
Improvements to the Percolator algorithm for peptide
identification from shotgun proteomics data sets

Marina Spivak1, Jason Weston1, Léon Bottou1, Lukas Käll2,3, and William Stafford
Noble2,4,*
1 NEC Research, Princeton, NJ, USA
2 Department of Genome Sciences, University of Washington, Seattle, WA, USA
3 Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm
University, Sweden
4 Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA

Abstract
Shotgun proteomics coupled with database search software allows the identification of a large
number of peptides in a single experiment. However, some existing search algorithms, such as
SEQUEST, use score functions that are designed primarily to identify the best peptide for a given
spectrum. Consequently, when comparing identifications across spectra, the SEQUEST score
function Xcorr fails to discriminate accurately between correct and incorrect peptide identifications.
Several machine learning methods have been proposed to address the resulting classification task of
distinguishing between correct and incorrect peptide-spectrum matches (PSMs). A recent example
is Percolator, which uses semi-supervised learning and a decoy database search strategy to learn to
distinguish between correct and incorrect PSMs identified by a database search algorithm. The
current work describes three improvements to Percolator. (1) Percolator’s heuristic optimization is
replaced with a clear objective function, with intuitive reasons behind its choice. (2) Tractable
nonlinear models are used instead of linear models, leading to improved accuracy over the original
Percolator. (3) A method, Q-ranker, for directly optimizing the number of identified spectra at a
specified q value is proposed, which achieves further gains.

Keywords
shotgun proteomics; tandem mass spectrometry; machine learning; peptide identification

1 Introduction
A shotgun proteomics mass spectometry experiment produces, for a given biological sample,
a collection of spectra, each of which may be mapped back to its generating peptide using either
de novo or database search techniques (reviewed in [26,25]). Critical to any database search
procedure is the score function that evaluates the quality of the match between an observed
spectrum and a candidate peptide. This function plays two complementary roles. First, the
function ranks candidate peptides relative to a single spectrum, producing a single, top-scoring
peptide-spectrum match (PSM) for each spectrum. Second, the function ranks the PSMs from
different spectra with respect to one another. This latter, absolute ranking task is intrinsically
more difficult than the relative ranking task. A perfect absolute ranking function is by definition

*Corresponding author: E-mail: noble@gs.washington.edu.

NIH Public Access
Author Manuscript
J Proteome Res. Author manuscript; available in PMC 2010 July 6.

Published in final edited form as:
J Proteome Res. 2009 July 6; 8(7): 3737–3745. doi:10.1021/pr801109k.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

also a perfect relative ranking function, but the converse is not true, because PSM scores may
not be well calibrated from one spectrum to the next.

A variety of approaches have been developed to learn PSM scoring functions from real data.
Typically, the input to these PSM post-processing methods is the relative score, as well as
properties of the spectrum, the peptide and features that represent the quality of the PSM.
PeptideProphet [19], for example, uses four statistics computed by the SEQUEST database
search algorithm as input to a linear discriminant analysis classifier. The system is trained from
labeled correct and incorrect PSMs derived from a purified sample of known proteins. Other
approaches use alternative feature representations or classification algorithms, such as support
vector machines (SVMs) [1] or decision trees [11].

One drawback to these machine learning approaches is that they often do not generalize well
across different machine platforms, chromatography conditions, etc. Consequently, when the
experimental conditions change, a new training set must be acquired, and this acquisition and
training can be expensive.

To combat this problem, several methods have been described that adjust the parameters of
the model with respect to each new data set. PeptideProphet, for example, uses a fixed linear
discriminant function but couples it with a postprocessor that maps the resulting unitless
discriminant score to an estimated probability. In the original version of PeptideProphet [19],
this mapping function was learned from each data set in an unsupervised fashion (i.e., without
knowing which PSMs are correct and which are incorrect) using the expectation-maximization
(EM) algorithm [9].

Subsequently, several algorithms have been described that use semi-supervised learning to
adjust model parameters with respect to each new data set. In contrast to supervised learning,
in which the given training set is fully labeled, a semi-supervised learner is provided with a
partially labeled training set. In the context of PSM scoring, these labels are created using a
decoy database [24]. Each spectrum is searched once against the real (“target”) protein database
and once against a decoy database comprised of reversed [24], shuffled [20] or Markov-chain
generated proteins [6]. Matches to the target database are unlabeled—they may or may not be
correct (we expect 50–90% are false positives). But matches to the decoy database can be
confidently labeled “incorrect.”

The semi-supervised version of PeptideProphet [5] uses decoy PSMs to improve the mapping
from discriminant scores to probabilities. During the EM step, PeptideProphet includes decoy
PSMs, forcing them to be labeled “incorrect.” The resulting probabilities are significantly more
accurate than probabilities estimated in an unsupervised fashion.

The Percolator algorithm [17] takes the semi-supervised approach one step further. Rather than
using a fixed discriminant function and employing semi-supervised learning as a postprocessor,
Percolator solves the entire problem in a semi-supervised fashion, learning a function that
consistently ranks the decoy PSMs below a subset of high-confidence target PSMs. Percolotor
uses an iterative, SVM-based algorithm, initially identifying a small set of high-scoring target
PSMs, and then learning to separate these from the decoy PSMs. The learned classifier is
applied to the entire set, and if new high-confidence PSMs are identified, then the procedure
is repeated. Critical to the success of the algorithm is a statistical scoring procedure, based on
estimated false discovery rates [2], that prevents explosion of the high-confidence set of PSMs.

A subsequent version of PeptideProphet [10] extends that algorithm in a similar fashion. Like
Percolator, the newest version of PeptideProphet adjusts the parameters of the discriminant
function to reflect specific features of the data set and allows the algorithm to use more than

Spivak et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

one PSM for the identification of the best scoring peptide. In addition, the algorithm uses a
measure of spectrum quality in its model.

Despite the good performance of Percolator, the algorithm itself is somewhat heuristic; indeed,
it is unclear what exactly Percolator optimizes and whether the algorithm’s iterative
optimization process provably converges. The current work proposes a novel, well-founded
approach to this problem. Although only some of the matches to the target database are positive
examples, we opt to treat this problem as a fully supervised classification problem with noisy
labels; i.e., we label all the target PSMs “correct” (but some of these are mislabeled) and all
the decoy PSMs “incorrect.” However, we define a loss function that does not severely penalize
examples that are far from the decision boundary. In this way, incorrect target PSMs do not
strongly affect the learning procedure. We show how this choice of loss is superior to more
classical choices of loss function, and in the linear case how this yields results similar to the
original semi-supervised Percolator algorithm. An important benefit of using a fully supervised
approach is that, in contrast to Percolator, the new approach defines a clear, intuitive objective
function whose minimization is known to converge. Furthermore, the resulting classifier can
be trained with tractable nonlinear models which then significantly improve the results of
Percolator. Subsequently, we propose a modification of our algorithm that directly optimizes
the number of PSMs relative to a user-specific statistical confidence threshold. This ability to
specify the desired confidence threshold a priori is useful in practice and leads to further
improvement in the results. The new algorithm, called Q-ranker, is implemented in Crux
version 2.0, which is available with source code at http://noble.gs.washington/proj/crux.

2 Materials and Methods
2.1 Data sets

We used four previously described data sets to test our algorithms [17]. The first is a yeast data
set containing 69,705 target PSMs and twice that number of decoy PSMs. These data were
acquired from a tryptic digest of an unfractionated yeast lysate and analyzed using a four-hour
reverse phase separation. Throughout this work, peptide were assigned to spectra by using
SEQUEST with no enzyme specificity and with no amino acid modifications enabled. The
next two data sets were derived from the same yeast lysate, but treated by different proteolytic
enzymes: elastase and chymotrypsin. These data sets respectively contain 57,860 and 60,217
target PSMs and twice that number of decoy PSMs. The final data set was derived from a C.
elegans lysate proteolytically digested by trypsin and processed analogously to the yeast data
sets.

Each PSM was represented using the 17 features listed in Table 1. Note that, originally,
Percolator used 20 features. In this work, we removed three features that exploit protein-level
information, because of the difficulty of accurately validating, via decoy database search,
methods that use this type of information. We also defined 20 additional features for each
peptide, also defined in Table 1, corresponding to the counts of amino acids in the given peptide.
Using these addition features yields a feature vector of length 37.

2.2 Statistical confidence estimates
Throughout this work, we use the q value [28] as a statistical confidence measure assigned to
each PSM. If we specify a score threshold t and refer to PSMs with scores better than t as
accepted PSMs, then the false discovery rate (FDR) is defined as the percentage of accepted
PSMs that are incorrect (i.e., the peptide was not present in the mass spectrometer when the
spectrum was produced). The q value is defined as the minimal FDR threshold at which a given
PSM is accepted. Note that the q value is a general statistical confidence metric that is unrelated
to the Qscore method for evaluating SEQUEST results [24].

Spivak et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://noble.gs.washington/proj/crux

We calculate q values by using decoy PSMs [18], derived by searching each spectrum against
a database of shuffled protein sequences. Denote the scores of target PSMs f1, f2,…,fmf and the
scores of decoy PSMs d1, d2,…,dmd. For a given score threshold t, the number of accepted
PSMs (positives) is P(t) = |{fi > t; i = 1,…, mf }|. The estimated number of false positives among
the positives is given by , where π0 is the estimated
proportion of target PSMs that are incorrect. In this work, as previously [17], we use a fixed
π0 = 0.9. We can then estimate the FDR at a given threshold t as

The q value assigned to score fi is then

3 Results
3.1 A supervised algorithm for target-decoy discrimination

Given a set of examples (PSMs) (x1, …xn) (where the bold face denotes a vector) and
corresponding labels (y1, …yn), the goal is to choose a discriminant function f (x), such that

To find f(x) we first choose a parameterized family of functions and then search for the function
in the family that best fits the empirical data. The quality of the fit is measured using a loss
function L(f(x), y) which quantifies the discrepancy between the values of f(x) and the true
labels y.

Initially, we consider the family of functions that are implemented by a linear model:

The possible choices of weights define the members of the family of functions.

To find the function that best minimizes the loss, we choose to use gradient descent, so the loss
function itself must be differentiable. This requirement prevents us from simply counting the
number of mistakes (mislabeled examples), which is called the zero-one loss. Typical
differentiable loss functions include the squared loss, often used in neural networks [22], the
hinge loss, which is used in support vector machines [8], and the sigmoid loss. These loss
functions are illustrated in Figure 1.

In general, choosing an appropriate loss function is critical to achieving good performance.
Insight into choosing the loss function comes from the problem domain. In the current setting,
we can safely assume that a significant proportion of the PSMs produced by a given search

Spivak et al. Page 4

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

algorithm are incorrect, either because the score function used to identify PSMs failed to
accurately identify the correct peptide, or because the spectrum corresponds to a peptide not
in the given database, to a peptide with post-translational modifications, to a heterogeneous
population of peptides, or to non-peptide contaminants. Therefore, in this scenario, a desirable
loss function will be robust with respect to the multiple false positives in the data. In other
words, a desirable loss function will not strongly penalize misclassified examples if they are
too far away from the separating hyperplane. Considering the loss functions in Figure 1, the
sigmoid loss is the only function with the desired property: when yif (x) < −5 the gradient is
close to zero. The squared loss, on the other hand, has a larger gradient for misclassified
examples far from the boundary than for examples close to the boundary, whereas the hinge
loss penalizes examples linearly (it has a constant gradient if an example is incorrectly
classified). We therefore conjecture that the sigmoid loss function should work much better
than the alternatives.

3.2 Supervised learning yields performance comparable to Percolator
We test this conjecture by measuring the performance of the learned scoring function using a
target-decoy search strategy. For this experiment, we use a collection of spectra derived via
microcapillary liquid chromatography MS/MS of a yeast whole cell lysate. These spectra were
searched using SEQUEST [13] against one target database and two independently shuffled
decoy databases, producing a collection of PSMs. For a given ranking of target PSMs, we use
the corresponding collection of decoy PSMs to estimate q values (Section 2.2). Our goal is to
correctly identify as many PSMs as possible for a given q value. Therefore, in Figure 2, we
plot the number of identified PSMs as a function of q value threshold.

To ensure a valid experiment, we split the target and decoy PSMs into two equal parts. We
train on the data set composed of the first half of positives and negatives, and we use the second
half of the data as a testing set. The q value estimates are derived from the test set, not the
training set. This approach is more rigorous than the methodology employed in [17], in which
the positive examples were used both for training and testing. However, the similarity between
Figure 2(A) and (B) indicates that overfitting is not occurring. Nonetheless, in subsequent
experiments, we retain a full separation of the train and test sets.

Figure 2 compares the performance of ranking by XCorr, Percolator and a linear model trained
using three different loss functions. The figure shows that, for example, the Percolator
algorithm identifies 5917 PSMs at a q value threshold of 0.01. As expected, the sigmoid loss
dominates the other two loss functions that we considered, square loss and hinge loss.

In fact, the linear model with the sigmoid loss achieves almost identical results to the Percolator
algorithm. This concordance can be explained in the following way. Percolator also uses a
linear classifier (a linear SVM) with a hinge loss function. However, on each iteration only a
subset of the positive examples are used as labeled training data according to the position of
the hyperplane. The rest of the positive examples that have a small value of yif (xi) are ignored
during training. Consequently, one can say that their gradient is zero; hence, the hinge loss
function is “cut” at a certain point so that it no longer linearly penalizes mistakes at any distance,
as shown in Figure 3. A cut hinge loss is effectively a piece-wise linear version of a sigmoid
function. Indeed, such a cut hinge loss has been used before and is referred to as a ramp loss
[7]. By using a sigmoid loss function, we have thus developed a method that explains the
heuristic choices of the Percolator algorithm but instead implements a direct, intuitive objective
function. Hereafter, we refer to this method as “direct classification.”

Spivak et al. Page 5

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3.3 Nonlinear families of discriminant functions yield improved performance
Having established that direct classification using a linear model performs as well as Percolator
on this data set, we next consider a nonlinear family of functions by considering two-layer
neural networks

where hk(x) is defined as tanh((wk)⊤x + bk), and wk and bk index the weight vector and threshold
for the kth hidden unit.

We can choose the capacity of our nonlinear family of discriminant functions by increasing or
decreasing the number of hidden units of our neural network. Based on preliminary experiments
with the yeast training data set, we chose the first layer to have five linear hidden units. An
experimental comparison in Figure 4 shows that a nonlinear classifier outperforms the linear
model on the same data set as before. For every q value in the plot, the nonlinear model (the
solid blue line with the label “direct classification (linear)”) produces as many or more PSMs
than its linear counterpart (solid black line labeled “direct classification (nonlinear)”).

3.4 The Q-ranker algorithm for optimizing relative to a specified q value
We have established that framing our problem as a supervised classification task, utilizing
nonlinear models, yields slightly improved results compared with Percolator’s semi-supervised
approach. We now show that reformulating the problem as a ranking task, rather than as a
classification task, leads to even better performance.

Generally speaking, the goal of many shotgun proteomics experiments is to identify as many
proteins as possible at a given q value threshold. For the peptide identification problem, this
task corresponds to finding a ranking of PSMs that maximizes the number of accepted PSMs
for a specified q value threshold. To solve this ranking problem directly, we therefore assume
that the user specifies a particular desired q value threshold a priori. We then search for a
ranking that is optimal with respect to the given q value. A standard formulation for solving
the ranking problem is the ranking SVM [15,16], which can be stated as follows:

(1)

subject to

(2)

This algorithm re-orders the examples so that larger values of w⊤x correspond to positive
examples. Note that, compared to the classification problem posed before, this formulation no
longer has a threshold b, because a class label is no longer predicted, only an ordering. The
ranking formulation is equivalent to optimizing the area under the receiver operating
characteristic (ROC) curve [14], and hence would optimize all q values at once. The
optimization tries to satisfy every pairwise ordering constraint. Again, as in the classification
problem, because we expect 50–90% of the positive examples are false positives, the objective
function will pay too much attention to these examples.

Spivak et al. Page 6

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

However, if optimization of only a certain q value is desired, then reordering of examples far
beyond the q value threshold point on either side of the boundary will not have an effect on
the q value of interest. Therefore, we instead focus on a subset of examples in the vicinity of
the q value cut-off and seek to re-order the examples specifically in this region.

The proposed algorithm is thus as follows. We first find a general discriminant f(x) using the
direct classification algorithm described in the previous section. We then specify a q value to
be optimized and focus sequentially on several intervals in the data set chosen in the vicinity
of the specified q value. The selection of intervals is heuristic and in our case involves defining
a set Q ̂ of q value thresholds 0 to 0.1 with a step size of 0.01 and iterating over these steps. The
interval ε is set to equal twice the number of peptides up to the threshold point. In the course
of training, we record the best result for the specified q value after each epoch. A pseudocode
description of the direct ranking algorithm for specified q values (Q-ranker) is given in
Algorithm 1.

Q-ranker can be extended trivially to search for optimal solutions to several q values at once
by recording the best network for each of the specified q values after each epoch. In all the
experimental runs presented below, the set Q ̂ of threshold q values also served as a set of
specified q values.

In practice, because Q-ranker focuses on a subset of the training set, we found that use of
regularization techniques to control for the model complexity improves our results. In this
work, we use the standard weight decay procedure, which optimizes the error function:

where wi are all the weights of the discriminant function f (x) that we are attempting to learn,
and μ is a weight decay parameter, and E is the original error function. Before training the
network, we perform a 3-fold cross-validation procedure to choose the learning rate and μ.

Q-ranker generalizes the ranking SVM formulation in two ways: (i) this formulation is
nonlinear (but does not use kernels); and (ii) if ε is very large, then the algorithms are equivalent,
but as ε is reduced our algorithm begins to focus on given q values.

Interestingly, choosing examples from a certain region of the data set is also roughly equivalent
to placing the region of the sigmoid with high gradient over the region of interest about the
threshold q value. Because examples further than ε are not picked, this approach is equivalent
to making a loss function which has gradient zero in those regions. This means that we are able
to replace the sigmoid loss function used for training the general neural net with an even more
intuitive choice of loss. In particular, here we use a linear loss L(f(x), y) = |f(x) − y| which
effecively becomes a “ramp loss” (c.f. Figure 3) centered around the q value threshold with
flat parts at ±ε. Because we are solving a ranking problem in the nonlinear case, we now choose
a network with the following architecture:

i.e., we no longer have a final bias output.

Spivak et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3.5 Q-ranker yields even better performance
We tested our direct classification and Q-ranker algorithms on the tryptically digested yeast
data set in Figure 4. It is clear from this figure that, although the linear Q-ranker algorithm does
not improve over the direct classification algorithm, using a nonlinear architecture leads to a
large improvement, especially for larger q values. Other choices of nonlinear architectures
(number of hidden units) are given in Supplementary Figure 7, each leading to improved
performance relative to Percolator.

Compared to the direct classification approach described in Section 3.1, Q-ranker also yields
more consistent training behavior when observed for any given q value. To illustrate this
phenomenon, we fix the interval ε for the Q-ranker algorithm to be defined by the single
threshold corresponding to the specified q value. Figure 5A shows how the results for different
specified q values change during the course of training the direct classification model. The
number of PSMs over lower q value thresholds (for example, 0.0075, 0.01) reach their peak
early during training and then become suboptimal, while the best results for higher q value
thresholds take longer to achieve. This means that during the course of training, different q
value thresholds are being optimized depending on the number of iterations. In contrast, as
shown in Figure 5B, the Q-ranker algorithm learns the best decision boundary for a specified
q value threshold and does not substantially diverge from the best result during further training.
This behavior indicates that the algorithm in fact optimizes the desired quantity. In the
following experiments we therefore adopt Q-ranker as our algorithm of choice, and we compare
it further to Percolator and PeptideProphet.

3.6 Comparison of algorithms across multiple data sets
For our final round of experiments, we compare the performance of Q-ranker, Percolator and
two versions of PeptideProphet—the original parametric version [19], which assumes that the
decoys scores are distributed according to a gamma distribution and the target scores acording
to a Gaussian distribution, and a newer, semiparametric approach [4], which uses a mixture
model of kernel functions to model the two distributions. For both sets of PeptideProphet
results, we use the semi-supervised version of the algorithm [5]. The same set of decoy PSMs
is provided to Percolator, Q-ranker and PeptideProphet. For Percolator and Q-ranker, we use
50% of the PSMs for training and 50% for testing, as before. PeptideProphet does not provide
the ability to learn model parameters on one set of data and apply the learned model to the
second; therefore, PeptideProphet results are generated by applying the algorithm to the entire
data set. This difference gives an advantage to PeptideProphet because that algorithm learns
its model from twice as much data and is not penalized for overfitting.

We report results using either 17 or 37 features, as described in Table 1, for both Percolator
and Q-Ranker. Figure 6 shows the results of this experiment, conducted using the four data
sets described in Section 2.1. Across the four data sets, Q-ranker consistently outperforms
PeptideProphet across all q value thresholds. The left half of Table 2 shows a detailed
comparison of Percolator and Q-ranker on all four data sets using 17 features as input. At q
values of 0.05 or 0.10, Q-ranker yields more accepted target PSMs than either Percolator or
PeptideProphet, whereas Percolator performs slightly better for q < 0.01.

Theoretically, a nonlinear network could yield a larger benefit than a linear model when the
input feature space is increased, as long as the model does not overfit. We therefore
experimented with extending the PSM feature vectors, adding 20 new features corresponding
to the counts of amino acids in the peptide. The results of running Q-ranker with these extended
vectors are shown in Figure 6, labeled “Q-ranker 37.” Increasing the number of features gives
a larger boost to the performance of the nonlinear version of Q-ranker. The effect is particularly
evident on data sets derived from yeast lysate digested with chymotrypsin and elastase. After

Spivak et al. Page 8

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

this extension, Q-ranker identifies more spectra than either of the other algorithms, even at q
< 0.01 (right half of Table 2).

Finally, we further investigated the behavior of Q-ranker by measuring the performance of
networks trained for a specified q value on other q values. We focused on specified q values
0.01, 0.05 and 0.1. Table 3 shows that, when all 37 features are employed, a network trained
for a specified q value is consistently better or equal to the performance on this q value,
compared with networks trained for other specified q values.

4 Discussion
In this work, we have performed all of our analyses using a combination of SEQUEST and
Percolator. However, the conclusions that we draw here have implications for researchers who
do not employ these particular software systems. First, the conclusions likely generalize across
search engines. For example, Percolator has previously been demonstrated to work well with
the Inspect [17] and MASCOT search engines [3], so it seems likely that Q-ranker will also
generalize to these search engines. Second, we have demonstrated the utility of shifting from
a semi-supervised framework to a supervised framework with a modified loss function, both
in terms of improved understanding of the objective function being maximized and improved
discriminative power. A similar shift should be straightforward to apply, for example, to the
semi-supervised version of PeptideProphet and may result in similar benefits.

Throughout our evaluations, we have focused on maximizing the number of spectra that are
correctly assigned a peptide (i.e., the number of accepted PSMs). It is conceivable that a given
algorithm might be biased in the types of peptides it can identify. In this case, the relative
performance of two peptide identifications could depend on whether we count the number of
accepted PSMs or the number of distinct peptides that are identified from a set of spectra.
Supplementary Figure 9 demonstrates that this bias is not occurring in our results: the relative
performance of the algorithms that we considered does not change significantly when we count
the number of distinct peptides identified.

One surprising result from our experiments is the relatively large benefit provided by amino
acid composition features. We hypothesize that this information allows the classifier to learn
to expect certain characteristics of a spectrum. For example, the presence of a proline implies
a pair of high-intensity peaks corresponding to the cleavage N-terminal to the proline; the
presence of many basic residues leads to more +2 ions, and the presence of many hydrophobic
residues leads to more singly charged +1 ions [21]. However, previous experiments with
Percolator using amino acid composition features did not yield significant performance
improvements. The difference, in the current setting, is that we have switched from a semi-
supervised to a fully supervised setting. This switch allows us to use a more complex, nonlinear
model. In general, a complex model has more opportunity to improve over a simpler model if
the feature space is rich. Thus, although a simple linear model such as the one in Percolator
cannot fully exploit the richer, 37-dimensional feature space, the nonlinear model can. This
conclusion is supported by the observation that adding compositional features also improves
the performance of the direct classification method (results not shown).

An alternative, possible explanation for the added discriminative power provided by the amino
acid composition feature is that they provide the algorithm with a way to “cheat.” In our
experiments, we did not guarantee that the training set and the test set contain disjoint sets of
peptides. Hence, an algorithm might overfit on the amino acid composition features and
successfully identify the recurrence of a peptide in the train and test sets. To eliminate this
alternative explanation, we performed a follow-up experiment in which we prevented the same

Spivak et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

peptide from occurring in the training and test set. The results, shown in Supplementary Figure
10, show that the improved performance of Q-ranker over Percolator still holds.

A drawback to using a non-linear discriminative classifier is the difficulty in interpreting the
learned model. In this work, we have focused on optimizing error rate, not interpretability;
sometimes it is hard to have both. Indeed, as shown in Figure 11, simply switching to a linear
SVM in the direct classification setting yields markedly decreased performance. However,
even with a nonlinear model, it is still possible to gain some insight into the relative
contributions of the various features by “knocking out” each feature individually and measuring
the performance of the resulting classifier. Supplementary Table 4 shows the percent reduction
in the number of identified PSMs at q < 0.01 when we knock out each feature of Q-Ranker
with 17 features. Not surprisingly, the enzymatic features are most significant, followed by the
score features (XCorr and ΔCn). The relatively small percentage decrease for many features
suggests that many provide redundant information. A more detailed interpretation of the model
could be derived via further knockout experiments aimed at groups of related features, as was
done in [17].

It is worth noting that the relative performance of the methods that we considered does not
change when we use an alternative q value estimation scheme. Elias et al. [12] advocate
estimating the FDR using target-decoy competition (i.e., searching each spectrum against a
concatenated database of targets and decoys and only retaining the single top-scoring peptide),
and estimating FDRs with respect to the combined collection of target and decoy PSMs. To
show that our results do not depend upon our q value estimation procedure, we report in
Supplementary Figure 8 results analogous to those given in Figure 6, but using FDRs estimated
by following the protocol of Elias et al. Even in this case, the Q-ranker algorithm outperforms
Percolator and both versions of PeptideProphet.

In general, using a large feature space generally requires a concomitantly large number of
training examples. For smaller collections of spectra, or for lower quality spectra in which the
effective number of positive examples is small, we would expect a larger feature space to lead
to overfitting. In the current version of the software, the user must check for overfitting
explicitly, and select the regularization parameter explicitly. One focus of our future work will
be the implementation and validation of robust methods for avoiding such overfitting, either
by adjusting the regularization parameter or reducing the complexity of the model.

5 Conclusions
We have described a series of algorithms that improve in various ways upon the Percolator
algorithm. Given unlabeled target PSMs and negatively labeled decoy PSMs, Percolator treats
the problem as a semi-supervised classification problem. In this work, we instead use a
supervised approach to the same problem. This change allows us to state an explicit objective
function and also allows us to generalize to more powerful, nonlinear models. Finally, if the
user is willing to specify a desired confidence threshold, then the Q-ranker algorithm finds an
optimal ranking with respect to the specified threshold, yielding consistently improved
performance relative to either Percolator or PeptideProphet. Both the direct classification and
the Q-ranker algorithms are implemented in the Crux toolkit, which is available with source
code from http://noble.gs.washington.edu/proj/crux.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Spivak et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://noble.gs.washington.edu/proj/crux

Acknowledgments
6 Funding

This work was funded by NIH award R01 EB007057.

References
1. Anderson DC, Li W, Payan DG, Noble WS. A new algorithm for the evaluation of shotgun peptide

sequencing in proteomics: support vector machine classification of peptide MS/MS spectra and sequest
scores. Journal of Proteome Research 2003;2(2):137–146. [PubMed: 12716127]

2. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society B 1995;57:289–300.

3. Brosch M, Yu L, Hubbard T, Choudhary J. Accurate and sensitive peptide identification with Mascot
Percolator. 2008Submitted

4. Choi H, Ghosh D, Nesvizhskii A. Statistical validation of peptide identifications in large-scale
proteomics using target-decoy database search strategy and flexible mixture modeling. Journal of
Proteome Research 2008;7(1):286–292. [PubMed: 18078310]

5. Choi H, Nesvizhskii AI. Semisupervised model-based validation of peptide identifications in mass
spectrometry-based proteomics. Journal of Proteome Research 2008;7(1):254–265. [PubMed:
18159924]

6. Colinge J, Masselot A, Giron M, Dessingy T, Magnin J. OLAV: Towards high-throughput tandem
mass spectrometry data identification. Proteomics 2003;3:1454–1463. [PubMed: 12923771]

7. Collobert R, Sinz F, Weston J, Bottou L. Large scale transductive svms. Journal of Machine Learning
Research 2006;7:1687–1712.

8. Cortes C, Vapnik V. Support vector networks. Machine Learning 1995;20:273–297.
9. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society 1977;39:1–22.
10. Ding Y, Choi H, Nesvizhskii A. Adaptive discriminant function analysis and reranking of MS/MS

database search results for improved peptide identification in shotgun proteomics. Journal of
Proteome Research 2008;7(11):4878–4889. [PubMed: 18788775]

11. Elias JE, Gibbons FD, King OD, Roth FP, Gygi SP. Intensity-based protein identification by machine
learning from a library of tandem mass spectra. Nature Biotechnology 2004;22:214–219.

12. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein
identifications by mass spectrometry. Nature Methods 2007;4(3):207–214. [PubMed: 17327847]

13. Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass spectral data of peptides
with amino acid sequences in a protein database. Journal of the American Society for Mass
Spectrometry 1994;5:976–989.

14. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic
(ROC) curve. Radiology 1982;143:29–36. [PubMed: 7063747]

15. Herbrich R, Graepel T, Obermayer K. Support vector learning for ordinal regression. Proceedings of
the Ninth International Conference on Articial Neural Networks 1999:97–102.

16. Joachims T. Optimizing search engines using clickthrough data. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD) 2002:133–142.

17. Käll L, Canterbury J, Weston J, Noble WS, MacCoss MJ. A semi-supervised machine learning
technique for peptide identification from shotgun proteomics datasets. Nature Methods 2007;4:923–
25. [PubMed: 17952086]

18. Käll L, Storey JD, MacCoss MJ, Noble WS. Assigning significance to peptides identified by tandem
mass spectrometry using decoy databases. Journal of Proteome Research 2008;7(1):29–34. [PubMed:
18067246]

19. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy
of peptide identification made by MS/MS and database search. Analytical Chemistry 2002;74:5383–
5392. [PubMed: 12403597]

Spivak et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

20. Klammer AA, MacCoss MJ. Effects of modified digestion schemes on the identification of proteins
from complex mixtures. Journal of Proteome Research 2006;5(3):695–700. [PubMed: 16512685]

21. Klammer AA, Reynolds SR, Hoopmann M, MacCoss MJ, Bilmes J, Noble WS. Modelling peptide
fragmentation with dynamic Bayesian networks yields improved tandem mass spectrum
identification. Bioinformatics 2008;24(13):i348–i356. [PubMed: 18586734]

22. LeCun, Y.; Bottou, L.; Orr, GB.; Müller, KR. Efficient backprop. In: Orr, G.; Müller, KR., editors.
Neural Networks: Tricks of the Trade. Springer; 1998. p. 9-50.

23. Mason L, Bartlett PL, Baxter J. Improved generalization through explicit optimization of margins.
Machine Learning 2000;38(3):243–255.

24. Moore RE, Young MK, Lee TD. Qscore: An algorithm for evaluating sequest database search results.
Journal of the American Society for Mass Spectrometry 2002;13(4):378–386. [PubMed: 11951976]

25. Nesvizhskii AI, Vitek O, Aebersold AR. Analysis and validation of proteomic data generated by
tandem mass spectrometry. Nature Methods 2007;4(10):787–797. [PubMed: 17901868]

26. Hernandez MMP, Appel RD. Automated protein identification by tandem mass spectrometry: Issues
and strategies. Mass Spectrometry Reviews 2006;25:235–254. [PubMed: 16284939]

27. Shen X, Tseng GC, Zhang X, Wong WH. On (psi)-learning. Journal of the American Statistical
Association 2003;98(463):724–734.

28. Storey JD. A direct approach to false discovery rates. Journal of the Royal Statistical Society
2002;64:479–498.

Spivak et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1. Three types of loss function
Each panel plots the loss as a function of the difference in the true and predicted label. The
squared loss L(f(x), y) = (f(x) − y)2 is often used in regression problems, but also in classification
[22]. The hinge loss L(f(x), y) = max(0, 1 − yf(x)) is used as a convex approximation to the
zero-one loss in support vector machines [8]. The sigmoid loss L(f(x), y) = 1/exp(1 + f(x)) is
perhaps less commonly used, but is discussed in, e.g., [23,27].

Spivak et al. Page 13

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2. Comparison of loss functions
Each panel plots the number of accepted PSMs for the yeast (A) training set and (B) test set
as a function of the q value threshold. Each series corresponds to one of the three loss functions
shown in Figure 1, with series for Percolator and SEQUEST included for comparison.

Spivak et al. Page 14

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3. “Cutting” the hinge loss makes a sigmoid-like loss called the ramp loss
Making the hinge loss have zero gradient when z = yif (x) < s for some chosen value s effectively
makes a piece-wise linear version of a sigmoid function.

Spivak et al. Page 15

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4. Comparison of Percolator, direct classification and Q-ranker
The figure plots the number of accepted PSMs as a function of q value threshold for the yeast
data set. Each series corresponds to a different ranking algorithm, including Percolator as well
as linear and nonlinear versions of the direct classification algorithm and Q-ranker. The
nonlinear methods use 5 hidden units.

Spivak et al. Page 16

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5. Comparison of training optimization methods (iteration vs. error rate)
The Q-ranker optimization starts from the best result of direct optimization achieved during
the course of training and continues for a further 300 iterations. These results are on the training
set. Note that for each q value choice, Q-ranker improves the training error over the best result
from the classification algorithm.

Spivak et al. Page 17

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6. Comparison of PeptideProphet, Percolator and Q-ranker on four data sets
Each panel plots the number of accepted target PSMs as a function of q value. The series
correspond to the three different algorithms, including two variants of Q-ranker that use 17
features and 37 features.

Spivak et al. Page 18

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spivak et al. Page 19

Table 1
Features used to represent PSMs
The first ten features are computed by SEQUEST. Features 18–37 are used in Section 3.6.

1 XCorr Cross correlation between calculated and observed spectra

2 ΔCn Fractional difference between current and second best XCorr

3
ΔCc

L Fractional difference between current and fifth best XCorr

4 Sp Preliminary score for peptide versus predicted fragment ion values

5 ln(rSp) The natural logarithm of the rank of the match based on the Sp score

8 Mass The observed mass [M+H]+

6 ΔM The difference in calculated and observed mass

7 abs(ΔM) The absolute value of the difference in calculated and observed mass

9 ionFrac The fraction of matched b and y ions

10 ln(NumSp) The natural logarithm of the number of database peptides within the specified m/z range

11 enzN Boolean: Is the peptide preceded by an enzymatic (tryptic) site?

12 enzC Boolean: Does the peptide have an enzymatic (tryptic) C-terminus?

13 enzInt Number of missed internal enzymatic (tryptic) sites

14 pepLen The length of the matched peptide, in residues

15–17 charge1–3 Three Boolean features indicating the charge state

18–37 A, …, Y Counts of each of the 20 amino acids

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spivak et al. Page 20
Ta

bl
e

2
C

om
pa

ri
so

n
of

 P
er

co
la

to
r

an
d

Q
-r

an
ke

r
on

 1
7

an
d

37
 fe

at
ur

e
da

ta
 se

ts
Ea

ch
 en

try
 in

 th
e t

ab
le

 in
di

ca
te

s t
he

 n
um

be
r o

f a
cc

ep
te

d
PS

M
s f

or
 th

e g
iv

en
 al

go
rit

hm
 (c

ol
um

n)
 o

n
th

e g
iv

en
 d

at
a s

et
 at

 th
e g

iv
en

 sp
ec

ifi
ed

q
va

lu
e

(r
ow

).
En

tri
es

 in
 b

ol
df

ac
e

in
di

ca
te

 th
at

 th
is

 a
lg

or
ith

m
 p

er
fo

rm
ed

 b
et

te
r t

ha
n

th
e

ot
he

r a
lg

or
ith

m
 fo

r t
hi

s
da

ta
 s

et
 a

nd
 q

 v
al

ue
th

re
sh

ol
d.

17
 fe

at
ur

es
37

 fe
at

ur
es

D
at

a
se

t
q

va
lu

e
Pe

rc
ol

at
or

Q
-r

an
ke

r
Pe

rc
ol

at
or

Q
-r

an
ke

r

Y
ea

st
 tr

yp
si

n
0.

01
59

17
58

85
59

83
60

72

0.
05

67
93

69
40

68
13

75
01

0.
1

71
68

76
10

72
00

84
30

Y
ea

st
 e

la
st

as
e

0.
01

13
89

13
80

14
91

16
15

0.
05

18
06

18
51

19
58

21
40

0.
1

21
03

21
96

23
01

25
61

Y
ea

st
 c

hy
m

ot
ry

ps
in

0.
01

20
77

20
86

21
58

23
12

0.
05

25
76

26
20

26
80

28
44

0.
1

29
14

29
61

30
57

32
14

W
or

m
 tr

yp
si

n
0.

01
51

16
50

31
51

92
52

38

0.
05

58
64

61
19

58
30

64
19

0.
1

61
69

67
30

61
46

71
28

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spivak et al. Page 21
Ta

bl
e

3
Q

-r
an

ke
r

su
cc

es
sf

ul
ly

 o
pt

im
iz

es
 th

e
sp

ec
ifi

ed
 q

 v
al

ue
Ea

ch
 e

nt
ry

 in
 th

e
ta

bl
e

lis
ts

 th
e

nu
m

be
r

of
 a

cc
ep

te
d

PS
M

s
at

 a
 g

iv
en

 q
 v

al
ue

 (
co

lu
m

n)
 o

bt
ai

ne
d

by
 Q

-r
an

ke
r

w
ith

 3
7

fe
at

ur
es

 w
he

n
op

tim
iz

in
g

a
sp

ec
ifi

ed
 q

 v
al

ue
 (r

ow
).

En
tri

es
 in

 b
ol

df
ac

e
in

di
ca

te
 th

e
m

ax
im

um
 v

al
ue

 w
ith

in
 e

ac
h

co
lu

m
n.

 N
ot

e
th

at
, f

or
 e

ac
h

da
ta

 se
t,

al
l d

ia
go

na
l e

nt
rie

s a
re

 in
 b

ol
df

ac
e.

Sp
ec

ifi
ed

Y
ea

st
 tr

yp
si

n
W

or
m

 tr
yp

si
n

Y
ea

st
 e

la
st

as
e

Y
ea

st
 c

hy
m

ot
ry

ps
in

0.
01

0.
05

0.
10

0.
01

0.
05

0.
10

0.
01

0.
05

0.
10

0.
01

0.
05

0.
10

0.
01

60
72

74
53

83
60

52
38

64
12

70
98

16
15

20
54

23
95

23
12

28
43

31
99

0.
05

60
32

75
01

84
26

52
38

64
19

70
47

16
15

21
40

25
61

23
02

28
44

31
98

0.
10

60
30

75
00

84
30

52
13

64
18

71
28

16
15

21
40

25
61

23
00

28
30

32
14

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spivak et al. Page 22

Algorithm 1
The Q-ranker algorithm
The input variables are the training set X of PSM feature vectors, the corresponding binary labels Y, indicating which
PSMs are targets and which are decoys, the set Q of specified q values, the set Q ̂ of threshold q values and the number
n of training iterations. The chooseRandom subroutine selects a random positive or negative (depending on the first,
Boolean parameter) example x that satisfies |f(x)| < ε. The gradientStep subroutine makes a gradient step to satisfy
the constraint f(x+) > f(x−)+1. The algorithm returns the learned weight vector w.

1: procedure Q-ranker(X, Y, Q, Q ̂, n)

2:  w ← initialize using direct classification ▷ Solve the direct classification
problem.

3:  for qt ∈ Q do

4:   for q ∈ Q ̂ do

5:    t ← compute Threshold(X, Y, w, q) ▷ Calculate the threshold
corresponding to q

6:    ε ← 2 * |{x ∈ X| f(x) > t}|

7:    for i larr; 1 … n do

8:     x+ ← chooseRandom(TRUE, X, Y, w, ε) ▷ Randomly select a pair of
examples

9:     x− ← chooseRandom(FALSE, X, Y, w, ε)

10:     w ← gradientStep(w, f(x+), f(x−)) ▷ Update the weights.

11:    end for

12:   end for

13:   Record best result on qt

14:  end for

15:  return (w)

16: end procedure

J Proteome Res. Author manuscript; available in PMC 2010 July 6.

