
Journal of Machine Learning Research 10 (2009) 1737-1754 Submitted 1/09; Revised 4/09; Published 7/09

SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent

Antoine Bordes ANTOINE.BORDES@LIP6.FR

LIP6, Université Pierre et Marie Curie, Paris, France, and

NEC Laboratories America, Inc., Princeton, NJ, USA

Léon Bottou LEONB@NEC-LABS.COM

NEC Laboratories America, Inc., Princeton, NJ, USA

Patrick Gallinari PATRICK.GALLINARI@LIP6.FR

LIP6, Université Pierre et Marie Curie, Paris, France

Editor: Soeren Sonnenburg, Vojtech Franc, Elad Yom Tov and Michele Sebag

Abstract

The SGD-QN algorithm is a stochastic gradient descent algorithm that makes careful use of

second-order information and splits the parameter update into independently scheduled compo-

nents. Thanks to this design, SGD-QN iterates nearly as fast as a first-order stochastic gradient

descent but requires less iterations to achieve the same accuracy. This algorithm won the “Wild

Track” of the first PASCAL Large Scale Learning Challenge (Sonnenburg et al., 2008).

Keywords: Support Vector Machine, Stochastic Gradient Descent.

This version contains corrections in blue, added in May 2015.

– Thanks to Jonathan Chang and S. Alex Smith for pointing out a subtle flaw in the proposed

algorithm. This flaw was discussed and corrected in a separate paper “Erratum: SGDQN is less

careful than expected” published in JMLR in 2010.

– Thanks to James Martens for pointing out the missing factor 1/2 in theorem 1 and in its proof.

1. Introduction

The last decades have seen a massive increase of data quantities. In various domains such as bi-

ology, networking, or information retrieval, fast classification methods able to scale on millions of

training instances are needed. Real-world applications demand learning algorithms with low time

and memory requirements. The first PASCAL Large Scale Learning Challenge (Sonnenburg et al.,

2008) was designed to identify which machine learning techniques best address these new concerns.

A generic evaluation framework and various datasets have been provided. Evaluations were carried

out on the basis of various performance curves such as training time versus test error, dataset size

versus test error, and dataset size versus training time1.

Our entry in this competition, named SGD-QN, is a carefully designed Stochastic Gradient

Descent (SGD) for linear Support Vector Machines (SVM).

Nonlinear models could in fact reach much better generalization performance on most of the

proposed datasets. Unfortunately, even in the Wild Track case, the evaluation criteria for the com-

1. This material and its documentation can be found at http://largescale.first.fraunhofer.de/.
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petition reward good scaling properties and short training durations more than they punish subopti-

mal test errors. Nearly all the competitors chose to implement linear models in order to avoid the

additional penalty implied by nonlinearities. Although SGD-QN can work on nonlinear models2,

we only report its performance in the context of linear SVMs.

Stochastic algorithms are known for their poor optimization performance. However, in the

large scale setup, when the bottleneck is the computing time rather than the number of training

examples, Bottou and Bousquet (2008) have shown that stochastic algorithms often yield the best

generalization performances in spite of being worst optimizers. SGD algorithms were therefore

a natural choice for the “Wild Track” of the competition which focuses on the relation between

training time and test performance.

SGD algorithms have been the object of a number of recent works. Bottou (2007) and Shalev-

Shwartz et al. (2007) demonstrate that the plain Stochastic Gradient Descent yields particularly

effective algorithms when the input patterns are very sparse, taking less than O (d) space and time

per iteration to optimize a system with d parameters. It can greatly outperform sophisticated batch

methods on large data sets but suffers from slow convergence rates especially on ill-conditioned

problems. Various remedies have been proposed: Stochastic Meta-Descent (Schraudolph, 1999)

heuristically determines a learning rate for each coefficient of the parameter vector. Although it can

solve some ill-conditioning issues, it does not help much for linear SVMs. Natural Gradient De-

scent (Amari et al., 2000) replaces the learning rate by the inverse of the Riemannian metric tensor.

This quasi-Newton stochastic method is statistically efficient but is penalized in practice by the cost

of storing and manipulating the metric tensor. Online BFGS (oBFGS) and Online Limited storage

BFGS (oLBFGS) (Schraudolph et al., 2007) are stochastic adaptations of the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) optimization algorithm. The limited storage version of this algorithm is a

quasi-Newton stochastic method whose cost by iteration is a small multiple of the cost of a standard

SGD iteration. Unfortunately this penalty is often bigger than the gains associated with the quasi-

Newton update. Online Dual Solvers for SVMs (Bordes et al., 2005; Hsieh et al., 2008) have also

shown good performance on large scale datasets. These solvers can be applied to both linear and

nonlinear SVMs. In the linear case, these dual algorithms are surprising close to SGD but do not

require fiddling with learning rates. Although this is often viewed as an advantage, we feel that this

aspect restricts the improvement opportunities.

The contributions of this paper are twofold:

1. We conduct an analysis of different factors, ranging from algorithmic refinements to imple-

mentation details, which can affect the learning speed of SGD algorithms.

2. We present a novel algorithm, denoted SGD-QN, that carefully exploits these speedup op-

portunities. We empirically validate its properties by benchmarking it against state-of-the-art

SGD solvers and by summarizing its results at the PASCAL Large Scale Learning Chal-

lenge (Sonnenburg et al., 2008).

The paper is organized as follows: Section 2 analyses the potential gains of quasi-Newton tech-

niques for SGD algorithms. Sections 3 and 4 discuss the sparsity and implementation issues. Finally

Section 5 presents the SGD-QN algorithm, and Section 6 reports experimental results.

2. Stochastic gradient works well in models with nonlinear parametrization. For SVMs with nonlinear kernels, we

would prefer dual methods, e.g. (Bordes et al., 2005), which can exploit the sparsity of the kernel expansion.
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2. Analysis

This section describes our notations and summarizes theoretical results that are relevant to the design

of a fast variant of stochastic gradient algorithms.

2.1 SGD for Linear SVMs

Consider a binary classification problem with examples z = (x, y) ∈ R
d × {−1,+1}. The linear

SVM classifier is obtained by minimizing the primal cost function

Pn(w) =
λ

2
‖w‖2 +

1

n

n
∑

i=1

ℓ(yiw
⊤xi) =

1

n

n
∑

i=1

(

λ

2
‖w‖2 + ℓ(yiw

⊤xi)

)

, (1)

where the hyper-parameter λ > 0 controls the strength of the regularization term. Although typical

SVMs use mildly non regular convex loss functions, we assume in this paper that the loss ℓ(s) is

convex and twice differentiable with continuous derivatives (ℓ ∈ C2[R]). This could be simply

achieved by smoothing the traditional loss functions in the vicinity of their non regular points.

Each iteration of the SGD algorithm consists of drawing a random training example (xt, yt) and

computing a new value of the parameter wt as

wt+1 = wt −
1

t+ t0
B gt(wt) where gt(wt) = λwt + ℓ′(ytw

⊤

txt) yt xt (2)

where the rescaling matrix B is positive definite. Since the SVM theory provides simple bounds

on the norm of the optimal parameter vector (Shalev-Shwartz et al., 2007), the positive constant

t0 is heuristically chosen to ensure that the first few updates do not produce a parameter with an

implausibly large norm.

• The traditional first-order SGD algorithm, with decreasing learning rate, is obtained by setting

B = λ−1 I in the generic update (2) :

wt+1 = wt −
1

λ(t+ t0)
gt(wt) . (3)

• The second-order SGD algorithm is obtained by setting B to the inverse of the Hessian Matrix

H = [ P ′′
n(w

∗
n) ] computed at the optimum w∗

n of the primal cost Pn(w) :

wt+1 = wt −
1

t+ t0
H−1 gt(wt) . (4)

Randomly picking examples could lead to expensive random accesses to the slow memory. In

practice, one simply performs sequential passes over the randomly shuffled training set.

2.2 What Matters Are the Constant Factors

Bottou and Bousquet (2008) characterize the asymptotic learning properties of stochastic gradient

algorithms in the large scale regime, that is, when the bottleneck is the computing time rather than

the number of training examples.

The first three columns of Table 1 report the time for a single iteration, the number of iterations

needed to reach a predefined accuracy ρ, and their product, the time needed to reach accuracy ρ.
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Table 1: Asymptotic results for stochastic gradient algorithms, reproduced from (Bottou and

Bousquet, 2008). Compare the second last column (time to optimize) with the last

column (time to reach the excess test error ǫ). Legend: n number of examples; d pa-

rameter dimension; c positive constant that appears in the generalization bounds;

κ condition number of the Hessian matrix H; ν = tr
(

GH−1
)

with G the Fisher

matrix (see Theorem 1 for more details). The implicit proportionality coefficients in

notations O() and o() are of course independent of these quantities.

Stochastic Gradient Cost of one Iterations Time to reach Time to reach

Algorithm iteration to reach ρ accuracy ρ E ≤ c (Eapp + ε)

1st Order SGD O(d) νκ2

ρ
+ o

(

1

ρ

)

O
(

dνκ2

ρ

)

O
(

d ν κ2

ε

)

2nd Order SGD O
(

d2
)

ν
ρ
+ o

(

1

ρ

)

O
(

d2ν
ρ

)

O
(

d2 ν
ε

)

The excess test error E measures how much the test error is worse than the best possible error

for this problem. Bottou and Bousquet (2008) decompose the test error as the sum of three terms

E = Eapp + Eest + Eopt. The approximation error Eapp measures how closely the chosen family

of functions can approximate the optimal solution, the estimation error Eest measures the effect of

minimizing the empirical risk instead of the expected risk, the optimization error Eopt measures the

impact of the approximate optimization on the generalization performance.

The fourth column of Table 1 gives the time necessary to reduce the excess test error E below a

target that depends on ǫ > 0. This is the important metric because the test error is the measure that

matters in machine learning.

Both the first-order and the second-order SGD require a time inversely proportional to ǫ to

reach the target test error. Only the constants differ. The second-order algorithm is insensitive to the

condition number κ of the Hessian matrix but suffers from a penalty proportional to the dimension

d of the parameter vector. Therefore, algorithmic changes that exploit the second-order information

in SGD algorithms are unlikely to yield superlinear speedups. We can at best improve the constant

factors.

This property is not limited to SGD algorithms. To reach an excess error ǫ, the most favorable

generalization bounds suggest that one needs a number of examples proportional to 1/ǫ. Therefore,

the time complexity of any algorithm that processes a non vanishing fraction of these examples

cannot scale better than 1/ǫ. In fact, Bottou and Bousquet (2008) obtain slightly worse scaling laws

for typical non-stochastic gradient algorithms.

2.3 Limited Storage Approximations of Second-Order SGD

Since the second-order SGD algorithm is penalized by the high cost of performing the update (2)

using a full rescaling matrix B = H−1, it is tempting to consider matrices that admit a sparse

representation and yet approximate the inverse Hessian well enough to reduce the negative impact

of the condition number κ.

The following theorem describes how the convergence speed of the generic SGD algorithm (2)

is related to the spectrum of matrix HB.
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Theorem 1 Let Eσ denote the expectation with respect to the random selection of the examples

(xt, yt) drawn independently from the training set at each iteration. Let w∗
n = argminwPn(w)

be an optimum of the primal cost. Define the Hessian matrix H = ∂2Pn(w
∗
n)/∂w

2 and the Fisher

matrix G = Gt = Eσ

[

g′
t(w

∗
n)g

′
t(w

∗
n)

⊤
]

. If the eigenvalues of HB are in range λmax ≥ λmin >
1/2, and if the SGD algorithm (2) converges to w∗

n, the following inequality holds:

1

2

tr (HBGB)

2λmax − 1
t−1 + o

(

t−1
)

≤ Eσ [Pn(wt)− Pn(w
∗
n)] ≤

1

2

tr (HBGB)

2λmin − 1
t−1 + o

(

t−1
)

.

The proof of the theorem is provided in the appendix. Note that the theorem assumes that the

generic SGD algorithm converges. Convergence in the first-order case holds under very mild as-

sumptions (e.g. Bottou, 1998). Convergence in the generic SGD case holds because it reduces to the

first-order case with a the change of variable w → B− 1
2 w. Convergence also holds under slightly

stronger assumptions when the rescaling matrix B changes over time (e.g. Driancourt, 1994).

The following two corollaries recover the maximal number of iterations listed in Table 1 with

ν = tr
(

GH−1
)

and κ = λ−1‖H‖. Corollary 1 gives a very precise equality for the second-order

case because the lower bound and the upper bound of the theorem take identical values. Corollary 2

gives a much less refined bound in the first-order case.

Corollary 1 Assume B = H−1 as in the second-order SGD algorithm (4). Under the assumptions

of Theorem 1, we have

Eσ [Pn(wt)− Pn(w
∗
n)] =

1

2
tr

(

GH−1
)

t−1 + o
(

t−1
)

= ν t−1 + o
(

t−1
)

.

Corollary 2 Assume B = λ−1 I as in the first-order SGD algorithm (3). Under the assumptions of

Theorem 1, we have

Eσ [Pn(wt)− Pn(w
∗
n)] ≤

1

2
λ−2 tr

(

H2GH−1
)

t−1 + o
(

t−1
)

≤
1

2
κ2 ν t−1 + o

(

t−1
)

.

An often rediscovered property of second order SGD provides an useful point of reference:

Theorem 2 (Fabian, 1973; Murata and Amari, 1999; Bottou and LeCun, 2005)

Let w∗ = argmin λ
2‖w‖

2 + Ex,y [ ℓ(yw
⊤x) ]. Given a sample of n independent examples (xi, yi) ,

define w∗
n = argminwPn(w) and compute wn by applying the second-order SGD update (4)

to each of the n examples. If they converge, both nE
[

‖wn −w∗‖2
]

and nE
[

‖w∗
n −w∗‖2

]

converge to a same positive constant K when n increases.

This result means that, asymptotically and on average, the parameter wn obtained after one pass

of second-order SGD is as close to the infinite training set solution w∗ as the true optimum of the

primal w∗
n. Therefore, when the training set is large enough, we can expect that a single pass of

second-order SGD (n iterations of (4)) optimizes the primal accurately enough to replicate the test

error of the actual SVM solution.

When we replace the full second-order rescaling matrix B = H−1 by a more computationally

acceptable approximation, Theorem 1 indicates that we lose a constant factor k on the required

number of iterations to reach that accuracy. In other words, we can expect to replicate the SVM test

error after k passes over the randomly reshuffled training set.

On the other hand, a well chosen approximation of the rescaling matrix can save a large constant

factor on the computation of the generic SGD update (2). The best training times are therefore

obtained by carefully trading the quality of the approximation for sparse representations.
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Table 2: The regularization term in the primal cost can be viewed as an additional training example

with an arbitrarily chosen frequency and a specific loss function.

Frequency Loss

Special example:
n

skip

λ skip

2
‖w‖2

Examples 1 to n: 1 ℓ(yiw
⊤xi)

2.4 More Speedup Opportunities

We have argued that carefully designed quasi-Newton techniques can save a constant factor on the

training times. There are of course many other ways to save constant factors:

• Exploiting the sparsity of the patterns (see Section 3) can save a constant factor in the cost of

each first-order iteration. The benefits are more limited in the second-order case, because the

inverse Hessian matrix is usually not sparse.

• Implementation details (see Section 4) such as compiler technology or parallelization on a

predetermined number of processors can also reduce the learning time by constant factors.

Such opportunities are often dismissed as engineering tricks. However they should be consid-

ered on an equal footing with quasi-Newton techniques. Constant factors matter regardless of their

origin. The following two sections provide a detailed discussion of sparsity and implementation.

3. Scheduling Stochastic Updates to Exploit Sparsity

First-order SGD iterations can be made substantially faster when the patterns xt are sparse. The

first-order SGD update has the form

wt+1 = wt − αtwt − βtxt , (5)

where αt and βt are scalar coefficients. Subtracting βtxt from the parameter vector involves solely

the nonzero coefficients of the pattern xt. On the other hand, subtracting αtwt involves all d coef-

ficients. A naive implementation of (5) would therefore spend most of the time processing this first

term. Shalev-Shwartz et al. (2007) circumvent this problem by representing the parameter wt as the

product stvt of a scalar and a vector. The update (5) can then be computed as st+1 = (1− αt)st
and vt+1 = vt − βxt/st+1 in time proportional to the number of nonzero coefficients in xt.

Although this simple approach works well for the first order SGD algorithm, it does not extend

nicely to quasi-Newton SGD algorithms. A more general method consists of treating the regular-

ization term in the primal cost (1) as an additional training example occurring with an arbitrarily

chosen frequency with a specific loss function.
Consider examples with the frequencies and losses listed in Table 2 and write the average loss:

1
n

skip
+ n

[

n

skip

(

λ skip

2
‖w‖2

)

+
n
∑

i=1

ℓ(yi w
⊤xi)

]

=
skip

1 + skip

[

λ

2
‖w‖2 +

1

n

n
∑

i=1

ℓ(yiw
⊤xi)

]

.
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SGD SVMSGD2

Require: λ, w0, t0, T

1: t = 0
2: while t ≤ T do

3: wt+1 = wt −
1

λ(t+t0)
(λwt + ℓ′(ytw

⊤

txt)ytxt)
4:

5:

6:

7:

8:

9: t = t+ 1
10: end while

11: return wT

Require: λ, w0, t0, T, skip

1: t = 0, count=skip

2: while t ≤ T do

3: wt+1 = wt −
1

λ(t+t0)
ℓ′(ytw

⊤

txt)ytxt

4: count = count−1
5: if count ≤ 0 then

6: wt+1 = wt+1 −
skip

t+t0
wt+1

7: count=skip

8: end if

9: t = t+ 1
10: end while

11: return wT

Figure 1: Detailed pseudo-codes of the SGD and SVMSGD2 algorithms.

Minimizing this loss is of course equivalent to minimizing the primal cost (1) with its regularization

term. Applying the SGD algorithm to the examples defined in Table 2 separates the regularization

updates, which involve the special example, from the pattern updates, which involve the real ex-

amples. The parameter skip regulates the relative frequencies of these updates. The SVMSGD2

algorithm (Bottou, 2007) measures the average pattern sparsity and picks a frequency that ensures

that the amortized cost of the regularization update is proportional to the number of nonzero co-

efficients. Figure 1 compares the pseudo-codes of the naive first-order SGD and of the first-order

SVMSGD2. Both algorithms handle the real examples at each iteration (line 3) but SVMSGD2

only performs a regularization update every skip iterations (line 6).

Assume s is the average proportion of nonzero coefficients in the patterns xi and set skip to

c/s where c is a predefined constant (we use c = 16 in our experiments). Each pattern update (line

3) requires sd operations. Each regularization update (line 6) requires d operations but occurs s/c
times less often. The average cost per iteration is therefore proportional to O (sd) instead of O (d).

4. Implementation

In the optimization literature, a superior algorithm implemented with a slow scripting language

usually beats careful implementations of inferior algorithms. This is because the superior algorithm

minimizes the training error with a higher order convergence.

This is no longer true in the case of large scale machine learning because we care about the

test error instead of the training error. As explained above, algorithm improvements do not improve

the order of the test error convergence. They can simply improve constant factors and therefore

compete evenly with implementation improvements. Time spent refining the implementation is time

well spent.

• There are lots of methods for representing sparse vectors with sharply different computing

requirement for sequential and random access. Our C++ implementation always uses a full

7
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Table 3: Costs of various operations on a vector of dimension d with s nonzero coefficients.

Full Sparse

Random access to a single coefficient: Θ(1) Θ(s)
In-place addition into a full vector of dimension d′: Θ(d) Θ(s)
In-place addition into a sparse vector with s′ nonzeros: Θ(d+ s′) Θ(s+ s′)

vector for representing the parameter w, but handles the patterns x using either a full vector

representation or a sparse representation as an ordered list of index/value pairs.

Each calculation can be achieved directly on the sparse representation or after a conversion

to the full representation (see Table 3). Inappropriate choices have outrageous costs. For

example, on a dense dataset with 500 attributes, using sparse vectors increases the training

time by 50%; on the sparse RCV1 dataset (see Table 4), using a sparse vector to represent the

parameter w increases the training time by more than 900%.

• Modern processors often sport specialized instructions to handle vectors and multiple cores.

Linear algebra libraries, such as BLAS, may or may not use them in ways that suit our pur-

poses. Compilation flags have nontrivial impacts on the learning times.

Such implementation improvements are often (but not always) orthogonal to the algorithmic im-

provements described above. The main issue consists of deciding how much development resources

are allocated to implementation and to algorithm design. This trade-off depends on the available

competencies.

5. SGD-QN: A Careful Diagonal Quasi-Newton SGD

As explained in Section 2, designing an efficient quasi-Newton SGD algorithm involves a careful

trade-off between the sparsity of the scaling matrix representation B and the quality of its approxi-

mation of the inverse Hessian H−1. The two obvious choices are diagonal approximations (Becker

and Le Cun, 1989) and low rank approximations (Schraudolph et al., 2007).

5.1 Diagonal Rescaling Matrices

Among numerous practical suggestions for running SGD algorithm in multilayer neural networks,

Le Cun et al. (1998) emphatically recommend to rescale each input space feature in order to improve

the condition number κ of the Hessian matrix. In the case of a linear model, such preconditioning

is similar to using a constant diagonal scaling matrix.

Rescaling the input space defines transformed patterns Xt such that [Xt]i = bi [xt]i where

the notation [v]i represents the i-th coefficient of vector v. This transformation does not change

the classification if the parameter vectors are modified as [Wt]i = [wt]i /bi. The first-order SGD

update on these modified variable is then

∀i = 1 . . . d [Wt+1]i = [Wt]i − ηt
(

λ[Wt]i + ℓ′(ytW
⊤

tXt) yt [Xt]i,
)

= [Wt]i − ηt
(

λ[Wt]i + ℓ′(ytw
⊤

txt) yt bi[xt]i
)

.
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Multiplying by bi shows how the original parameter vector wt is affected:

∀i = 1 . . . d [wt+1]i = [wt]i − ηt
(

λ[wt]i + ℓ′(ytw
⊤

txt) yt b
2
i [xt]i

)

.

We observe that rescaling the input is equivalent to multiplying the gradient by a fixed diagonal

matrix B whose elements are the squares of the coefficients bi.
Ideally we would like to make the product BH spectrally close the identity matrix. Unfortu-

nately we do not know the value of the Hessian matrix H at the optimum w∗
n. Instead we could

consider the current value of the Hessian Hwt
= P ′′(wt) and compute the diagonal rescaling ma-

trix B that makes BHwt
closest to the identity. This computation could be very costly because

it involves the full Hessian matrix. Becker and Le Cun (1989) approximate the optimal diagonal

rescaling matrix by inverting the diagonal coefficients of the Hessian. The method relies on the ana-

lytical derivation of these diagonal coefficients for multilayer neural networks. This derivation does

not extend to arbitrary models. It certainly does not work in the case of traditional SVMs because

the hinge loss has zero curvature almost everywhere.

5.2 Low Rank Rescaling Matrices

The popular LBFGS optimization algorithm (Nocedal, 1980) maintains a low rank approximation of

the inverse Hessian by storing the k most recent rank-one BFGS updates instead of the full inverse

Hessian matrix. When the successive full gradients P ′
n(wt−1) and P ′

n(wt) are available, standard

rank one updates can be used to directly estimate the inverse Hessian matrix H−1. Using this

method with stochastic gradient is tricky because the full gradients P ′
n(wt−1) and P ′

n(wt) are not

readily available. Instead we only have access to the stochastic estimates gt−1(wt−1) and gt(wt)
which are too noisy to compute good rescaling matrices.

The oLBFGS algorithm (Schraudolph et al., 2007) compares instead the derivatives gt−1(wt−1)
and gt−1(wt) for the same example (xt−1, yt−1). This reduces the noise to an acceptable level at

the expense of the computation of the additional gradient vector gt−1(wt).
Compared to the first-order SGD, each iteration of the oLBFGS algorithm computes the ad-

ditional quantity gt−1(wt) and updates the list of k rank one updates. The most expensive part

however remains the multiplication of the gradient gt(wt) by the low-rank estimate of the inverse

Hessian. With k = 10, each iteration of our oLBFGS implementation runs empirically 11 times

slower than a first-order SGD iteration.

5.3 SGD-QN

The SGD-QN algorithm estimates a diagonal rescaling matrix using a technique inspired by oLBFGS.

For any pair of parameters wt−1 and wt, a Taylor series of the gradient of the primal costP provides

the secant equation:

wt −wt−1 ≈ H−1
wt

(

P ′
n(wt)− P

′
n(wt−1)

)

. (6)

We would then like to replace the inverse Hessian matrix H−1
wt

by a diagonal estimate B

wt −wt−1 ≈ B
(

P ′
n(wt)− P

′
n(wt−1)

)

.
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Since we are designing a stochastic algorithm, we do not have access to the full gradient P ′
n. Fol-

lowing oLBFGS, we replace them by the local gradients gt−1(wt) and gt−1(wt−1) and obtain3

wt −wt−1 ≈ B
(

gt−1(wt)− gt−1(wt−1)
)

.

Since we chose to use a diagonal rescaling matrix B, we can write the term-by-term equality

[wt −wt−1]i ≈ Bii [gt−1(wt)− gt−1(wt−1)]i ,

where the notation [v]i still represents the i-th coefficient of vector v. This leads to computing Bii

as the average of the ratio [wt −wt−1]i/[gt−1(wt)− gt−1(wt−1)]i. An online estimation is easily

achieved during the course of learning by performing a leaky average of these ratios,

Bii ← Bii +
2

r

(

[wt −wt−1]i
[gt−1(wt)− gt−1(wt−1)]i

−Bii

)

∀i = 1 . . . d , (7)

and where the integer r is incremented whenever we update the matrix B.

The weights of the scaling matrix B are initialized to λ−1 because this corresponds to the exact

setup of first-order SGD. Since the curvature of the primal cost (1) is always larger than λ, the

ratio [gt−1(wt)− gt−1(wt−1)]i/[wt −wt−1]i is always larger than λ. Therefore the coefficients

Bii never exceed their initial value λ−1. Basically these scaling factors slow down the convergence

along some axes. The speedup does not occur because we follow the trajectory faster, but because

we follow a better trajectory.

Performing the weight update (2) with a diagonal rescaling matrix B consists in performing

term-by-term operations with a time complexity that is marginally greater than the complexity of

the first-order SGD (3) update. The computation of the additional gradient vector gt−1(wt) and the

reestimation of all the coefficients Bii essentially triples the computing time of a first-order SGD

iteration with non-sparse inputs (3), and is considerably slower than a first-order SGD iteration with

sparse inputs implemented as discussed in Section 3.

Fortunately this higher computational cost per iteration can be nearly avoided by scheduling

the reestimation of the rescaling matrix with the same frequency as the regularization updates. Sec-

tion 5.1 has shown that a diagonal rescaling matrix does little more than rescaling the input variables.

Since a fixed diagonal rescaling matrix already works quite well, there is little need to update its

coefficients very often.

Figure 2 compares the SVMSGD2 and SGD-QN algorithms. Whenever SVMSGD2 performs

a regularization update, we set the flag updateB to schedule a reestimation of the rescaling co-

efficients during the next iteration. This is appropriate because both operations have comparable

computing times. Therefore the rescaling matrix reestimation schedule can be regulated with the

same skip parameter as the regularization updates. In practice, we observe that each SGD-QN

iteration demands less than twice the time of a first-order SGD iteration.

Because SGD-QN reestimates the rescaling matrix after a pattern update, special care must

be taken when the ratio [wt −wt−1]i/[gt−1(wt)− gt−1(wt−1)]i has the form 0/0 because the

corresponding input coefficient [xt−1]i is zero. Since the secant equation (6) is valid for any two

3. There is a subtle flaw in this step, with nontrivial consequences.

See the JMLR 2010 paper “Erratum, SGDQN is less careful than expected.”
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SVMSGD2 SGD-QN

Require: λ, w0, t0, T, skip

1: t = 0, count=skip

2:

3: while t ≤ T do

4: wt+1 = wt −
1

λ(t+t0)
ℓ′(ytw

⊤

txt)ytxt

5:

6:

7:

8:

9:

10:

11: count = count−1
12: if count ≤ 0 then

13: wt+1 = wt+1−skip (t+ t0)
−1wt+1

14: count=skip

15: end if

16: t = t+ 1
17: end while

18: return wT

Require: λ, w0, t0, T, skip

1: t = 0, count=skip,

2: B = λ−1 I ; updateB=false; r = 2
3: while t ≤ T do

4: wt+1 = wt − (t+ t0)
−1ℓ′(ytw

⊤

txt)yt B xt

5: if updateB=true then

6: pt = gt(wt+1)− gt(wt)
7: ∀i , Bii = Bii +

2
r

(

[wt+1 −wt]i [pt]
−1
i

−Bii

)

8: ∀i , Bii = max(Bii, 10
−2λ−1)

9: r = r + 1 ; updateB=false

10: end if

11: count = count−1
12: if count ≤ 0 then

13: wt+1 = wt+1−skip (t+ t0)
−1λBwt+1

14: count=skip; updateB=true

15: end if

16: t = t+ 1
17: end while

18: return wT

Figure 2: Detailed pseudo-codes of the SVMSGD2 and SGD-QN algorithms.

The algorithm SGD-QN described above contains a subtle flaw. See the 2010 JMLR paper “Erratum:

SGDQN is less careful than expected”. Oddly enough, this flaw did not prevent this algorithm to win

the PASCAL Large Scale Challenge!

values of the parameter vector, one can compute the ratios with parameter vectors wt−1 and wt + ε

and derive the correct value by continuity when ε→ 0. When [xt−1]i = 0, we can write

[(wt+ε)−wt−1]i
[gt−1(wt+ε)−gt−1(wt−1)]i

=
[(wt+ε)−wt−1]i

λ[(wt+ε)−wt−1]i+
(

ℓ′(yt−1(wt+ε)⊤xt−1)−ℓ′(yt−1w
⊤

t−1xt−1)
)

yt−1 [xt−1]i

=

(

λ+

(

ℓ′(yt−1(wt+ε)⊤xt−1)−ℓ′(yt−1w
⊤

t−1xt−1)
)

yt−1 [xt−1]i
[(wt+ε)−wt−1]i

)−1

=
(

λ+ 0
[ε]

i

)−1 ε→0
−→ λ−1 .

6. Experiments

We demonstrate the good scaling properties of SGD-QN in two ways: we present a detailed compar-

ison with other stochastic gradient methods, and we summarize the results obtained on the PASCAL

Large Scale Challenge.

Table 4 describes the three binary classification tasks we used for comparative experiments.

The Alpha and Delta tasks were defined for the PASCAL Large Scale Challenge (Sonnenburg et al.,

2008). We train with the first 100,000 examples and test with the last 50,000 examples of the official

training sets because the official testing sets are not available. Alpha and Delta are dense datasets

with relatively severe conditioning problems. The third task is the classification of RCV1 documents

11
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Table 4: Datasets and parameters used for experiments.

Dataset Train. Ex. Test. Ex. Features s λ t0 skip

ALPHA 100,000 50,000 500 1 10−5 106 16

DELTA 100,000 50,000 500 1 10−4 104 16

RCV1 781,265 23,149 47,152 0.0016 10−4 105 9,965

Table 5: Time (sec.) for performing one pass over the training set.

ALPHA RCV1

SGD 0.13 36.8

SVMSGD2 0.10 0.20

SGD-QN 0.21 0.37

belonging to class CCAT (Lewis et al., 2004). This task has become a standard benchmark for linear

SVMs on sparse data. Despite its larger size, the RCV1 task is much easier than the Alpha and Delta

tasks. All methods discussed in this paper perform well on RCV1.

The experiments reported in Section 6.4 use the hinge loss ℓ(s) = max(0, 1− s). All other

experiments use the squared hinge loss ℓ(s) = 1
2(max(0, 1− s))2. In practice, there is no need to

make the losses twice differentiable by smoothing their behavior near s = 0. Unlike most batch

optimizer, stochastic algorithms do not not aim directly for nondifferentiable points, but randomly

hop around them. The stochastic noise implicitly smoothes the loss.

The SGD, SVMSGD2, oLBFGS, and SGD-QN algorithms were implemented using the same

C++ code base4. All experiments are carried out in single precision. We did not experience numer-

ical accuracy issues, probably because of the influence of the regularization term. Our implementa-

tion of oLBFGS maintains a rank 10 rescaling matrix. Setting the oLBFGS gain schedule is rather

delicate. We obtained fairly good results by replicating the gain schedule of the VieCRF package.5

We also propose a comparison with the online dual linear SVM solver (Hsieh et al., 2008) imple-

mented in the LibLinear package.6 We did not reimplement this algorithm because the LibLinear

implementation has proved as simple and as efficient as ours.

The t0 parameter is determined using an automatic procedure: since the size of the training

set does not affect results of Theorem 1, we simply pick a subset containing 10% of the training

examples, perform one SGD-QN pass over this subset with several values for t0, and pick the value

for which the primal cost decreases the most. These values are given in Table 4.

6.1 Sparsity Tricks

Table 5 illustrates the influence of the scheduling tricks described in Section 3. The table displays

the training times of SGD and SVMSGD2. The only difference between these two algorithms are

4. Implementations and experiment scripts are available in the libsgdqn library on http://www.mloss.org.

5. http://www.ofai.at/~jeremy.jancsary

6. http://www.csie.ntu.edu.tw/~cjlin/liblinear
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Figure 3: Primal costs according to the number of epochs (left) and the training duration (right) on

the Alpha dataset.

the scheduling tricks. SVMSGD2 trains 180 times faster than SGD on the sparse dataset RCV1.

This table also demonstrates that iterations of the quasi-newton SGD-QN are not prohibitively

expensive.

6.2 Quasi-Newton

Figure 3 shows how the primal cost Pn(w) of the Alpha dataset evolves with the number of passes

(left) and the training time (right). Compared to the first-order SVMSGD2, both the oLBFGS and

SGD-QN algorithms dramatically decrease the number of passes required to achieve similar values

of the primal. Even if it uses a more precise approximation of the inverse Hessian, oLBFGS does

not perform better after a single pass than SGD-QN. Besides, running a single pass of oLBFGS is

much slower than running multiple passes of SVMSGD2 or SGD-QN. The benefits of its second-

order approximation are canceled by its greater time requirements per iteration. On the other hand,

each SGD-QN iteration is only marginally slower than a SVMSGD2 iteration; the reduction of the

number of iterations is sufficient to offset this cost.

6.3 Training Speed

Figure 4 displays the test errors achieved on the Alpha, Delta and RCV1 datasets as a function

of the number of passes (left) and the training time (right). These results show again that both

oLBFGS and SGD-QN require less iterations than SVMSGD2 to achieve the same test error.

However, oLBFGS suffers from the relatively high complexity of its update process. The SGD-

QN algorithm is competitive with the dual solver LibLinear on the dense datasets Alpha and Delta;

it runs significantly faster on the sparse RCV1 dataset.

According to Theorem 2, given a large enough training set, a perfect second-order SGD algo-

rithm would reach the batch test error after a single pass. One pass learning is attractive when we

are dealing with high volume streams of examples that cannot be stored and retrieved quickly. Fig-

13
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Figure 4: Test errors (in %) according to the number of epochs (left) and training duration (right).
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Table 6: Parameters and final ranks obtained by SGD-QN in the “Wild Track” of the first PASCAL

Large Scale Learning Challenge. All competing algorithms were run by the organizers.

(Note: the competition results were obtained with a preliminary version of SGD-QN. In

particular the λ parameters listed below are different from the values used for all experi-

ments in this paper and listed in Table 4.)

Dataset λ skip Passes Rank

Alpha 10−5 16 10 1st

Beta 10−4 16 15 3rd

Gamma 10−3 16 10 1st

Delta 10−3 16 10 1st

Epsilon 10−5 16 10 5th

Zeta 10−5 16 10 4th

OCR 10−5 16 10 2nd

Face 10−5 16 20 4th

DNA 10−3 64 10 2nd

Webspam 10−5 71,066 10 4th

ure 4 (left) shows that oLBFGS is a little bit closer to that ideal than SGD-QN and could become

attractive for problems where the example retrieval time is much greater than the computing time.

6.4 PASCAL Large Scale Challenge Results

The SGD-QN algorithm has been submitted to the “Wild Track” of the PASCAL Large Scale

Challenge. Wild Track contributors were free to do anything leading to more efficient and more

accurate methods. Forty two methods have been submitted to this track. Table 6 shows the SGD-

QN ranks determined by the organizers of the challenge according to their evaluation criteria. The

SGD-QN algorithm always ranks among the top five submissions and ranks first in overall score

(tie with another Newton method).

7. Conclusion

The SGD-QN algorithm strikes a good compromise for large scale application because it has low

time and memory requirements per iteration and because it reaches competitive test errors after a

small number of iterations. We have shown how this performance is the result of a careful design

taking into account the theoretical knowledge about second-order SGD and a precise understanding

of its computational requirements.

Finally, although this contribution presents SGD-QN as a solver for linear SVMs, this algorithm

can be easily extended to nonlinear models for which we can analytically compute the gradients.

We plan to further investigate the performance of SGD-QN in this context.
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Proof of Theorem 1

Define vt = wt −w∗
n and observe that a second-order Taylor expansion of the primal gives

Pn(wt)− Pn(w
∗

n) =
1

2
v⊤

tHvt + o
(

t−2
)

=
1

2
tr (Hvtv

⊤

t) + o
(

t−2
)

.

Let Et−1 representing the conditional expectation over the choice of the example at iteration t − 1
given all the choices made during the previous iterations. Since we assume that convergence takes
place, we have

Et−1 [gt−1(wt−1)gt−1(wt−1)
⊤] = Et−1 [gt−1(w

∗

n)gt−1(w
∗

n)
⊤] + o (1) = G+ o (1)

and Et−1 [gt−1(wt−1)] = P ′

n(wt−1) = Hvt−1 + o (vt−1) = IεHvt−1

where notation Iε is a shorthand for I+ o (1), that is, a matrix that converges to the identity.
Expressing Hvtv

⊤

t using the generic SGD update (2) gives

Hvtv
⊤

t = Hvt−1v
⊤

t−1
−

Hvt−1 gt−1(wt−1)
⊤B

t+ t0
−

HBgt−1(wt−1)v
⊤

t−1

t+ t0

+
HBgt−1(wt−1)gt−1(wt−1)

⊤B

(t+ t0)2

Et−1 [Hvtv
⊤

t] = Hvt−1v
⊤

t−1
−

Hvt−1 v
⊤

t−1
HIε B

t+ t0
−

HBIε Hvt−1 v
⊤

t−1

t+ t0
+

HBGB

(t+ t0)2
+ o

(

t−2
)

Et−1 [tr (Hvtv
⊤

t)] = tr
(

Hvt−1v
⊤

t−1

)

−
2 tr

(

HBIε Hvt−1 v
⊤

t−1

)

t+ t0
+

tr (HBGB)

(t+ t0)2
+ o

(

t−2
)

Eσ [tr (Hvtv
⊤

t)] = Eσ

[

tr
(

Hvt−1v
⊤

t−1

)]

−
2Eσ

[

tr
(

HBIε Hvt−1 v
⊤

t−1

)]

t+ t0
+

tr (HBGB)

(t+ t0)2
+ o

(

t−2
)

.

Let λmax ≥ λmin > 1/2 be the extreme eigenvalues of HB. Since, for any positive matrix X,

(

λmin + o (1)
)

tr (X) ≤ tr (HBIεX) ≤
(

λmax + o (1)
)

tr (X)

we can bracket Eσ [tr (Hvtv
⊤

t)] between the expressions

(

1−
2λmax

t
+ o

(

1

t

))

Eσ

[

tr
(

Hvt−1 v
⊤

t−1

)]

+
tr (HBGB)

(t+ t0)2
+ o

(

t−2
)

17



BORDES, BOTTOU AND GALLINARI

and
(

1−
2λmin

t
+ o

(

1

t

))

Eσ

[

tr
(

Hvt−1 v
⊤

t−1

)]

+
tr (HBGB)

(t+ t0)2
+ o

(

t−2
)

By recursively applying this bracket, we obtain

uλmax(t+ t0) ≤ Eσ [tr (Hvtv
⊤

t)] ≤ uλmin
(t+ t0)

where the notation uλ(t) represents a sequence of real satisfying the recursive relation

uλ(t) =

(

1−
2λ

t
+ o

(

1

t

))

uλ(t− 1) +
tr (HBGB)

t2
+ o

(

1

t2

)

.

From (Bottou and LeCun, 2005, lemma 1), λ > 1/2 implies t uλ(t) −→
tr(HBGB)

2λ−1 . Then

tr (HBGB)

2λmax − 1
t−1 + o

(

t−1
)

≤ Eσ [tr (Hvtv
⊤

t)] ≤
tr (HBGB)

2λmin − 1
t−1 + o

(

t−1
)

and

1

2

tr (HBGB)

2λmax − 1
t−1 + o

(

t−1
)

≤ Eσ [Pn(wt)− Pn(w
∗

n)] ≤
1

2

tr (HBGB)

2λmin − 1
t−1 + o

(

t−1
)

.
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