Comparison of Classifier Methods:
A Case Study in Handwritten Digit Recognition

Léon Bottou*, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, L. D. Jackel,
Yann LeCun, Urs A. Miiller+, Eduard Séckinger, Patrice Simard, and Vladimir Vapnik

AT&T Bell Laboratories, Holmdel, NJ 07733
*Neuristique, 24 rue des Petites Ecuries, 75010 Paris, France
tElectronics Laboratory, Swiss Federal Institute of Technology,

ETH Zentrum, CH-8092 Ziirich, Switzerland

Abstract

This paper compares the performance of several
classifier algorithms on a standard database of handwrit-
ten digits. We consider not only raw accuracy, but also
training time, recognition time, and memory require-
ments. When available, we report measurements of the
Jfraction of patterns that must be rejected so that the re-
maining patterns have misclassification rates less than a
given threshold,

1: Introduction

Great strides have been achieved in pattern recognition
in recent years. Particularly striking results have been at-
tained in the area of handwritten digit recognition. This
rapid progress has resulted from a combination of a num-
ber of developments including the proliferation of power-
ful, inexpensive computers, the invention of new algo-
rithms that take advantage of these computers, and the
availability of large databases of characters that can be
used for training and testing.

At AT&T Bell Laboratories we have developed a suite
of classifier algorithms. In this paper we contrast the rela-
tive merits of each of the algorithms. In addition to accu-
racy, we look at measures that affect implementation, such
as training time, run time, and memory requirements.

2: Databases

We begin by describing the databases we have used for
the benchmark measurements described in this paper.

2.1: The NIST test set

Responding to the community’s need for better bench-
marking, the US National Institute of Standards and Tech-
nology (NIST) provided a database of handwritten charac-
ters on 2 CD ROMs. NIST organized a competition based
on this data in which the training data was known as NIST

1051-4651/94 $04.00 © 1994 IEEE

77

Special Database 3, and the test data was known as NIST
Test Data 1.

After the competition was completed, many competitors
were distressed to see that although they achieved error
rates of less than 1% on validation sets drawn from the
training data, their performance on the test data was much
worse. NIST disclosed that the training set and the test set
were representative of different distributions: the training
set consisted of characters written by paid US census
workers, while the test set was collected from characters
written by uncooperative high school students. Examples
from these training and test sets are shown in Figure 1.
Notice that the test images contain some very ambiguous
patterns. Although this disparity in distributions is cer-
tainly possible in a real world application, it is prudent
(and usually possible) to guard against it. In general we
can expect best test results when recognizers are tuned to
the kind of data they are likely to encounter when de-
ployed.

A more subtle, but, for us, a more serious problem
arises from having the training and test data belonging to
different distributions. Most of our machine learning tech-
niques now use the principles of Structural Risk Minimi-
zation [1] in which the capacity (roughly speaking, the

a) b)
5062y 1T666%
£ 6345 ¥y 1 S$34
o5 ¢ 73943 |
/H46Q0 ¥9/7/67
11802 sW7 21

Figure 1 a) Typical images from the NIST train-
ing set, and b) Typical images from the NIST
test set.

number of free parameters) of a classifier is adjusted to
match the quantity and the complexity of the training data.
Because of the difference in distributions, we cannot use
our full machine learning tool set on the NIST data when it
is partitioned in this way.

2.4: Modified NIST (MNIST) training and test
sets

For the reasons described above, we repartitioned the
NIST data to provide large training and test sets that share
the same distribution. We now describe how our new data-
base was created.

The original NIST test contains 58,527 digit images
written by 500 different writers. In contrast to the training
set, where blocks of data from each writer appear in se-
quence, the data in the NIST test set is scrambled. Writer
identities for the test set is available and we used this in-
formation to unscramble the writers. We then split this
NIST test set in two: characters written by the first 250
writers went into our new training set. The remaining 250
writers were placed in our test set. Thus we had two sets
with nearly 30,000 examples each. The new training set
was completed with enough examples from the old NIST
training set, starting at pattern # 0, to make a full set of
60,000 training patterns. Similarly, the new test set was
completed with old training examples starting at pattern #
35,000 to make a full set with 60,000 test patterns.

All the images were size normalized to fit in a 20 x 20
pixel box, and were then centered to fit in a 28 x 28 image
using center of gravity. Grayscale pixel values were used
to reduce the effects of aliasing. These are the training and
test sets used in the benchmarks described in this paper. In
this paper, we will call them the MNIST data.

3: The classifiers

In this section we briefly describe the classifiers used in
our study. For more complete descriptions readers may
consult the references.

3.1: Baseline linear classifier

Possibly the simplest classifier that one might consider
is a linear [2] classifier. Each input pixel value contributes
to a weighted sum for each output unit. The output unit
with the highest sum (including the contribution of a bias
constant) indicates the class of the input character. In this
kind of classifier there are 10 N weights + 10 biases, where
N is the number of input pixels. For our 28 x 28 input
units, we have 7850. Because this linear problem optimizes
a quadratic function it has a single minumum with a unique
solution. This means that the weight values can be deter-
mined uniquely. The deficiencies of the linear classifier are
well documented [3]and it is included here simply to form
a basis of comparison for more sophisticated classifiers.

78

On the MNIST data the linear classifier achieved 8.4% et-
ror on the test set.

3.2: Baseline nearest neighbor classifier

Another simple classifier is a k-nearest neighbor classi-
fier with a Euclidean distance measure between input im-
age pixel maps. This classifier has the advantage that no
training time is required. However, the memory require-
ment is large: the entire training database, about 30 Mega-
bytes, must be available at run time. MNIST test set error
for k=3 is 2.4%.

3.3: LeNet 1

LeNet 1 is a multilayer neural network that performs
successive non-linear convolutions and subsampling to
automatically extract relevant features [4]. Although about
140,000 multiply/add steps are required to evaluate LeNet,
its convolutional nature keeps the number of free parame-
ters to only ~3000. The LeNet 1 architecture was devel-
oped using a postal database that is smaller than MNIST
database and its size was tuned to match the available data.
On the MNIST LeNet 1 achieved 1.7% error.

3.4: LeNet 4

LeNet 4, which was designed for the larger MNIST da-
tabase, is an expanded version of LeNet 1 that includes
more feature maps and an additional layer of hidden units
that is fully connected to both the last layer of features
maps and to the output units. LeNet 4 requires about
260,000 multiply/add steps and has about 17,000 free pa-
rameters. LeNet 4 achieves 1.1% error on the MNIST test.

3.5: Large fully-connected multi-layer neural net-
work '

Another classifier that we tested was a fully connected
multi-layer neural network with two layers of weights.
Best results were obtained with 300 hidden units. For this
network, the search for the optimal number of hidden units
was aided by use of the MUSIC [5] supercomputer. (For
purposes of comparison, numbers quoted in Figure 3 are
for equivalent times on a Sparc 10.) This classifier attains
1.6% error on the test set.

3.6: Boosted LeNet 4

Several years ago, Schapire [6] proposed methods (called
“boosting”) for building a committee of learning machines
that could provide increased accuracy compared to a single
machine. Drucker, et. al. [7] expanded on this concept and
developed practical algorithms for increasing the perform-
ance of a committee of three learning machines. The ba-
sic method works as follows: One machine is trained the
usual way. A second machine is trained on patterns that are
filtered by the first machine so that the second machine
sees a mix of patterns, 50% of which the

Optimal Margin

Tangent Distance

LeNet 4 / K Nearest
Neighbors

LeNet 4 / Local Learning
Boosted LeNet 4

LeNet 4

LeNet 1

Fully connected Net g

K Nearest Neighbor

@ % Rejected to Attain 0.5% Test
Error

B Test Error

8.1%

0% 1% 2%

Figure 2. Performance of classifiers on the MNIST test
set. The uncertainty in the quoted rates is about 0.1%.
The black bars show the error rates. The error rate for
the simple linear classifier (not shown) is 8.4%

first machine got right and 50% of which it got wrong.

Finally, a third machine is trained on new patterns on
which the first and second machines disagree. During
testing, in the Drucker method, all three machines are
shown the unknown character and their output scores are
added, with the highest total score indicating the most
likely classification.

Notice that if the first machine is a version of LeNet 4,
its ~1% error rate means that an enormous amount of data
must be filtered to glean enough mis-classified patterns to
train a second machine that is as complex as LeNet 4. Even
more data is required to train the third machine. For this
MNIST database there was insufficient data to train all
three machines. In order to circumvent this problem, an
unlimited number of training patterns was generated by de-
forming the training data with a set of affine transforma-
tions and line-thickness variations. This choice of distor-
tions, in effect, builds some of our knowledge about char-
acter recognition into the training process. With this
method, a composite machine, consisting of three versions
of LeNet 4, was trained. It attained a test error rate of
0.7%, the best of any of our classifiers. At first glance,

3%

79

4% 5% 6% 7% 8% 9%

The gray bars show the percent of test patterns re-
jected to achieve 0.5% error on the remaining test ex-
amples. Results are not available for the linear classi-
fier and the fully connected net.

boosting appears to require three times as much time to
perform recognition as a single machine. In fact, with a
simple trick, the additional computation cost is only about
a factor of 1.75. This is because usually the first machine
classifies patterns with high confidence and the outputs of
the other two machines need not be evaluated.

3.7: Tangent Distance Classifier (TDC)

The TDC is a memory-based, k-nearest-neighbor clas-
sifier in which test patterns are compared to labeled, proto-
type patterns in the training set. The class of the training
pattern “closest” to the test pattern indicates the class of the
test pattern. The key to performance is to determine what
“close” means for character images. In simple nearest-
neighbor classifiers, Euclidean distance is used: we simply
take the squares of the difference in the values of corre-
sponding pixels between the test image and the prototype
pattern. The flaw in such an approach is apparent: a mis-
alignment between otherwise identical images can lead to a
large distance.

Simard {8] and his coworkers realized that a better dis-
tance measure should be invariant against smalil distor-

tions, including line thickness variations, translations, ro-
tations, scale change, etc. If we consider an image as a
point in a high dimensional pixel space where the dimen-
sionality equals the number of pixels, then an evolving
distortion of a character traces out a curve in pixel space.
Taken together, all these distortions define a low-
dimensional manifold in pixel space. For small distortions,
in the vicinity of the original image, this manifold can be
approximated by a plane, known as the tangent plane. Si-
mard, et. al. found that an excellent measure of “closeness”
for character images is the distance between their tangent
planes. Using this “tangent distance”, a high accuracy
classifier was crafted for use on the postal data. On the
MNIST data a TDC with k=3.achieved 1.1% error.

3.8: LeNet 4 with K-Nearest Neighbors

As an alternative to a smart distance measure like the
one used in the TDC, one can seek a change in representa-
tion so that Euclidean distance is a good measure of pattern
similarity. We realized that the penultimate layer of LeNet
4, which has 50 units, can be used to create a feature vector
that is appropriate for a Euclidean distance search. With

Optimal Margin

Tangent Distance

LeNet 4 / K-Nearest
Neighbors

LeNet 4 / Local Learning
Boosted LeNet 4

LeNet 4

LeNet 1

Fully Connected Net ;

K Nearest Neighbor

Linear Classifier

these features, a 1.1% test error was attained, the same as
LeNet 4.

3.9: Local Learning with LeNet 4

Bottou and Vapnik [9] employed the concept of local
learning in an attempt to get higher classifier accuracy.
They had observed that the LeNet family of classifiers per-
forms poorly on rare, atypical patterns, and interpreted this
behavior as a capacity control problem. They surmised that
the modeling capacity of the network is too large in areas
of the input space where the patterns are rare and too small
in areas where patterns are plentiful. To alleviate this
problem they decided to train simple linear classifiers
which operate on feature vectors produced by the penulti-
mate layer of LeNet 4. Local training uses only the & pat-
terns in training set that are closest to the test pattern. In
order to control the capacity of these linear classifiers,
they imposed a weight decay parameter y. The parameters
k and vy are determined by cross validation experiments.
With this local learning approach, an error rate of 1.1%
was achieved on the MNIST test, the same as LeNet 4.

B Training Time (weeks)

ETime/Recognition (sec)

Figure 3. The black bars show the training time (in
weeks) on a Sparc 10 . The gray bars show the time on

80

a Sparc 10 for recognition of a single character starting
with a size-normalized pixel map image.

3.10: Optimal Margin Classifier (OMC)

The Optimal Margin Classifier (OMC) is a method for
constructing decision rules for two-group pattern classifi-
cation problems. (For digit recognition, 10 such classifiers
are constructed, each one checking for the presence of a
particular digit.) The OMC can accommodate arbitrarily
shaped decision surfaces. This is achieved by automati-
cally transforming the input patterns and constructing a
linear decision surface in the transformed space.

In the transformed space, only some of the initial pat-
terns are required to define the decision boundaries. These
are known as the support patterns. Only support patterns
need be stored, so the memory requirements of the OMC is
less than a memory-based classifier that stores all the
training patterns.

The original OMC algorithm, developed by Boser,
Guyon, and Vapnik[10], only succeeds if the training set is
linearly separable in the transformed space. The technique
was extended by Cortes and Vapnik to cover in-
separability, and thus allows for labeling errors in the
training set [11]. The test results reported here make use of
a 4th degree polynomial decision surface in the input
space. A MNIST test error of 1.1% was obtained.

4: Discussion

A summary of the performance of our classifiers is
shown in Figures 2-4. The black bars in Figure 2 show the
raw error rate of the classifiers on a 10,000 example test
set. Although all the classifiers, with the exception of the
simple linear classifier, did well on the test set, Boosted
LeNet 4 is clearly the best, achieving a score of 0.7%.
This can be compared to our estimate of human perform-

ance, 0.2%. The gray bars in Figure 2 illustrate another
measure of accuracy, namely the number of patterns in the
test set that must be rejected to attain a 0.5% error on the
remaining test examples. In many applications, rejection
performance is more significant than raw error rate. Again,
Boosted LeNet 4 has the best score.

Classification speed is also of prime importance. The
black bars in Figure 3 show the time required on a Sparc
10 for each method to recognize a test pattern starting with
a size-normalized pixel map image. Here we see that there
is an enormous variation in speed. The times shown in
Figure 3 represent reasonably well-optimized code running
on general purpose hardware. Using special purpose hard-
ware, much higher speeds might be attained, provided that
the hardware matches the algorithm. Single-board hard-
ware designed with LeNet 1 in mind performs recognition
at 1000 characters/sec [12].

Another measure with practical significance is the time
required to train the classifiers. For the local learning,
training time is dominated by the time required to train a
version of LeNet 4 which produces the feature vectors
needed for this method. For the other algorithms, again
there is significant variation in the training time. The gray
bars in Figure 3 show the required training on a Sparc 10
measured in weeks.

Figure 4 shows a further measure of performance: the
memory requirements of our various classifiers. Clever
compression of the data or elimination of redundant train-
ing examples might reduce the size requirements of the
memory-based classifiers that we tested -- at the cost of in-
creased run time. Of the high-accuracy classifiers, LeNet 4
requires the least memory.

Optimal Margin

Tangent Distance

LeNet 4 / K-Nearest Neighbors |
LeNet 4 / Local Learning
Boosted LeNet 4] 0.08

LeNet 4 1 0.06

LeNet 1] 0.05

Fully Connected Net 1] 0.14

K Nearest Neighbor]

Linear Classifier | 0.01

T

0 5

10 15 20 25

Figure 4. Memory requirements in Megabytes for different classifiers.

Many real-world applications require a multi-character
recognizer. This can be implemented as a number of
single-character recognizers in conjunction with an
alignment lattice. The recognizers must be designed and
trained to find not only the correct character (as dis-
cussed above), but also the correct segmentation [13]. We
find that neural networks have a big advantage over
memory-based techniques, because the latter cannot eas-
ily make use of information about counterexamples.

5: Conclusions

This paper is a snapshot of ongoing work. Although
we expect continued changes in all aspects of recognition
technology, there are some conclusions that are likely to
remain valid for some time.

Performance depends on many factors including high
accuracy, low run time, low memory requirements, and
reasonable training time. As computer technology im-
proves, larger-capacity recognizers become feasible.
Larger recognizers in turn require larger training sets.
LeNet was appropriate to the available technology five
years ago, just as LeNet 4 is appropriate now. Five years
ago a recognizer as complex as LeNet 4 would have re-
quired several months’ training, and was therefore not
even considered.

For quite a long time, LeNet 1 was considered the state
of the art. The local learning classifier, the optimal mar-
gin classifier, and the tangent distance classifier were de-
veloped to improve upon LeNet 1 -- and they succeeded
at that. However, they in turn motivated a search for im-
proved neural network architectures. This search was
guided in part by estimates of the capacity of various
learning machines, derived from measurements of the
training and test error (on the large MNIST database) as a
function of the number of training examples. We discov-
ered that more capacity was needed. Through a series of
experiments in architecture, combined with an analysis of
the characteristics of recognition errors, LeNet 4 was
crafted.

We find that boosting gives a substantial improvement
in accuracy, with a relatively modest penalty in memory
and computing expense. Also, distortion models can be
used to increase the effective size of a data set without
actually taking more data.

The optimal margin classifier has excellent accuracy,
which is most remarkable, because unlike the other high
performance classifiers, it does not include knowledge
about the geometry of the problem. In fact, this classifier
would do just as well if the image pixels were encrypted,
e.g., by a fixed, random permutation.

When plenty of data is available, many methods can
attain respectable accuracy. Although the neural-net

82

methods require considerable training time, trained net-
works usually run much faster and require much less
space than memory-based techniques. The neural nets’
advantage will become more striking as training databases
continue to increase in size.

6: References

1. V. N. Vapnik, Estimation of Dependencies Based on Em-
pirical Data, Springer-Verlag (1982). i
2. R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, Chapter 4, John Wiley and Sons (1973).

3. M. L. Minsky and S. Pappert, Perceptrons, MIT Press,
Cambridge Mass. (1969).

4. Y. LeCun, O. Matan, B. Boser, J. S. Denker, D. Henderson,
R. E. Howard, W. Hubbard, L. D. Jackel, and H. S. Baird,
“Handwritten Zipcode Recognition With Multilayer Networks,”
Proc. of International Conference on Pattern Recognition, At-
lantic City, 1990.

5. U. A. Miiller, Bernhard Baumle, P. Kohler, A. Gunzinger,
and W. Guggenbuhl, “Achieving Supercomputer Performance
for Neural Net Simulation with an Array of Digital Signal Proc-
essors,” IEEE Micro Magazine, October 1992 55-65.

6. R. Schapire, “The Strength of Weak Learnability,” Machine
Learning 5 197-227 (1990).

7. H. Drucker, R. Schapire, and P. Simard, “Boosting Perform-
ance in Neural Networks,” International Journal of Pattern
Recognition and Artificial Intelligence 7 705-720 (1993).

8. Patrice Y. Simard, Yann LeCun, and John Denker, “Efficient
Pattern Recognition Using a New Transformation Distance,”
Neural Information Processing Systems 5 50-58, Morgan
Kaufmann (1993).

9. Léon Bottou and Vladimir Vapnik, “Local Learning Algo-
rithms,” Neural Computation 4 888-900 (1992).

10. B. E. Boser, 1. Guyon, and V. N. Vapnik, “A Training Al-
gorithm for Optimal Margin Classifiers,” in Proceedings of the
Fifth Annual Workshop on Computational Learning Theory 5
144-152, Pittsburgh (1992).

11. Corinna Cortes and Vladimir Vapnik, “The Soft Margin
Classifier,” submitted to Machine Learning.

12. Eduard Sickinger and Hans Peter Graf, “A Board System
for High-Speed Image Analysis and Neural Networks,” Submit-
ted to IEEE Transactions 'on Neural Networks.

13. John S. Denker and Christopher C. J. Burges, “Image Seg-
mentation and Recognition,” in The Mathematics of Induc-
tion, D. H. Wopert (ed.), Addison-Wesley (1994).

