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Abstract

A method for computer-aided cleaning of undesirable patterns in large train-
ing databases has been developed. The method uses the trainable classifier
itself, to point out patterns that are suspicious, and should be checked by the
human supervisor. While suspicious patterns that are meaningless or misla-
beled are considered garbage, and removed from the database, the remaining
patterns, like ambiguous or atypical, represents valid patterns that are hard
to learn and should be kept in the database. By using our method of pattern
cleaning, combined with an emphasizing scheme applied on the patterns that
are hard to learn (increasing the frequency of presentation), the error rate on
the test set has been reduced by half, in the case of the database of handwriten
lowercase characters entered on a touch terminal. Our classifier is based on a
Time Delay Neural Network (TDNN) and was trained on a large database of
11,500 characters from approximately 250 writers.

Introduction

A large number of methods in pattern recognition involve training by examples.
Patterns are collected and labeled according to the class to which they belong by a
human supervisor. In most practical cases, one has to deal with training databases
which contain patterns inaccurately labeled and which may even include some mean-
ingless patterns. Such garbage patterns in the training data result in performance
degradation of the classifier. In particular, training procedures which emphasize
atypical patterns (in an effort to capture the tail of the distribution) require elim-
inating substantially all garbage patterns from the database, otherwise procedures

will emphasize garbage patterns as well.

In this paper, we present a method which uses the classifier itself in the process of
training, to identify suspicious patterns so that a new human super-supervisor can be
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queried. Based on that query, without major effort, the super-supervisor will browse
through the suspicious patterns, eliminate garbage patterns and keep the valid ones.
Experiments were carried out on the problem of writer independent on-line isolated
handprinted character recognition. Characters were entered on a touch terminal.
For this particular pattern recognition problem, a neural network was used as the
Learning Machine, that incorporates the feature extractor and classifier in a single
trainable system. By using our method of data cleaning, the error rate on the test
set was reduced almost by half.

2 Problem Description

During data collection, several kinds of errors can be introduced into the database:

e Hardware failures can cause the insertion of meaningless patterns.

e Human failures can cause the insertion of mislabeled patterns.

Keeping these patterns in the training database might cause severe degradation in
the performance of the classifier.

To get better reliability, one could have the database checked by several people.
This procedure has the advantage of providing confidence levels for the labels, but
it is impractically laborious for reasonably large databases.

There exist classical methods for handling the problem of outliers. So-called robust
statistics [?] ,in a broad interpretation includes different methods that are relatively
insensitive to departure from distributional assumptions, outliers, sample censoring
etc. This robustness is often obtained by modifying least squares schemes so that
outliers have much less influence, or by discarding outliers. This is dangerous be-
cause suspicious patterns may not be garbage patterns; if they are valid patterns
that happen to be difficult to learn, they are extremely valuable. Such a situation
can arise in two different cases:

e The pattern is atypical but meaningful and well labeled.

e The pattern is ambiguous; reasonable questions can exist about the label.

Our goal, in terms of robustness, is to develop selective robust procedure, that will
keep valuable outliers in the database. To do a good job at cleaning the database,
it is therefore necessary to insert a human super-supervisor in the cleaning process.
To alleviate this task, we propose to provide the assistance of the trainable classifier
itself, which will point out a restricted number of suspicious patterns.

Examples of meaningless and mislabeled patterns that are present in our database
of handwriten lowercase letters are given in figure 1. These patterns are considered
garbage and removed from database. Examples of valuable outliers, in the same
database, i.e. atypical and ambiguous, are given in figure 2. We want to keep them
in order to capture well the tail of the distribution, and to put emphasis on these
patterns in order to improve recognition rate.



Figure 1: Examples of meaningless and mislabeled patterns in the lowercase letters
database.

Figure 2: Examples of atypical and ambiguous patterns in the lowercase letters
database.



3 Emphasizing Ambiguous and Atypical Patterns

Before describing the cleaning (query) system, we will outline the learning-with-
emphasis procedure which is intended to capture the tail of the distribution of the
training patterns.

An ideal classifier will: (i) perform very well on all typical patterns, and (ii) perform
reasonably well on atypical and ambiguous patterns. Most algorithms lead to clas-
sifiers satisfying (i). In reference [?], it was shown that by using a training scheme
which emphasizes difficult patterns, it is possible to get (ii) with no degradation of
(i).

Emphasis can be applied to all adaptive training schemes which cycle several times
through all the patterns before converging, such as gradient descent techniques.
Typically, such techniques minimize an error function such as the mean-squared-
error (MSE) cost function:
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where p is the number of training patterns, ¢ the number of output units (one
per class), fl(xk) the state of the {*" output of the classifier, when pattern x* is
presented, and ylk the corresponding target value. The target values are binary; for
instance yf = 1if [ = class(x*) and 0 otherwise. It is usually assumed that f(x*)

provides an approximation to the Bayesian classification function P(y; = 1|xk).

In the following, we will also use the notation e(k) for the contribution of pattern k
to the MSE FE:

e(k) = D (x") = yr)? (2)
=1

We focus on “on-line” learning procedures; that is, a modification of the classifier
parameters happens at each presentation of a pattern. On-line gradient descent
is affected by the order and frequency of presentation of the patterns. The least
predictable example (i.e. with largest squared error) is the one carrying most new
information [?]. In character recognition, for instance, one should intermix examples
of different classes and from different writers, as opposed to presenting batches of
similar patterns. Proper shuffling of the examples greatly improves the speed of
convergence.

Performance can be further improved by increasing artificially the frequency of pre-
sentation of the patterns that are least predictable. At the extreme, it is conceivable
to train only on the least predictable pattern (in the squared error sense) every time
one cycles through the training set. This time consuming scheme converges asymp-
totically to a solution that minimizes (over all training patterns) the maximum
squared error (as opposed to the mean square error; see [?]).
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Figure 3: Emphasizing scheme. The least predictable examples are presented more
often.

A more practical implementation of this idea was proposed in [?] (figure 3). Training
patterns are put into a reservoir, from which only a small subset of training patterns
is used at each training cycle. At the end of a cycle, patterns in this subset are
sorted in order of increasing predictability. The least-predictable half is kept, and
the second half is replaced by fresh patterns taken from the reservoir.

If we look at the examples with the largest squared error, we can see that garbage
patterns will fit the description of the least predictable patterns. On the other hand,
it is clear that they don’t carry any new information. So, the danger of this scheme
is that if the database contains mislabeled of meaningless patterns, emphasis will be
put on them as well as on the highly important atypical and ambiguous patterns.
The significant improvements obtained with the emphasizing scheme [?] compared
with 7classical” procedures, where all the patterns are presented at each training
cycle, motivated the design of an efficient cleaning method.

4 Super-Supervised Learning

Super-supervised learning refers to filtering the suspicious patterns (meaningless,
mislabeled, ambiguous, or atypical) using a trainable classifier and a human super-
supervisor (supervisor II). In addition to the basic classification task, the classifier is
used to divide the patterns, based on some predefined criteria, into two categories:
the predictable versus unpredictable; the latter are declared suspicious and sent to
supervisor II.
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Figure 4: Block diagram of the cleaning scheme: super-supervision.

A block diagram of the procedure is presented in figure 4. The classifier has already
received some preliminary training. Supervisor I provided the labels that appear in
the training database before the cleaning operation is started. When a subsequent
pattern is presented, an error (such as the one computed from equation 2) is obtained
by comparing the output of the classifier with the label provided by supervisor I. If
this error exceeds a certain threshold, supervisor II will be queried before the pattern
is incorporated into the training set. The point is to get maximum information per
unit effort from supervisor 11, since most of the patterns will skip query.

We propose two complementary implementations of this scheme: interactive cleaning
and batch cleaning.

4.1 Interactive Cleaning

“Interactive super-supervision” has the advantage of combining cleaning and train-
ing in a single session. A flow diagram of this method is presented in figure 5.
Initialization is performed by training the classifier with a few clean examples.

After initialization, at step k of the cleaning process, a new pattern x* is presented
to the classifier. The prediction of the classifier is compared to the label provided by
supervisor I and the error (k) is computed. If the error is below a given threshold 6,
the pattern is immediately incorporated into the training set. Otherwise, the pattern
is sent to supervisor II for checking. Depending on the decision of supervisor II, the
pattern is either incorporated into the training set or discarded.

The advantage of interactive cleaning is that when the session ends, both training



Classifier

supervisor 1

supervisor I1
(super-
superviser)

Figure 5: Flow diagram of the interactive version of the cleaning scheme.



and cleaning are completed. Efficiency requires knowing an appropriate value for

the threshold 6.

4.2 Batch Cleaning

The batch cleaning scheme, in contrast, does not require knowing #. Training is
performed first on all the patterns. An index of predictability of the patterns is
then computed, perhaps based on the remaining error e(k) after training. Batch
cleaning can be easily combined with the emphasising scheme. In that case, a good
index of predictability is the time each pattern spent among the patterns that are
hardest to learn (shaded area in figure 3). Patterns are sorted in order of increasing
predictability. Supervisor II checks the patterns starting with the least predictable
ones. Cleaning can be stopped when undesirable patterns become very rare.

One drawback of batch cleaning is that after cleaning, a new classifier has to be
trained with clean data. In principle, this new classifier should be checked to make
sure no new “outliers” have turned up.

4.3 Bootstrap Cleaning

Third version of the cleaning scheme combines the best features of the interactive
and batch versions, is called the bootstrap method. Cleaning and training are
performed using a small part of the available data. The resulting network constitutes
a partial solution that is highly selective at identifying outliers in a larger subset of
the training data. The process can be iterated as necessary, with ever larger amounts
of training data, until the whole reservoir of patterns is cleaned. To make supervisor
IT task more comfortable, we have developed user-interface for bootstrap cleaning,
where different cleaning parameters, such as size of pattern chunks, threshold, or
number of training iterations can be easily defined.

5 Experimental Results

In our application, we consider the problem of writer independent recognition of
lowercase isolated letters, entered on a Touch Terminal that provides pen trajec-
tory information. A data set of 11513 letters from approximately 250 writers was
collected among the staff at AT&T. The contributors were instructed to write a
certain set of letters, so the task of supervisor I (preliminary labeling of the data)
was trivial — which explains our concern with minimizing the burden on supervisor
II. The data set was partitioned into a training set of 9513 characters and a test
set of 2000 characters from disjoint set of writers. For batch cleaning, the training
session was stopped after approximately 250,000 example presentations.



Our classifier is a Time Delay Neural Network (TDNN) which was described in
reference [?]. The TDNN makes use of the pen trajectory information. It is a con-
volutional multi-layer feed-forward network trained with a gradient descent method
minimizing the MSE.

In figure 6 we present the results given by the bootstrap cleaning procedure. The
cleaning was done while training the TDNN with plain back-propagation (no em-
phasizing scheme). The performance on the test set was measured according to the
raw performance, where the output unit with highest output value is considered to
be the decision of the network.

Both training set and test set were cleaned, but, a distinction was made between
these two sets. We removed from the test set only garbage patterns, i.e. patterns
that supervisor II deemed totally meaningless — typically resulting from a hardware
failure during data collection. Patterns that were poorly written, highly ambiguous,
or mislabeled were kept in the test set, to make our test results as conservative as
reasonably possible. The supervisor II was free to decide whether or not questionable
characters should be removed from the training set.

Starting with the “uncleaned” database, 3 stages of bootstrap cleaning were applied
by the super-supervisor. Each stage was more strict, i.e. he lowered the tolerance
for marginal-quality characters. To test the power of the cleaning technique, we also
tried to corrupt the initial, uncleaned database, by artificially mislabeling 5% of the
characters in the training set.

The results of figure 6 show the evolution of the error rate both on the training set
and the test set. While the error rate keeps decreasing on the training set, the error
rate on the test set goes through a minimum for a certain level of cleaning. After
that point, any additional cleaning will result in an increase of the test error rate.
This indicates that the super-supervisor has removed all meaningless and mislabeled
patterns and starts removing useful atypical or ambiguous patterns. It is important
to be able to detect this phenomenon, to avoid overcleaning. This minimum can
be detected with a validation-set (independent from the test-set so as not to bias
the final performance result). Another way is to use the predictions of learning
theory [?]. In that case, no validation set is needed. This technique is further
examplified in section 6.

The emphasizing scheme was run on a freshly initialized TDNN. Experiments were
performed with no cleaning and with the optimal cleaning. The resulting improve-
ment is shown by the shaded bar in figure 6. We see that the cleaning plus emphasis
reduces the raw error rate almost by half. With unclean data, emphasis is even a
little bit worse than the plain vanilla training algorithm. The full advantage of
cleaning is therefore reached with the emphasizing scheme.

Batch cleaning was also tried. The index of predictability was the time each pattern
spent in the “hard to learn” category during training (shaded area in figure 3). The
results are comparable to those obtained with the interactive cleaning, and it has
the advantage that the super-supervisor need not sit in front of the machine during
training, nor set any a priori threshold.
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Figure 6: Recognition results for handwritten lowercase letters, for various levels
of cleaning. The shaded area indicates the results obtained with the emphasizing
scheme.
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6 Theoretical Foundations of Super-supervised Learn-
ing

We now make connections with Bayesian classification and the Vapnik-Chervonenkis
(VC) theory [?]. We justify our method for cleaning the data based on an index of
predictability. We describe a method to avoid overcleaning and check its validity
experimentally.

6.1 Probabilistic Formalism

Our training problem can be formalized as follows. In an environment characterized
by a probability distribution p(x), examples xF are drawn randomly and indepen-
dently. Supervisor I provides class labels y; with probability P(y|x).

In this framework, atypical patterns are drawn from regions of input space with small
p(x); ambiguous patterns correspond to regions of input space with small P(y;|x)
(for instance P(y;|x) ~ P(yz|x) ~ 0.5).

In the following, p(x) will be referred to as the “natural” prior distribution and
P(y;|x) as the “natural” posterior probability.

Let us introduce now sources of distortion of these “natural” probabilities so as to
account for hardware and human failures in the data collecting process. Hardware
failures (meaningless patterns) cause distortions of p(x), leading to the “distorted”
prior distribution p’(x). Human failures (mislabeled patterns) cause distortions of
P(y;|x), leading to the “distorted” posterior probability P’(y|x).

Meaningless patterns are drawn from regions of input space with eventually large
P'(x), but small p(x). Mislabeled patterns correspond to regions of input space with
eventually large P'(y|x), but small P(y|x).

Therefore, the four kind of suspicious patterns that we have inventoried correspond
to either small p(x) (atypical or meaningless, i.e. outliers) or to small P(yx)
(ambiguous or mislabeled). But all the functionals p(x), p'(x), P(y|x) and P’(y|x)
are unkmown and we have to rely only on the empirical data contained in the
database itself to perform the cleaning.

6.2 Justification of the Cleaning Method

In our approach, we train a classifier fi(x) in order to obtain an approximation
of P(y;|x). We detect a suspicious pattern x* based on an index of predictability
involving for instance the error e(k) (see equation 2) which reflects the decrepancy
of the opinion of the classifier, f;(x*), and that of supervisor I, ylk

Using our previous notations, [ is the class index. Class labels are y; = 1 if I = class(x) and 0
otherwise.



From the considerations of the previous section, it is clear that such a method
will eventually detect ambiguous and mislabeled patterns x* which correspond to
small P(yﬂxk) Less evidently, outlying patterns such as atypical and meaningless
patterns, which correspond to small p(xk) can also be detected through the same
mechanism. The justification comes as follows. It is very difficult to obtain reliable
predictions of P(y;|x) in regions of small p(x), because of the lack of training data.
Indeed, with only mild assumptions about the problem at hand, a bound on the
error bar is given by:

! /

P(shol < 2 fex (3)
where a is a constant (see appendix 8). This bound shows that the error-bar is
bounded by a quantity inversely proportional to p(z). A totallt random prediction
would lead to predict the label y* provided by supervisor I with probability 1/¢ (¢
being the number of classes). Therefore, 1/c is approximately the probability of
not detecting an outlying pattern with our method. The method can further be
refined by training N claccifiers providing independent predictions, which reduces
the probability of not filtering outlyiers to approximately 1/¢!V.

6.3 VC-predictions of Optimal Cleaning

Our experimental results indicate that there is a point of optimal cleaning yielding
best generalization (see figure 6). In this section, we check experimentally the
predictions of optimal cleaning obtained using the VC-bounds ?7.

According to the VC-theory, the probability of making classification errors with our
trained classifier is smaller than the following guaranteed risk:

(1B + 1)+ B(InZ +1)
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G=v(m)+p (4)
where [ is a constant which was experimentally determined by an independent
study [?] (8 = 0.5), v(m) is the frequency of training errors when m suspicious
patterns have been removed from the training set, p is the number of training
patterns before cleaning and d is the VC-dimension.

This bound is valid for small values of the frequency of training errors v(m) and
assumes that patterns are removed only from the training set. G predicts an upper
boung on the frequency of errors on the original uncleaned test set.

G is the sum of two terms: the frequency of training errors v(m), which decreases as
the number of removed examples m increases, and a second term which characterizes
the confidence with which we know the probability of classification error from v(m).
This last term increases when we remove training examples. The minimum of G
indicates the point of optimal cleaning guaranteed by the VC-theory.



The VC-dimension is difficult to estimate for large neural networks trained with
learning schemes involving uncontrolled regularization. In our case, regularization
happens in several different ways, including stopping the training session before
reaching the minimum of the training error. When initialization is performed with
small random weights, this is equivalent to a weight decay regularization [?]. If
training consited in merely minimizing the number of errors on the training set,
a good approximation of the VC-dimension would be the number of free parame-
ters Nfpee. In the case of the TDNN, this number is the number of independent
weights, not the number of connections. Because of regularization, the effective VC-
dimension is only a fraction of Ny,... Based on experiments performed in [?], we
use the following heuristic formula:

Nfree ,
d=———. 5
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We performed the following experiments to check the validity of this result. Training
of the TDNN was performed with all the training data (including garbage patterns)
using the emphasizing scheme. Patterns were then ranked according to decreasing
index of predictability. A set of suspicious patterns selected among the top ranked
patterns (least predictable) was removed from the training set. A freshly initialized
TDNN was trained with the remaining patterns. Then, suspicious patterns were
progressively incorporated in the training set, starting from the most predictable
ones (least suspicious). A each step, partial retraining of the previous TDNN was
performed with the clean training set augmented with some suspicious patterns.

Two different definitions of the set of suspicious patterns were considered: (i) the
top 25% of the least predictable patterns (dumb cleaning); (ii) the top 25% of least
predictable patterns that had been identified as suspicious by supervisor Il in our
previous study (smart cleaning). In figure ?? we show the results obtained in both
cases.

The minimum of G coincides with the best generalization performance measured

presented in section 5: this is due to the fact that the test set contains here all the
garbage patterns, including hardware failures.

7 Conclusions

By filtering suspicious patterns and querying a super-supervisor, we have demon-
strated clear improvement in our handwritten lowercase letter training database.
For the writer independent task, the final recognition rate on the test set was 93.1%
(raw performance; no rejection allowed), and 95% when 3.2% of the patterns were
rejected as unclassifiable, and 97% with 6.5% rejection. These results are better
than the ones reported in a recent review paper [?] on a comparable task. Such
high recognition rates could not have been achieved without the learning scheme



which emphasizes ambiguous and atypical patterns, or without accurate cleaning of

the training database.
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In this appendix, we justify that the error-bar on the prediction of the posterior
probability P(y;|x) is bounded by an quantity inversely proportional to the prior

distribution p(x).
According to the bayes formula:

: P(x|y) Py

P = 2P
p(x)

By differentiating:
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We perform the following majoration:
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Hence, from equations 7, 10 and 11,
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