
An Iterative Algorithm for Accurate Motion Estimation in
Very Low Bit Rate Video Coding

David Wendi Pan
Dept. of ECE

Univ. of Alabama in Huntsville
Huntsville, AL 35899
Tel: 1-256-824-6642

dwpan@ece.uah.edu

Andrea Basso
Dept. of ECE

University of Victoria
P.O. Box 3055, Victoria, B.C.

V8W 3P6 Canada

abasso@ece.uvic.ca

Leon Bottou
NEC Research Institute
4 Independence Way
Princeton NJ 08540
Tel: 1-609-951-2732

leon@bottou.org

ABSTRACT
In video coding, accurate motion estimation is very impor-
tant since good temporal prediction can significantly elimi-
nate temporal redundancy and save bits in coding the mo-
tion. In block-based motion estimation systems, we can in-
crease the estimation accuracy by using smaller block sizes.
However, more bits are required to code the motion infor-
mation due to increased number of blocks. It is desirable to
be able to set a quota on the total number of motion blocks
in very low bit rate coding. In this paper, we propose an
iterative algorithm that seeks to achieve very accurate es-
timation on moving objects, while ensuring the number of
motion blocks does not exceed the given quota. Simula-
tions demonstrate the effectiveness and robustness of the
proposed method.

Keywords
Motion estimation, video coding

1. INTRODUCTION
Motion Estimation is an important part of video compres-
sion systems, where the estimated motion vectors are used
to produce a motion-compensated prediction of a frame to
be coded from a previously coded reference frame [1]. Our
goal is to minimize the total number of bits used to spec-
ify the motion. In very low bit rate video coding, accurate
estimation of the motion between frames becomes more im-
portant since it can lead to better temporal prediction and
thus temporal redundancy can be eliminated to the greater
extent. On the other hand, if the estimated motion is not an
accurate representation of the true physical motion, rather
than saving bits by coding the motion compensated frame
difference, we waste bits in coding the false motion blocks
caused by inaccurate motion vectors.

Block-based motion estimation has been adopted in many

international standards such as MPEGx and H.26x, etc.
Generally, the smaller the block size, the more accurate the
motion vector is in representing the motion of each pix-
els within the block. However, smaller block size leads to
greater number of motion vectors, which in turn costs more
bits in coding. For instance, an image of CIF format con-
tains 6, 336 blocks (4 × 4). We may desire to set a quota
on the number of motion blocks to be coded in very low bit
rate video coding applications. We attempt to find the set
of “best” motion blocks, for which bits will be allocated to
code their motion vectors and the associated displaced block
differences. We treat the rest of the blocks as still blocks and
thus bits for coding the motion vectors are saved.

Therefore, motion estimation should be focused on the mov-
ing objects in an image scene. Typically, there are multi-
ple moving objects. Region-based motion estimation has
been proposed to segment the image frame into several re-
gions and estimate the motion parameters of each region
[3]. However, conventional motion-based segmentation ap-
proaches have inherent difficulty since motion field tends to
be noisy and difficult to interpret (see Figure 1).

Figure 1: An example of motion vector field ob-
tained after motion estimation (full search, search
window size ±15 pixels) of the third frame based on
the second frame of the “Table Tennis” sequence.

In this paper, we propose an iterative algorithm that is ca-
pable of detecting moving regions and get very accurate mo-
tion estimation on them. In the meanwhile, the number of

motion blocks are kept below a given quota.

The paper is organized as follows. Section 2 describes the it-
erative algorithm. Section 3 presents the simulation results.
Section 4 gives a brief summary of the paper.

2. ALGORITHM
First, we take the difference of two neighboring frames It

and It−1 and use an a priori threshold H to separate the
moving foreground from the still background. We divide
each M×N frame into (MN/B2) blocks (of size B×B), and
classify each block into two mutually exclusive categories: (i)
motion blocks in the foreground, and (ii) still blocks in the
background.

Definition 1. A block in the frame It is said to be a mo-
tion block if there exits at least one pixel It(x, y) in the block
that satisfies the following condition:

|It(x, y) − It−1(x, y)| ≥ H, (1)

A block is decided to be a still block otherwise. A bit map
T that characterizes the block types can be formed:

T (m,n) =

{

1 the (m,n)-th block is a motion block;
0 otherwise,

(2)
where m ∈ [0, M/B) and n ∈ [0, N/B).

We obtain the motion vectors associated with each motion
block. For the block (m, n), we measure the prediction error
in terms of mean square error (MSE). The motion vector
(vx, vy) of block (m, n) are found to be

arg min
vx,vy∈[−R,R]

{

B−1
∑

i,j=0

[It(x, y) − It−1(x + vx, y + vy)]2
}

,

(3)

where R is the search window size in motion estimation, and
x = m × B + i, y = n × B + j are the coordinates of the
pixel.

In the special case where a block has (vx, vy) = (0, 0), we
claim the block to be a still block.

If we choose a large threshold H, then only a small percent-
age of blocks will be classified as motion blocks – some true
motion blocks might be left out. On the other hand, if we
choose a small H, then many blocks will be labeled as mo-
tion blocks (H = 0 will turn all blocks into motion blocks).
In very low bit rate video coding applications, we cannot
afford to code too many motion blocks. An attempt to find
motion vectors for an excessive number of blocks is not only
computationally expensive, but also wasteful since we would
have to force some blocks to become still blocks in order to
save bits in coding the motion vectors.

Hence our goal is to identify a set of c motion blocks in
frame It that have the best match in the previous frame It−1,
where c ≤ Q, and Q is the quota. Here, best match motion
block is defined as a block with the smallest MSE (Eq. 3).
Given the initial set of c (<< Q) candidate motion blocks

produced by the frame difference operation, the following
dilution algorithm seeks to recover the most suitable motion
blocks that were classified as still blocks initially.

We use a sorted linked list (Figure 2) to store the information
of motion blocks, with the key of a node being the MSE
associated with the motion vector (a smaller key value means
a better candidate motion block). We insert the initial set
of motion blocks into an empty list in an ascending order.
We traverse the list from its head (smallest MSE) to its tail
(largest MSE).

Head

Tail

Increasing MSE

......

New Node

Figure 2: Sorted Linked List. A new node is in-
serted in such a way that the list remains sorted in
an ascending order.

For each node we visit, we consider its neighboring eight
blocks in frame It (Figure 3), among which some blocks
may have already been included in the list. We ignore such
blocks. For those that are not in the list, motion estimation
is applied and motion vectors are obtained. Based on the
associated MSE values, new blocks are inserted into the list
with the updated list remaining sorted (Figure 2).

Figure 3: Dilution operation: eight neighbors of a
node in the linked list are examined for potential
inclusion into the list.

The same procedure is then repeated on an updated list.
The iteration stops if the number of blocks in the list hits
the quota, or we can not find any more motion blocks that
are eligible to join the list. The algorithm is summarized in
Figure 4.

It can be seen that this method of progressive refinement
of the motion estimation has the following properties: (i)
Blocks that are in the list (motion blocks) are more impor-
tant than blocks that are not in the list (still blocks). Thus
we should code the motion vectors of blocks in the list since
they allow for the best reduction in temporal redundancy;
for blocks that are excluded in the list, we set their motion
vectors to zero and only code the non-displaced block differ-
ences. (ii) If an moving object occupies multiple connected
blocks, dilution in the vicinity of a node would bring in good
new motion blocks. The list will grow at wherever the true

Start

Frame Difference

Form Bit Map

Motion Estimation

on Motion Blocks

Scan Initial Linked List

Dilution

New Node Insertion

Quota Exceed ?

Output the Truncated List

End

Y

N

Figure 4: Flowchart of the algorithm.

motion is most likely to occur. (iii) The closer a block is to
the head of the list, the more important it is (smaller MSE).
When we truncate the list at an intermediate node, the par-
tial list output from the head to that node will yield a set of
best motion blocks possible in the given number. (iv) Mo-
tion estimation is applied only when necessary (to consider
recruiting candidate nodes during dilution), thereby achiev-
ing significant savings on the computational cost of having
to motion estimate every block. Note that if the initial list
is not too long (which is typically the case when we use a
relatively large threshold H), then the sorting would not be
a large computational overhead. In summary, our method
can achieve very accurate estimation of the moving objects
in the scene, while meeting the budget requirement on the
number of motion blocks.

3. EXPERIMENTAL RESULTS
The block size is chosen to be 4 × 4. This choice is a com-
promise of motion estimation accuracy and the overhead of
coding excessive number of motion vectors. For instance,
4 × 4 block size has been adopted by the emerging H.26L
standard [2]. We use the second and the third frame of
the “Table Tennis” sequence to show the simulation results.
Similar results have been observed for other frames and test
sequences.

In Figure 5, the initial linked list contains only 447 motion
blocks. As we increase the quota from 447 to 802, the output
partial list grows in length. Consequently, more and more
motion blocks that were classified as still blocks on the initial

bit map are recovered so that we can finally detect moving
objects as a whole (e.g., the arm, the bat, and the table)
when the quota reaches 1507. As we further increase the
quota, no additional blocks are found to be eligible to join
the list. This is when the iteration stops. By examining the
final full list output, we are able to identify moving objects,
each of which corresponds to a cluster of motion blocks. In
other words, if we do not introduce a quota constraint, then
the linked list is allowed to grow freely to its largest possi-
ble length - the dilution algorithm behaves like an effective
motion-based segmentation approach.

Figure 6 and Figure 7 illustrate how the associated root MSE
values increase as more and more nodes are inserted into
the list. Note that for both thresholds, the total numbers of
motion blocks attainable are almost the same (about 1510).

0 250 500 750 1000 1250 1500
0

1

2

3

4

5

6

7

Node Indices

R
M

S
E

Figure 6: Square root of MSE associated with each
node in the linked list. Threshold H = 30, and Q =
447, 603, 802, 1002, 1200, 1507, respectively. Q = 1505
(thicken curve) corresponds to the longest list pos-
sible.

Figure 8 also demonstrates that the final number of motion
blocks (divided by the total number of blocks in a frame)
tends to be insensitive to the threshold used.

Figure 9 shows the tradeoff between number of the motion
blocks allowed and the accuracy of temporal prediction (as

measured by PSNR = 10 log10
2552

MSE
). For large threshold

(H = 30), the initial small set of motion blocks (only 7.1%
of the blocks are labeled as motion blocks) is a very rough
estimate of the motion, therefore, as more and more motion
blocks are added to the list, the prediction accuracy keeps
improving (over 1dB increase in PSNR can be achieved with
about 24% of the blocks being labeled as motion blocks). By
contrast, the improvement is less pronounced for H = 10
since we start with a much larger set (11.3%) of motion
blocks. Again, both thresholds can converge to the same
prediction accuracy eventually.

4. SUMMARY
This paper describes an iterative dilution algorithm useful in
very low bit rate video coding applications. The algorithm

Figure 5: Bitmaps (threshold H = 30). Quota Q = 447, 802, 1507 (from left to right).

0 250 500 750 1000 1250 1500
0

1

2

3

4

5

6

7

Node Indices

R
M

S
E

Figure 7: Square root of MSE associated with each
node in the linked list. Threshold H = 10, Q =
718, 902, 1002, 1200, 1400, 1510, respectively. Q = 1510
(thicken curve) corresponds to the longest list pos-
sible.

is effective in tracking down moving objects, while keeping
the total number of motion blocks below a given limit. The
algorithm is robust since its final output is insensitive to
the thresholds used in block classification. We show that
our algorithm is also a good moving object segmentation
scheme when operating in an unconstraint manner.

5. ACKNOWLEDGMENTS
The idea of this paper was formed when the authors were
working at AT&T Labs-Research.

6. REFERENCES
[1] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J.

LeGall. MPEG Video Compression Standard. Chapman
& Hall, 1996.

[2] J. Shen and J. Ribas-Corbera. Benefits of adaptive
motion accuracy in H.26L video coding. In Proc. of

International Conference on Image Processing, pages
1012–1015, 2002.

[3] Y. Wang, J. Ostermann, and Y.-Q. Zhang. Video

Processing and Communications. Prentice Hall, 2002.

400 600 800 1000 1200 1400 1600
6

8

10

12

14

16

18

20

22

24

Quota

P
er

ce
nt

ag
e

of
 M

ot
io

n
B

lo
ck

s

Figure 8: Percentage of motion blocks. Threshold
H = 10 (solid), and H = 30 (dashed).

400 600 800 1000 1200 1400 1600
36.6

36.8

37

37.2

37.4

37.6

37.8

38

Quota

P
S

N
R

 (
dB

)

Figure 9: PSNR improvements. Threshold H = 10
(solid), and H = 30 (dashed).

