve problems with multiple invariance with milder size
and complexity constraints.
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Our first approach was inspired by (Loosli et al., 2005). Each iteration randomly picks
the next training example, generates a number of transformed examples describing the orbit
of the original example, selects the best transformed example (see section 2.4), and performs
the LASVM process/reprocess steps.

Since the online algorithm never revisits a previously seen training example, this first
approach cannot pick more than one representative transformed example from each orbit.
Problems with multiple invariance are likely to feature complicated orbits that are poorly
summarized using a single transformed example. This major drawback can be remedied by
revisiting training examples that have generated interesting variations in previous iterations.
Alas this remedy requires to either recompute the example transformations, or to store all
of them in memory.

Our final approach simply considers a huge virtual training set composed of all exam-
ples and all their transformation. Each iteration of the algorithm picks a small sample
of randomly transformed training examples, selects the best one using one of the criteria
described in section 2.4, and performs the LASVM process/reprocess steps.

This approach can obviously select multiple examples for each orbit. It also provides
great flexibility. For instance, it is interesting to boostrap the learning process by first
learning from untransformed examples. Once we have a baseline decision function, we can
apply increasingly ambitious transformations.

3.2 Invariance in practice

Learning with invariance is a well studied problem. Several papers explain how to efficiently
apply pattern transformations (Simard et al., 1993; Wood, 1996; Schölkopf et al., 1996). We
use the MNIST database of handwritten digit images because many earlier results have been
reported (Le Cun et al., 1998). This section explains how we store the original images and
how we efficiently compute random transformations of these digits images on the fly.

3.2.1 Tangent vectors

Simard et al. (2000) explains how to use Lie algebra and tangent vectors to apply arbitrary
affine transformations to images. Affine transformations can be described as the compo-
sition of a six elementary transformations: horizontal and vertical translations, rotations,
horizontal and vertical scale transformations, and hyperbolic transformations. For each
image, the method computes a tangent vector for each elementary transformation, that is,
the normalized pixel-wise difference between an infinitesimal transformation of the image
and the image itself.

Small affine transformation are then easily approximated by adding a linear combination
of these six elementary tangent vectors:

xaff (i, j) = x(i, j) +
∑

T∈T

αT tT (i, j)

where T is the set of elementary transformations, x(i, j) represents the initial image, tT (i, j)
is its tangent vector for transformation T , and αT represents the coefficient for transforma-
tion T .
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3.2.2 Deformation fields

It turns out that the tangent vector for the six elementary affine transformations can be
derived from the tangent vectors tx(i, j) and ty(i, j) corresponding to the horizontal and
vertical translations. Each elementary affine transformation can be described by a vector
field [fT

x (i, j), fT
y (i, j) ] representing the displacement direction of each pixel (i, j) when one

performs an infinitesimal elementary transformation T of the image. The tangent vector
for transformation T is then:

tT (i, j) = fT
x (i, j) tx(i, j) + fT

y (i, j) ty(i, j)

This property provides for extending the tangent vector approach from affine transforma-
tions to arbitrary elastic transformations, that is, transformations that can be represented
by a deformation field [ fx(i, j), fy(i, j) ]. Small transformations of the image x(i, j) are
then easily approximated using a linear operation:

xdeformed(i, j) = x(i, j) + α ∗ (fx(i, j) ∗ tx(i, j) + fy(i, j) ∗ ty(i, j))

Plausible deformation fields [fx(i, j), fy(i, j)] are easily generated by randomly drawing an
independent motion vector for each pixel and applying a smoothing filter. Figure 4 shows
examples of such deformation fields. Horizontal and vertical vector components are gener-
ated independently and therefore can be used interchangeably.

Figure 4: This figure shows examples of deformation fields. We represent the combination
of horizontal and vertical fields. The first one is smoothed random and the second
one is a rotation field modified by random noise.

We also generate transformation fields by adding a controlled amount of random smoothed
noise to a transformation field representing a pure affine transformation. This mainly aims
at introducing more rotations in the transformations.
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3.2.3 Thickening

The horizontal and vertical translation tangent vectors can also be used to implement a
thickening transformation (Simard et al., 2000) that erodes or dilates the digit images.

xthick(i, j) = x(i, j) + β ∗
√

tx(i, j)2 + ty(i, j)2,

where β is a coefficient that controls the strength of the transformation. Choosing β < 0
makes the strokes thinner. Choosing β > 0 makes them thicker.

Figure 5: This figure shows the original digit, the two translation tangent vectors and the
thickening tangent vector.

3.2.4 The infinite virtual training set

As discussed before, we cannot store all transformed example in memory. However we can
efficiently generate random transformations by combining the above methods:

xtrans(i, j) = x(i, j) + αx ∗ fx(i, j) ∗ tx(i, j)

+ αy ∗ fy(i, j) ∗ ty(i, j)

+ β ∗
√

tx(i, j)2 + ty(i, j)2

We only store the initial images x(i, j) along with its translation tangent vectors tx(i, j)
and ty(i, j). We also store a collection of pre-computed deformation fields that can be
interchangeably used as fx(i, j) or fy(i, j). The scalar coefficients αx, αy and β provide
further transformation variability.

Figure 6 shows examples of all the combined transformations. We can generate as
many examples as we need this way, playing on the choice of deformation fields and scalar
coefficients.
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Figure 6: This figure shows 16 variations of a digit with all the transformations cited here.

3.2.5 Large translations

All the transformations described above are small sub-pixel transformations. Even though
the MNIST digit images are roughly centered, experiments indicate that we still need to
implement invariance with respect to translations of magnitude one or two pixels. Thus we
also apply randomly chosen translations of one or two pixels. These full-pixel translations
come on top of the sub-pixel translations implemented by the random deformation fields.

4. Application

This section reports experimental results achieved on the MNIST database using the tech-
niques described in the previous section. We have obtained state-of-the-art results using 10
SVM classifiers in one-versus-rest configuration. Each classifier is trained using 8 million
transformed examples using the standard RBF kernel < x, x′ >= exp(−γ‖x − x′‖2). The
soft-margin C parameter was always 1000.

As explained before, the untransformed training examples and their two translation
tangent vectors are stored in memory. Transformed exemples are computed on the fly and
cached. We allowed 500MB for the cache of transformed examples, and 6.5GB for the cache
of kernel values. Indeed, despite the favorable characteristics of our algorithm, dealing with
millions of examples quickly yields tens of thousands support vectors.
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4.1 Deformation settings

One could argue that handling more transformations always increases the test set error. In
fact we simply want a classifier that is invariant to transformations that reflect the typical
discrepancies between our training examples and our test examples. Making the system
invariant to stronger transformations might be useful in practice, but could reduce the
performance on our particular test set.

We used cross-validation to select both the kernel bandwidth parameter and to select the
strength of the transformations applied to our initial examples. The different parameters
of the cross validation are the deformation strength α and the RBF kernel bandwidth γ

for the RBF kernel. During the same time, we have also estimated whether the thickening
transform and the 1 or 2 pixel translations are desirable.

Figure 7 reports the SVM error rates measured for various configurations on a validation
set of 10,000 points taken from the standard MNIST training set. The training set was com-
posed by picking 5,000 other points from the MNIST training set and applying 10 random
transformations to each point. We see that thickening is not a relevant transformation for
the MNIST problem. Similarly, we observe that 1 pixel translations are very useful, and
that it is not necessary to use 2 pixels translations.

4.2 Example selection

One of the claims of our work is the ability to implement invariant classifiers by selecting
a moderate amount of transformed training examples. Otherwise the size of the kernel
expansion would grow quickly and make the classifier impractically slow.

We implemented the example selection criteria discussed in section 2.4. Figure 8 com-
pares error rates (left), number of support vectors (center), and training times (right) using
three different selection criteria: random selection, active selection, and auto-active selec-
tion. These results were obtained using 100 random transformations of each of the 60000
MNIST training examples. The graphs also show the results obtained on the 60000 MNIST
training examples without random transformations.

The random and auto-active selection criteria give the best test errors. The auto-active
criterion however yields a much smaller number of support vectors and trains much faster.
Therefore we chose the auto-active selection criterion for the following experiments.

4.3 The finishing step

After presenting the last training example, Bordes et al. (2005) suggest to tune the final
solution by running reprocess until convergence. This amounts to optimizing the SVM
objective function restricted to the remaining support vectors. This operation is known
as the “finishing step”. In our case, we never see the last training examples since we can
always generate more.

At first, we simply eliminated this finishing step. However we noticed that after pro-
cessing a large amount of examples (between 5 and 6 millions depending on the class) the
number of support vectors decreases slowly. There is in fact an implicit finishing step.
After a sufficient time, the process operation seldom does anything because hardly any of
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Figure 7: Effects of transformations on the performance. This graph is obtained on a vali-
dation set of 10,000 points, trained on 5000 points and 10 transformations for each
(55,000 training points in total) with an rbf kernel with bandwidth γ = 0.006.
The best configuration is elastic deformation without thickening, for α = 2 and
translations of 1 pixel, which gives 1.28%. Note that α = 0 is equivalent to no
elastic deformation. The baseline results for the validation set is thus 2.52%.

the selected examples needs to be added to the expansion. Meanwhile the reprocess step
remains active.

We then decided to perform a finishing step every 600,000 points. We observed the same
the reduction of the number of support vectors, but earlier during the learning process (see
figure 9). These additional finishing steps seem useful for the global task. We achieved
the best results using this setup. However this observation raises several questions. Is it
enough to perform a single reprocess step after each example selection? Can we get faster
and better results?
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Figure 8: This figures compare the error rates (left), the numbers of support vectors (center)
and the training times (right) of different LASVM runs. The first bar of each
graph corresponds to the training on the original 60,000 MNIST examples (no
transformation - NT). The others three bars were obtained using 100 random
deformations of each MNIST example, that is 6 millions points. The second
columns reports results for random selection (RS), the thirds for active selection
(AS) and the last ones for auto-active selection (AAS) The deformation settings
are set according to previous results (figure 7). The auto-active run gives the best
compromise.

4.4 The number of reprocess

As said before, the LASVM algorithm does not explicitly defines how much optimization
should be performed after processing each example. To explore this issue, we ran several
variants of the LASVM algorithms on 5 random transformations of 10,000 MNIST examples.

The variants denoted “nR/1P” consist of performing n reprocess steps after select-
ing a transformed training example and performing a process step. The variants denoted
“nR each” consist of performing n reprocess steps after each examples, regardless of whether
the example was selected for a process step.
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Figure 9: This figure shows the evolution of the expansion size during training. We used
auto-active selection and performing a finishing step at regular intervals Each
gap corresponds to one finishing step. Here we notice that the number of support
vectors eventually decreases without fully optimizing, at least intentionally.

Table 1 shows the number of support vectors before and after the finishing step, the
training times, and the test performance measured on an independent validation set of
10,000 examples. Neither optimizing a lot (last column) or optimizing very little (first
column) are good setups. In terms of training time, the best combinations for this data set
are “4R/1P” and “5R/1P”. This results certainly shows that achieving the right balance
remains an obscure aspect of the LASVM algorithm.

4.5 Final results

Table 2 summarizes our final results. We first bootstrapped the system using the orig-
inal MNIST training and 4 random deformation of each example. Then we expanded
the database with 130 further random transformations, performing a finishing step every
600,000 examples. The final accuracy matches the results obtained using virtual support
vectors (Schölkopf and Smola, 2001) on the original MNIST test set. Slightly better per-
formances have been reported using convolution networks (Simard et al., 2003), or using a
deskewing algorithm to make the test set easier (Schölkopf and Smola, 2001).17
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1R/1P 2R/1P 3R/1P 4R/1P 5R/1P

Max size 24531 21903 21436 20588 20029
Removed pts 1861 1258 934 777 537
Proportion 7.6% 5.7% 4.3% 3.7% 2.6%
Train time (s) 1621 1548 1511 1482 1441
Error rate 2.13% 2.08% 2.19% 2.09% 2.07%

1R each 2R each 3R each

Max size 23891 21660 20596
Removed pts 1487 548 221
Proportion 6.2% 2.5% 1.0%
Train time (s) 1857 1753 1685
Error rate 2.06% 2.17% 2.13%

Table 1: Effects of transformations on the performance, with an rbf kernel of bandwidth
γ = 0.006. The table shows a comparison for different trade-off between Process
and Reprocess. We change the number of consecutive Reprocess after a Process,
and also after each coming point, even if it is not Processed.

Number of binary classifiers 10
Number of examples for each binary classifier 8,100,000
Thickening transformation no
Additional translations 1 pixel
RBF Kernel bandwidth (γ) 0.006
Example selection criterion auto-active
Finishing step every 600,000 examples
Full training time 8 days
Test set error 0.67%

Table 2: Summary of our final experiment.

5. Conclusion

We have shown how to address large invariant pattern recognition problems using selective
sampling and online algorithms. We also have demonstrated that these techniques scale
remarkably well. It is now possible to run SVM on millions of examples in a relatively
high dimension input space (here 784), using a single processor. Because we only keep
a few thousands of support vectors per classifier that we can handle millions of training
examples.
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