
Inference with the Universum

Jason Weston jasonw@nec-labs.com
Ronan Collobert ronan@collobert.com

NEC Labs America, Princeton NJ, USA.

Fabian Sinz fabee@tuebingen.mpg.de

NEC Labs America, Princeton NJ, USA; and
Max Planck Insitute for Biological Cybernetics, Tuebingen, Germany.

Léon Bottou leon@bottou.org
Vladimir Vapnik vlad@nec-labs.com

NEC Labs America, Princeton NJ, USA.

Abstract

In this paper we study a new framework
introduced by Vapnik (1998) and Vapnik
(2006) that is an alternative capacity con-
cept to the large margin approach. In the
particular case of binary classification, we are
given a set of labeled examples, and a collec-
tion of ”non-examples” that do not belong
to either class of interest. This collection,
called the Universum, allows one to encode
prior knowledge by representing meaningful
concepts in the same domain as the problem
at hand. We describe an algorithm to lever-
age the Universum by maximizing the num-
ber of observed contradictions, and show ex-
perimentally that this approach delivers ac-
curacy improvements over using labeled data
alone.

1. Introduction and Motivation

In this article we study the following task: construct
a function y = f(x) given a set of labeled examples
L = {(xi, yi)i=1,...,m} ∈ Rd×{±1} drawn from P (x, y)
in order to minimize the risk functional:

R(α) =
1
2

∫
|y − f(x, α)|dP (x, y)

Now, let us suppose along with the training data we
also possess a collection of unlabeled examples known

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

not to belong to either class

x∗1, . . . , x
∗
|U|, x∗ ∈ Rd (1)

The set U is called the Universum. It contains data
that belongs to the same domain as the problem of
interest and is expected to represent meaningful in-
formation related to the pattern recognition task at
hand.

In the absence of a Universum, the method suggested
by Statistical Learning Theory (Vapnik, 2006) is to
minimize the training error whilst controlling the ca-
pacity of the set of functions F you use. The Struc-
tural Risk Minimization principle (SRM) suggests to
construct a structure

S1 ⊂ . . . ⊂ Sn

on the set of admissible functions, such that smaller
indices of S are lower capacity sets of functions. One
then chooses the appropriate Sk by minimizing a prob-
abilistic upper bound on the test error of a classifi-
cation model, e.g. using the VC dimension. Such a
scheme justifies popular algorithms such as Support
Vector Machines (SVMs) (Boser et al., 1992). SVMs
perform regularization which is somehow agnostic to
the data distribution, as the VC dimension is a mea-
sure of capacity that holds for all possible distribu-
tions. The structure that one constructs contains no
prior knowledge of the problem.

In this article we analyse a new method for encoding
prior knowledge, following Vapnik (1998) and Vapnik
(2006). It works by constructing a data-dependent
structure S1 ⊂ . . . ⊂ Sn on the set of admissible
functions by using the Universum examples. These
examples implicitly specify a prior distribution on the

Inference with the Universum

set of functions F , relating our approach to Bayesian
approaches (Bernardo & Smith, 1994). Supplying a
set of Universum examples, rather than defining such
a distribution explicitly, can be a far easier task.

Universum examples should be collected to reflect in-
formation about the domain of our problem of interest.
For example, if we are solving problem of digit recogni-
tion, the Universum could be objects written approx-
imately in the same style as digits (but not necessar-
ily digits), e.g. letters or mathematical symbols (see
Figure 2). In this case, the distribution of the Univer-
sum in the feature space characterizes a domain where
the dominant concepts are not pixels, but pens and
strokes. Hence, the structure we construct is related
to the problem at hand, and not to the arbitrary choice
of a feature space.

To motivate our approach, let us first return to capac-
ity control in the absence of a Universum, by way of
the maximal margin principle.

1.1. Maximal Margin Principle

The simplest description of SLT can be obtained for
the case when the set of admissible functions contains
N elements f(x, α1)), ..., f(x, αN). For this situation
with probability 1 − η simultaneously for all N func-
tions the following bound holds true

R(αi) ≤ ν(αi|L) +

√
lnN − ln η

m
(2)

where ν(αi|L) is the fraction of examples in L incor-
rectly classified by function αi.

The Structural Risk Minimization principle suggests
to construct a structure on the set of admissible func-
tion S1 ⊂ . . . ⊂ Sn where elements Sk contain Nk

functions
N1 ≤ ... ≤ Nn = N (3)

One then chooses the element Sr and the function f ∈
Sr (from the Nr possible functions) that minimizes the
right hand side of equation (2).

The generalization of this scheme for an infinite num-
ber of functions is more technical than conceptual. It
replaces the capacity concepts Ni with more advanced
ones such as the VC dimension. Using the VC dimen-
sion capacity concept in the infinite case one obtains
the same type of bounds where these concepts of ca-
pacity just replace the number of functions.

SRM is a very general scheme. The only requirement
is to construct the structure before the training data
appear. Using more sophisticated mathematics, one
can obtain similar bounds without this requirement

(Shawe-Taylor et al., 1998). Alternatively, using the
transductive setup (Vapnik, 1998) this requirement is
no longer needed.

Ignoring this technical point, the justification of the
maximum margin principle can be achieved as follows.
Suppose we choose F as the set of hyperplanes. Given
our training set x1, ..., xm we can factorise the infinite
set of hyperplanes into a finite number

N = ∆(x1, ..., xm)

of equivalence classes Γ1, ...,Γ`. Two functions belong
to the same equivalence class if they give the same
labeling on the training data.

Let us associate with each equivalence class Γi the
margin ρi of the decision boundary fi ∈ Γi that sepa-
rates the patterns x1, . . . , xn with the largest margin.

Therefore we obtain N pairs

(f1, ρ1), ..., (fN , ρN)

Now let us create the following structure: we include
in the element of the structure Sr all functions f for
which

ρi ≥ ar, a1 > a2, ... > aN > 0

The motivation for maximal margin is that the set of
hyperplanes separating data in the sphere with margin
larger than a has a VC dimension less than h < φ(a).
That is, by maximizing the margin we are minimiz-
ing the VC dimension, effectively the second term in
equation (2).

Practically, this motivates the following algorithm,
the Support Vector Machine (SVM). Support Vec-
tor Machines utilize linear discriminant functions
fw,b(x) = (w · x) + b, and penalize poorly recognized
patterns with the Hinge loss function (Figure 1, left),
which is a convex approximation to the step function.
They thus minimize:

min
w,b

1
2
‖w‖2

2 + C
m∑

i=1

H1[yi fw,b(xi)]

where Hθ[t] = max{0, θ − t } is the Hinge Loss. The
regularization term ‖w‖2

2 causes the maximization of
the margin between the two classes (Vapnik, 1998).

SVMs perform regularization which (despite being
from a data-dependent class) is still somehow agnos-
tic to the particular distribution that generates the
training data, as the VC dimension is a measure of
capacity that holds for all possible distributions. In-
deed, the SVM regularizer ‖w‖2

2 bounds the norm of

Inference with the Universum

the gradient of the discriminant function, and hence
favors “smooth” discriminant functions.

In the next section we consider another idea of assign-
ing value to the equivalence class Γr using instead the
Universum set. The motivation for constructing such
a structure is the ability to encode prior knowledge
into the capacity control mechanism of our resulting
algorithm.

1.2. Maximal Contradiction on Universum
Principle

Suppose that along with training data we are given
another set of data, called the Universum

x∗1, ..., x
∗
|U|

The novelty in our procedure will now be how we con-
struct the pairs (f1, ρ1), ..., (fN , ρN). Let us consider
the set of equivalence classes Γr as before. We say
that an element x∗t from the Universum makes a con-
tradiction on the equivalence class Γr if in Γr there are
two functions f(x, α1) and f(x, α2) such that

f(x∗t , α1) < 0

and
f(x∗t , α2) > 0

We will count the total number of contradictions on
the Universum and use this value to replace the value
ρk from before. By defining a relevant Universum set,
this will give a measure of complexity of a structure
that can be related to the problem at hand, and not
to the arbitrary choice of a feature space, as with the
margin-based principle.

The motivation of this idea is that the number of con-
tradictions connects the SRM principle with the use of
Bayesian priors (Bernardo & Smith, 1994).

A natural way to encode prior knowledge into an algo-
rithm is to define a prior distribution on the functions
in F . Suppose we know a prior distribution P (w) on
the set of hyperplanes.

We could use this to build a structure on our set
of functions as follows1. Let us factorise our set of
functions into equivalence classes as before, and define
w ∈ Ωr as the coefficients of hyperplanes in the equiv-
alence class Γr. We can now measure the quality of an
equivalence class using our prior knowledge:

pr =
∫

Ωr

dP (w) (4)

1While generalization bounds have been obtained for
the large-margin structure case, for the Universum-based
structure this remains an open problem. This might be
possible along the lines of Shawe-Taylor et al. (1998).

The problem with this approach is that defining the
distribution P (w) is very hard. Using the Universum
solves this problem by replacing it with an easier one:
it allows the user to encode prior knowledge via a set
of examples, rather than a distribution on parameters.
However, defining a Universum set is approximately
equivalent to choosing a distribution P (w).

Let the set of hyperplanes on the space of x ∈
Xr, |x| = 1 satisfy

(w, x) = 0, |w| = 1.

Taking into account the duality of x space and w space
for any measure P (w) there is a measure ν(x) such that
the fraction of contradictive points in x approximates
(4). The points in the Universum are samples from
this distribution.

2. Universum Algorithm

We can now describe the algorithm for learning with
a Universum.

We will use the ε-insensitive loss (Figure 1, middle):

U [t] = H−ε[t] + H−ε[−t]

For ε = 0 we have the L1 loss. Other loss functions are
possible, e.g. the L2 loss as in Figure 1, right. This loss
measures the real-valued output of our classifier f(x)
on Universum points x∗1, . . . , x

∗
|U| and penalize outputs

that are far from zero. We then wish to minimize the
total loss:

|U|∑
i=1

U [f(x∗i)]

This approximates our goal of finding an equivalence
class with a large number of contradictions on the Uni-
versum, as if f(x∗i) is close to zero, then only a small
change in f will cause a contradiction on x∗i . There
are many implementations possible, but we choose to
add this term to the standard SVM objective function.
That is, we minimize:

1
2
‖w‖2

2 + C
m∑

i=1

H[yifw,b(xi)] + CU

|U|∑
i=1

U [fw,b(x∗i)]

We call this algorithm U-SVM. The loss on the Univer-
sum points enters the SVM-type optimization problem
via convex constraints |fw,b(x)| ≤ ε + η. This opti-
mization problem is convex, and just like SVMs the
solution can also be computed in dual variables. The
only difference is that the Universum loss corresponds
to adding the Universum points twice with opposite la-
bel and changing the linear part of the objective func-
tion, because the Universum cost function in Figure

Inference with the Universum

Figure 1. From left to right, the Hinge loss and the ε-
insensitive and L2 losses. The ε-insensitive loss is a linear
combination U [t] = H−ε[t] + H−ε[−t] of two Hinge loss
functions H−ε[t] = max{0, t − ε}. Here it is shown with
ε = 0.25. The L2 loss is a simple quadratic function.

−1 0 1 2
0

0.5

1

1.5

2

y f(x)
−2 −1 0 1 2
0

0.5

1

1.5

2

f(x)
−2 −1 0 1 2
0

1

2

3

4

f(x)

1 (middle) is a symmetrized version of the hinge loss,
Figure 1 (left).

For i = 1 . . . |U|, let us define:

xm+i = x∗i ym+i = +1
xm+|U|+i = x∗i ym+|U|+i = −1

After some algebra, the problem becomes:

max
α

m+2|U|∑
i=1

ρiαi −
1
2

m+2|U|∑
i,j=1

yiyjαiαj (xi · xj)

s.t.

0 ≤ αi ≤ C for i = 1 . . . m
ρi = 1 for i = 1 . . . m
0 ≤ αi ≤ CU for i = m + 1 . . . m + 2|U|
ρi = −ε for i = m + 1 . . . m + 2|U|
and

∑m+2|U|
i=1 yi αi = 0

We note that a similar optimization problem is consid-
ered in Zhong and Fukushima (2006), but with quite
different motivations.

Collecting Universum examples We believe it
should be easy to collect or construct Universum data
for many different types of problems. We already gave
the example of optical character recognition. Some
other examples include 3D object detection (any set
of objects could be used to learn about stereo vision),
speech recognition (languages other than the one of
interest could be Universum examples) and so on.

In cases where Universum data is not easily available
in abundance, one can instead use a priori domain
knowledge to construct purely artificial examples. One
could potentially construct fake handwritten symbols
by simulating pens and strokes, fake 3D object by sim-
ulating the stereo mapping, or synthesize fake sounds.
We explore both real and synthesized Universum ex-
amples in our experiments.

3. Regularization with the Universum

The term
∑|U|

i=1 U [f(x∗i)] in U-SVM that takes into
account the Universum points can be seen as a regu-
larizer defined by the Universum data.

This section explores how we can recover a wide range
of known regularizers by defining special sets of Uni-
versum points. We also describe some novel regular-
ization strategies.

Isotropic L2 regularization. Let us consider a lin-
ear classifier without threshold, fw(x) = w · x, and
apply the L2 Universum loss U [fw,b(x

∗
i)] = |fw,b(x

∗
i)|2

(Figure 1, right) to n Universum examples x∗k whose
coefficients are all zero apart for the kth which is 1.

|U|∑
i=1

U [fw(x∗i)] =
|U|∑
i=1

(w · x∗i)2 =
n∑

k=1

w2
k = ‖w‖2

2

One recognizes the standard L2 regularizer.

Anisotropic L2 regularization. More generally,
take a linear classifier fw,b(x) = w · x + b and apply
the L2 Universum loss to Universum examples with
mean 0 and covariance matrix M .

|U|∑
i=1

U [fw,b(x
∗
i)] =

|U|∑
i=1

(w>x∗i + b)2

= w>

(|U|∑
i=1

x∗i x∗>i

)
w + 2b w>

(|U|∑
i=1

x∗i

)
+

(|U|∑
i=1

b2

)
= |U| (w>M w + b2)

This regularizer uses the L2 metric weighted by the co-
variance matrix M of the Universum examples. When
the covariance matrix is diagonal, this amounts to
whitening this covariance matrix by rescaling the fea-
tures. This is remininiscent of the TF/IDF normal-
ization in text processing where common features are
downweighted as rare features prove more useful for
discrimination.

This regularizer also penalises the threshold b. In-
tuitively, the center of mass of the Universum points
must be located at a specific position in feature space.
The Universum cannot implement a translation invari-
ant regularizer. This is connected to the fact that
one cannot define a uniform distribution on the whole
affine space. This relates to the use of ”improper pri-
ors” in Bayesian setups.

L1 regularization - linear case It is also possi-
ble to implement the L1 regularization that is com-

Inference with the Universum

monly used for feature selection (Mangasarian, 1965).
Consider a linear classifier without threshold fw(x)
and apply the L1 Universum loss, U [t] = H0[t] + H0[−t],
(Figure 1 center) to n Universum points x∗k whose co-
efficients are all zero apart from the kth which is 1.

|U|∑
i=1

U [fw(x∗i)] =
|U|∑
i=1

|w · x∗i | =
n∑

k=1

|wk| = ‖w‖1

One recognizes the standard L1 regularizer.

L1 regularization – kernel case Usually one can-
not implement the L1 regularizer with nonlinear kernel
classifiers because the dual formulation does not apply
and because the high dimension of the kernel induced
feature space makes the primal formulation too costly
to compute.

Nevertheless the Universum formulation suggests a
practical way to implement a form of input selection
in the nonlinear case: simply take the Universum de-
scribed in the section above. This will still perform
input selection even for nonlinear kernels. Consider
for instance a polynomial kernel of degree d defined on
binary input variables. In this case this corresponds
to an L1 regularizer that applies only to the coeffi-
cients corresponding to the linear part of the decision
function.

4. Experimental Analysis

In this section we test experimentally whether infer-
ence using Universum points is beneficial compared to
standard supervised learning. In all cases, we compare
a standard SVM to U-SVM, that is, to an SVM that
also leverages Universum data. Some of our experi-
ments also try to explore the question: what kind of
Universum is useful, and when? Unless described oth-
erwise, we employ an RBF kernel, with the width and
soft-margin hyperparameter C tuned using a valida-
tion set. For U-SVM, we also tune the regularization
parameters ε and CU. online before the conference.

4.1. MNIST

We first took the MNIST digits 5 vs 8 as a two-class
classification problem, to see the performance of U-
SVM on a standard dataset. For this problem we con-
sidered four kinds of Universum:

(i) UNoise - images of ”random noise” by generating
uniformly distributed pixel features,

(ii) URest - the other digits 0-9 excluding 5 and 8,

(iii) UGen - create an artificial image by generating

Table 1. The performance of SVM compared to U-SVM for
different amount of training data and different types of
Universum data on MNIST 5 vs 8.

Training subset size
Method 500 1000 2000 3000
SVM 1.96 1.38 0.99 0.83
UNoise-SVM 1.95 1.37 0.99 0.82
URest-SVM 1.60 1.10 0.75 0.55
UGen-SVM 1.72 1.17 0.81 0.64
UMean-SVM 1.68 0.99 0.73 0.57

Table 2. The performance of UMean-SVM for differing
amounts of Universum data on MNIST 5 vs 8. SVM per-
formance for the same number of training points (3000)
was 0.83%.

Train. Number of Universum examples
examples 500 1000 3000 5000 10000
3000 0.66 0.64 0.60 0.57 0.58

each pixel according to its discrete empirical dis-
tribution on the training set.

(iv) UMean - create an artificial image by first selecting
a random 5 and a random 8 from the training
set, and then constructing the mean of these two
digits.

UNoise was included as a kind of ”null” hypothesis to
show that not just any Universum helps – it has to
be related to the problem of interest. The results for
different training set subset sizes are reported in Figure
12. They show an improvement of U-SVM over SVM
for every Universum apart from UNoise.

Which part of the Universum is useful? Next,
we tried to ascertain which digits from the Universum
URest were the most useful in improving the classifica-
tion accuracy. The initial intuition is that the digits
that are close to 5 and 8 should help most. We report
the best test error on a test set of 1865 digits for algo-
rithms trained on the whole training set of 11271 digits
and averaged over ten training sets of size 1000 and 200
that we sampled from the original training set. We al-
ways used the whole set of digits from one class as the
Universum. (This set up is slightly different from be-
fore.) The sizes of these sets are around 6000 examples
for each digit. The results are given in Table 3. They
indicate that digits ”3” and ”6” are the most useful.
This seems to match our intuition, as these digits seem
somehow ”in between” the digits ”5” and ”8”, whereas

2In Vapnik (2006) a similar experiment is reported, but
with differently constructed Universum data.

Inference with the Universum

Table 3. Test error rates for MNIST 5 vs. 8 using examples
of one other digit (0,1,2,3,4,6,7 or 9) as the Universum set.
The last two columns show the correlation of Universum
points with examples of 5s and 8s.

U Training subset size Correlation
all 1000 200 ρ5 ρ8

0 0.27 0.97 3.03 0.32 0.29
1 0.16 1.01 2.95 0.24 0.36
2 0.21 0.94 3.21 0.24 0.34
3 0.05 0.62 2.97 0.33 0.37
4 0.21 0.93 3.03 0.27 0.32
6 0.16 0.84 2.40 0.26 0.32
7 0.16 1.08 3.23 0.25 0.30
9 0.21 0.89 2.78 0.30 0.37
- 0.21 1.19 3.03 - -

other digits have this property only to a lower degree
(mean correlation coefficients with examples of digits
5 and 8 are given in Table 3). Roughly speaking one
can say that the Universum loss penalizes features that
have high values on the Universum points. The digit
”3” covers most of the parts that appear in the digit
”5” as well as in ”8” which can therefore be consid-
ered less discriminative. Taking class 3 as Universum
is a good choice for improving accuracy by assigning
less relevance to those less discriminant features than
any of the other classes. Beyond that, the digits in
a class are not perfectly aligned but rather subject to
transformations like rotation or translation. Ideally a
classifier should be invariant against those. But since
the Universum points are subject to those transforma-
tions as well, the features that are affected are also
assigned lower importance. This could also explain
why an SVM using other digits as Universum also im-
proves the performance over that of a plain SVM in
most cases.

4.2. Reuters RCV1-V2

The Reuters dataset consists of over 800,000 news ar-
ticels in English languages written by Reuters journal-
ists between August 20, 1996 and August 19, 1997.
We used the freely accessible preprocessed version of
Lewis et al. (2004).

The task was to separate the category C15 from the
remaining categories at the same level of the hierarchy,
category CCAT (CORPORATE/INDUSTRIAL). The
data was represented as a bag of words weighted by a
TF/IDF scheme and normalized to Euclidean length
one (see Lewis et al. (2004) for details).

We split the set of 13310 examples into a training set

Table 4. Test error in percent on Reuters RCV1 for SVMs
and U-SVMs, with M14- and MoC-Universums, for differ-
ent training set sizes.

Training subset size
Method 50 100 200 500 1000
SVM 21.1 13.1 11.0 8.6 7.6
UM14-SVM 15.7 12.7 10.2 8.2 7.6
UMoC-SVM 19.4 12.6 10.8 8.6 7.6

Table 5. Test errors in percent comparing SVM and
UMean-SVM on the WinMac dataset.

Training subset size
Method 10 25 50 75 100
SVM 45.2 31.7 20.3 14.7 11.7
UMean-SVM 33.0 24.3 15.2 12.3 11.0

of 6000 examples, a validation set of 2000 examples
and a test set of 5310 examples to accelerate model
selection. We generated subsets of sizes 50, 100, 200,
500 and 1000. Ten sets for each size were randomly
selected from the 6000 points.

We chose two kind of Universums, a real and an artifi-
cial one. We chose the category M14 (COMMODITY
MARKETS) with 2540 examples as the real Univer-
sum. For the artificial Universum, we selected N = 10
examples from each class of the training set and added
the mean of the closest examples from to different
classes to the Universum. Altogether, we generated
1000 points in this manner. In the following text
we call that Universum the MoC Universum (mean
of closest). It might be worth noting that we gener-
ated a MoC Universum for each single split in order
not to use additional information from other training
examples.

We used an RBF kernel, since preliminary tests showed
that it perfoms slightly better than the linear kernel.
The tuning of the regularization constants C,CU and
the kernel parameter was done on the first of the ten
sets with a model selection using the validation set.
For the best set of parameters we trained an SVM with
and without Universum on each of the ten subsets for
the different training set sizes and tested each on the
test set.

Table 4 shows the averaged results. Both U-SVMs per-
form better than a plain SVM. For a dataset size of
50 the improvement is in the order of 1% for the MoC
Universum and in the order of 5% for the M14 Uni-
versum. With increasing dataset size the effect of the
Universum vanishes. These results suggest that the

Inference with the Universum

prior knowledge from the M14 Universum really is im-
portant for the classifier. Especially for small dataset
sizes, the M14 Universum can exhibit features that are
not discriminative for the classification problem since
they seem to occur throughout the dataset. As soon
as the dataset has an adequate size, it provides enough
information itself and the effect of the Universum dis-
appears.

Similar results can be found on other text datasets
as well, such as the WinMac dataset, a collection of
newsgroup articles in two categories. Here, we took
10 random splits of training subset sizes 10, 25, 50,
75, 100, using a linear kernel. The results are given in
Table 5. For larger training set sizes, the improvement
again becomes negligible.

4.3. The ABCDETC Dataset

Most standard machine learning datasets of course do
not come equipped with Universum data. For ex-
ample, MNIST only contains digits of interest, forc-
ing us to run somewhat artificial experiments on that
dataset. Despite this, Universum data is in fact quite
easy to collect. We therefore decided to collect our
own handwritten symbol-based dataset comprising of
digits, upper and lower case letters, and a selection of
symbols:

, . ! ? ; : = − + / () $ % " @

Thus we collected 78 classes in all. Subjects wrote
in pen 5 versions of each symbol on a single gridded
sheet. The sheets were scanned at 300dpi, and the
symbols were stored as 100 x 100 patches, which were
automatically extracted and then centered using the
center of mass of the pixels. In the following experi-
ments, there are 51 subjects resulting in a dataset of
19,646 examples, after outlier removal. Figure 2 shows
part of a typical sheet entered by a subject. The cur-
rent dataset, and updates as we plan to expand it, will
be available online before the ICML conference.

We performed experiments on predicting whether a
letter is a lower case ”a” or ”b”, using training sets
of various sizes (20, 50, 100, 150 and 200), a valida-
tion set of size 200, and the remaining data as the
test set (between 100-300 examples, depending on the
size of the training set). We report results averaged
over 10 random splits. We normalized the examples
to have length 1, and chose to use polynomial kernels,
K(x, y) = (x · y + 1)d. We compare standard SVMs to
U-SVMs using four different Universum sets: (i) the
set of remaining lower case letters, (ii) the set of up-
per case letters C-Z, (iii) the set of digits; and (iii) the
set of symbols. In all cases we randomly sampled 1500
points so all the Universum sets are the same size. The

Figure 2. Part of a typical scanned sheet used to compile
the ABCDETC dataset. The fourth row tells the subject
what to write in the five rows below it.

Table 6. Comparison of SVM and U-SVM learning lower
case ”a” versus ”b” on the ABCDETC dataset, a collection
of handwritten letters, digits and symbols. Four different
Universum choices are considered: lower case c-z, upper
case C-Z, digits 0-9, or a selection of symbols.

Training subset size
Method 20 50 100 150 200
SVM 9.93 5.71 5.16 4.53 3.85
ULowcase-SVM 8.75 5.09 4.21 3.89 3.39
UUpcase-SVM 8.79 5.52 4.88 3.65 2.84
UDigits-SVM 8.37 5.56 4.26 3.97 3.49
USymbols-SVM 8.62 5.75 5.17 4.40 3.67

results are reported in Table 6. They show that as the
Universum set becomes intuitively ”less relevant” to
the problem at hand, the gain one gets from using it
decreases.

4.4. Feature Selection Toy Datasets

We next tested the feature selection regularization of
taking a Universum set x∗i = (0, . . . , 0, 1, 0, . . . , 0),
where there is a 1 in the ith dimension. In the linear
case this is equivalent to adding a 1-norm regularizer,
in the nonlinear case it also penalizes using many input
features. We constructed two toy problems: a linear
one with 2 relevant features in an AND problem and
18 noise inputs, and a nonlinear one with 2 relevant
features in an XOR problem with 4 noise inputs. All
input features are generated from a uniform distribu-
tion. We generated 50 training points, a validation set
of size 200, and a test set of size 1000, for 10 separate
splits. We report error rates for linear, polynomial
and RBF kernels for both SVMs and U-SVMs, where
we tuned kernel hyperparameters, C and CU on the
validation set.

Inference with the Universum

Table 7. Comparison of SVM and U-SVM using an L1-
based Universum set on two toy feature selection problems.

Toy problem
Method Linear Non-Linear
SVMlinear 16.0 49.2
SVMpoly 15.6 23.0
SVMrbf 14.4 23.8
UL1-SVMlinear 6.2 48.5
UL1-SVMpoly 6.2 12.1
UL1-SVMrbf 6.3 19.2

The results given in Table 7 show a considerable im-
provement of U-SVMs over SVMs. However, we note
that many other feature selection algorithms exist. We
do not claim that this is the best one, but show it
as another illustrative example of how constructing a
Universum set can realize many different types of reg-
ularization.

5. Discussion

The idea of adding new data to an existing training
set in order to get better performance was used in sev-
eral different settings of the pattern recognition prob-
lem. In transductive and semi-supervised learning one
leverages unlabeled data from the same distribution.
In the virtual examples methods (Baird, 1990; Leen,
1995; Schölkopf et al., 1996; Niyogi et al., 1998) and
noise injection (Grandvalet et al., 1997), on the other
hand, one creates labeled synthetic data that may not
come from the same distribution.

The idea of using a Universum is also about the use
of additional data. However here we do not require
either the same distribution or labelling.

The Universum idea is close to the Bayesian idea: the
attempt to use prior knowledge. However there is a
conceptual difference between the two approaches. In
Bayesian inference the prior knowledge is knowledge
about decision rules, while the Universum is knowledge
about the admissible collection of examples. People
may have some feeling about a set of examples but they
may often know nothing about the distribution on the
admissible set of functions. Like the Bayesian prior,
the Universum encodes prior information. Unlike the
Bayesian prior, the Universum distribution does not
depend on the admissible family of functions.

Our experiments show that the obtained performance
depends on the quality of the Universum. The
methodology of choosing the appropriate Universum
is the subject of research. However our results confirm

that the Universum can be an important instrument
for boosting performance, especially in the small sam-
ple size regime.

Acknowledgements We thank Olivier Chapelle and
Bernhard Schölkopf for helpful discussions and support.
Part of this work was funded by NSF grant CCR-0325463.

References

Baird, H. (1990). Document image defect models. Pro-
ceedings, IAPR Workshop on Syntactic and Structural
Pattern Recognition (pp. 38–46). Murray Hill, NJ.

Bernardo, J. M., & Smith, A. F. M. (1994). Bayesian
theory. John Wiley and Sons.

Boser, B. E., Guyon, I. M., & Vapnik, V. (1992). A train-
ing algorithm for optimal margin classifiers. Proceedings
of the 5th Annual ACM Workshop on Computational
Learning Theory (pp. 144–152). Pittsburgh, PA: ACM
Press.

Grandvalet, Y., Canu, S., & Boucheron, S. (1997). Noise
injection: Theoretical prospects. Neural Computation,
9, 1093–1108.

Leen, T. K. (1995). From data distributions to regulariza-
tion in invariant learning. Advances in Neural informa-
tion processing systems 7. Cambridge MA: MIT Press.

Lewis, D. D., Yang, Y., Rose, T., & Li, F. (2004). Rcv1:
A new benchmark collection for text categorization re-
search. Journal of Machine Learning Research, 5, 361–
397.

Mangasarian, O. L. (1965). Linear and nonlinear sepa-
ration of patterns by linear programming. Operations
Research, 13, 444–452.

Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating
prior information in machine learning by creating virtual
examples. Proceedings of the IEEE, 86, 2196–2209.

Schölkopf, B., Burges, C., & Vapnik, V. (1996). Incorpo-
rating invariances in support vector learning machines.
Artificial Neural Networks — ICANN’96 (pp. 47–52).
Berlin: Springer Lecture Notes in Computer Science,
Vol. 1112.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., &
Anthony, M. (1998). Structural risk minimization over
data-dependent hierarchies. 44, 1926–1940.

Vapnik, V. (2006). Estimation of dependences based on
empirical data. Berlin: Springer Verlag. 2nd edition.

Vapnik, V. N. (1998). Statistical learning theory. New
York: Wiley.

Zhong, P., & Fukushima, M. (2006). A new multi-class
support vector algorithm. Optimization Methods and
Software, 21, 359–372.

