
Efficient Conversion of Digital Documents to Multilayer Raster Formats

Léon Bottou, Patrick Haffner and Yann LeCun
AT&T Labs - Research�

leonb,haffner,yann�@research.att.com

Abstract

How can we turn the description of a digital (i.e. elec-
tronically produced) document into something efficient for
multilayer raster formats [1, 6, 4]? It is first shown that a
foreground/background segmentation without overlapping
foreground components can be more efficient for viewing
or printing. Then, a new algorithm that prevents overlaps
between foreground components while optimizing both the
document quality and compression ratio is derived from the
Minimum Description Length (MDL) criterion. This al-
gorithm makes the DjVu compression format significantly
more efficient on electronically produced documents. Com-
parisons with other formats are provided.

1 Introduction

Most document description languages such as
PostScript, PDF and MSWord are generally slow to
render, may produce very large files and are often platform
dependent. The distribution of electronic documents
through the web is better achieved with efficient “raster-
ized” formats such as DjVu [1]. Such formats use different
layers for text or graphic elements (i.e. foreground)
and pictures or background. Obtaining a correct fore-
ground/background segmentation has a critical impact on
the performance of layered document raster formats such
as DjVu or ITU T.44 [6]. The current DjVu segmenter [3]
analyzes a raw high resolution color document image
and produces a bitonal mask that relegates pixels to the
background or the foreground with good accuracy.

In many practical cases, one would like to compress a
document produced using computerized methods that do
not rely on a pixel based representation of the document.
A text processing software, for instance, represents a doc-
ument using high level objects such as text, fonts, colors,
embedded images, etc. Thisstructured page information
obviously provides considerable help for the segmenter and
should yield very high quality compressed images.

Structured page information for electronic documents

Big Title
Subtitle

Big Title

Subtitle=

front

back

Figure 1. Decomposition of a digital docu-
ment as a list of drawing operations.

come in a large variety of file formats such as the MSWord
doc files, PDF files, or PostScript files. Printing such files
converts the structured information into a list of drawing
operations (Figure 1) such as as “fill a rectangle”, “draw
a line”, “draw an image” or “draw a piece of text”. This
can be interpreted as a list of predefined foreground compo-
nents with a drawing order as they may overlap. However,
overlapping components may cause problems for layered
document raster formats.

First, most of these formats (DjVu2 [1], ITU T.44 [6])
assume that the foreground is represented by one or several
pixel maps, which are encoded as low-resolution color im-
ages (as the pixels are raster-ordered, this greatly simplifies
printing operations). To simply paste the overlapping com-
ponents on the foreground pixel map would create sharp
changes in color that cannot be encoded at low resolution.

Even when, as this is done with the most recent versions
of DjVu or Digipaper[4], the foreground can be represented
as a list of components, overlapping components may not be
desirable. The quality of the user experience with DjVu de-
pends critically on the speed of browsing, zooming and pan-
ning through a document. Our experience in implementing
a browser plug-in showed that non-overlapping foreground
components enabled faster subsampling and rendering al-
gorithms.

When the foreground is obtained through the segmenta-
tion of a scanned document, it is easy to ensure that these
components are not overlapping. However, we found that
the situation was much more complex with electronic doc-
uments. Severalnaivestrategies are possible, e.g. to place
all the text into the foreground and all the rest into the back-
ground. But the optimal approach would be, from this list
of foreground components, to select only those (or part of
those) which result in the best compression. This paper first
presents thenaiveapproaches and gives examples that de-
feat them. The second section presents theperimeter ra-
tio criterion and the corresponding segmentation algorithm.
The third section discusses implementation issues. Experi-
mental results are presented in the last section.

2 Naive approaches

In this section, threenaivealgorithms are considered to
select which components go in the foreground.

All text in foreground A naive segmentation consists in
placing all the text into the foreground and all the other de-
tails into the background. This approach often fails because
printing software must often navigate around printer limi-
tations, sometimes using low-level primitives to draw char-
acters, sometimes using text primitives to render images.
Even if we assume that all text can be properly identified,
this approach handles complicated documents such as geo-
graphical maps poorly.

All monochromatic components in foreground Most
drawing operations simply assign a solid color to a set of
specified pixels called thecomponent shape. Another naive
segmentation would place all these monochromatic compo-
nents into the foreground layer, even though that should not
necessarily be the case. Let us consider again the example
of a geographical map. Some large solid color components
represent the ground, the vegetation type or the sea. Rivers,
roads, names and other symbols are overlaid on them. Cod-
ing these large components in the foreground would be
costly because the corresponding foreground mask compo-
nents must describe their visible part only and therefore
need to be carved precisely to avoid the overlaid roads,
rivers, names and symbols. These large components on the
other hand would be very easily encoded in the background
layer as large color patches and accurately delimited by the
boundaries of the overlaid objects.

First drawn component in background Neither is it suf-
ficient to assign the first drawn components to the back-
ground layer and all the remaining components to the fore-
ground layer. Roads might be rendered by first drawing a fat

P

P

clipped

background

Figure 2. A polygonal component is partially
occluded by two letters. The perimeter of
its visible part is named ������ ��. The length
of the perimeter segments that do not result
from the occlusion is named �	
���
���� .

black segment and then drawing a thinner red segment over
the center of the black segment. The resulting image shows
a red road surrounded by two black edges resulting from
the occlusion of the fat black segment by the thinner red
segment. Logically, they belong to the black segment and
are drawn before the red segment. However, they would
be better encoded as foreground objects drawn over a red
background.

3 Component Classification

This section describes the segmentation algorithm for
deciding whether each monochromatic component belongs
to the foreground or the background. This segmentation cri-
terion is based on the MDL principle[5]: each decision is
made to minimize the overall coding cost. This coding cost
is the sum of the number of bits necessary to encode the im-
age (the encoding bit cost) and the number of bits necessary
to encode the discrepancy between the encoded image and
the original image (the discrepancy bit cost).

Comparing the true bit costs for each decision would be
very expensive as it would require coding both the fore-
ground and the background layers and measuring the re-
sulting file size and qualityfor each possible decision. The
proposed criterion relies instead on bit cost estimates de-
rived from simple measurements on the page components.
This is summarized in the following steps and illustrated in
Figure 2.

A component classified as foreground must be encoded
with high spatial resolution. The foreground encoding bit
cost is roughly proportional to the perimeter� ����� �� of the
visible part of the component (i.e. after removing the com-

2

ponent shape pixels that are occluded by other page com-
ponents). This foreground encoding scheme is assumed to
be lossless (in DjVu, loss in the bitonal coding is hardly no-
ticeable): there is no foreground discrepancy bit cost.

The background encoding scheme is optimized for con-
tinuous tone images and typically requires more bits to en-
code sharp transitions such as the component edges. How-
ever, the encoding cost for some of these sharp edges has al-
ready been paid for in the foreground: because DjVu back-
ground encoding scheme is able to reduce the bit rate al-
located to masked parts of the background [2], there is no
need to waste bits for encoding edges that arise from occlu-
sions by foreground components and are already accurately
defined by the boundary of overlapping components.

This background encoding scheme is lossy and most of
the quality loss is concentrated along those edges of the
component shape that touch other background components.

In summary, in the case of the background, both the en-
coding and the discrepancy bit costs are roughly propor-
tional to the length�	
���
���� of the perimeter segments
that do not result from occlusions by foreground compo-
nents. Furthermore, the proportionality coefficient depends
on the color differences along the object boundary.

The proposed classification algorithm proceeds in a
greedy way. First we prepare two empty bitmaps� and�

representing the pixels currently classified as foreground
and background. Then we perform the following operations
on every monochromatic component starting from the top-
most component and proceeding towards the bottommost
component.

i) Determine the part of the component shape that is oc-
cluded by background components drawn above the
current component. This is achieved by computing the
intersection of the component shape and the current
background

�
. Remove these occluded pixels from the

component shape.

ii) Determine the part of the component shape that is oc-
cluded by foreground components drawn above the
current component. This is achieved by computing the
intersection of the component shape and the current
foreground� . Remove these occluded pixels from the
component shape.

iii) The component shape now contains only the visi-
ble pixels of the component. Compute its perime-
ter ������ ��. Compute the length� 	
���
���� of the
perimeter segments that do not result from occlusions
by foreground components. Estimate the color differ-
ence� along the perimeter segments that do not result
from occlusions by foreground components.

iv) Compute the ratio�� 	
���
���� ������� ��. If this ra-
tio is smaller than a predefined threshold� , the com-

= −

2 LR

Figure 3. The perimeter of a run-length en-
coded bitmap is easily computed by adding
the perimeters of each horizontal run and
subtracting twice the length of the contact
segments between runs located on adjacent
rows.

ponent is deemed a background component and the
clipped component shape is added to bitmap

�
. Oth-

erwise the component is deemed a foreground com-
ponent and the clipped component shape is added to
bitmap� .

4 Implementation Issues

The proposed algorithm makes a large number of
boolean operations between bitmaps (i.e.

�
, � and the

component shapes). Our implementation represents these
bitmaps using run-length encoding and performs boolean
operations in time proportional to the number of runs on the
relevant scan lines.

The proposed algorithm also requires the quantities
������ �� and�	
���
���� . These quantities can be computed
as a side effect of processing the component occlusions in
steps��� and ����.

� Quantity������ �� is simply the perimeter of the clipped
component shape computed at step (ii) of the algo-
rithm. The perimeter of a run-length encoded bitmap
is also computed in linear time by making a single
pass on the bitmap runs and simultaneously comput-
ing the sum� of the run perimeters and the sum� of
the lengths of the contact segments between runs lo-
cated on adjacent scan lines. As shown in Figure 3, the
bitmap perimeter� is equal to� � ��.

� Quantity�	
���
���� is easily computed using the re-
lation illustrated in Figure 4. It is sufficient to compute
the perimeter�������� �� of the component shape af-
ter step (i) and the perimeter� ��������� of the bitmap
representing the component shape pixels occluded by
foreground objects. This bitmap is computed dur-
ing step (ii) of the algorithm. The desired quantity
�	
���
���� � !"#$%&&'() #$%&&'(* +##$!,%+"-

3

+ =
+

+

Punclipped

Pclipped

Pbackground

Pbackground

Pocclusion

Figure 4. The sum of the clipped and un-
clipped perimeter is equal to twice the back-
ground contour plus the perimeter of the oc-
cluded part of the unclipped object. This
equality provides a convenient way to com-
pute the length of the background contour.

Document Pages PS/PDF PS2DjVu
mask.ps.gx (latex) 10 400K 78K (23s)
paper2web.pdf (book) 327 4230K 3424K (1235s)
sgi.pdf (flyer) 4 484K 106K (27)
stanford.pdf (map) 1 412K 170K (30s)

Table 1. File sizes and compression times for
four different documents at 300 dpi. Results
for the proposed segmenter are given in the
last column, and can be compared with the
initial file sizes.

5 Results

We implemented the proposed algorithm as a printer
driver for the well known Ghostscript PostScript/PDF inter-
preter (http://www.ghostscript.com). This pro-
gram produces foreground and background images for each
page. These images are then encoded using the regular
DjVu encoder (http://www.djvuzone.org).

Table 1 summarizes the results obtained on four very dif-
ferent documents at 300 dpi, shown in Figure 5. Files sizes
compare favorably with the initial files, either compressed
into PostScript or PDF. Visual quality matches the quality of
the original document. From a user experience viewpoint,
DjVu enables a much faster zooming and panning.

The same documents have also been encoded by first ren-
dering each page as a 300 dpi image and then running the
regular DjVu segmenter and encoder. This procedure pro-
duces files with comparable sizes but with much lower vi-
sual quality and after much longer encoding times (3 to 8
times depending on the document).

6 Conclusion

We propose a segmentation algorithm for electronically
produced document images. This algorithm takes advan-
tage of the structured information generated by typical doc-
ument creation software. Such document images are typ-
ically decomposed as a list of drawing operations. Each
component of this list is affected to either the foreground or
the background layer according to a MDL criterion based
on perimeter ratios. This MDL-principled approach only
requires one threshold and considerably reduces the need
for tuning.

Empirical results show that this algorithm provides an
extremely robust and accurate segmentation. It does not rely
on the textual or non textual nature of each image compo-
nent. It is able to handle documents with complex layouts
such as geographical maps. Using this segmenter with the
DjVu system yields very high quality images whose size is
smaller than the size of the initial compressed PostScript of
PDF document.

References

[1] L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Ben-
gio, and Y. LeCun. High quality document image com-
pression with DjVu. Journal of Electronic Imaging,
7(3):410–425, 1998.

[2] L. Bottou and S. Pigeon. Lossy compression of par-
tially masked still images. InProceedings of IEEE Data
Compression Conference, Snowbird, UT, March-April
1998.

[3] P. Haffner, L. Bottou, P. G. Howard, and Y. LeCun.
DjVu : Analyzing and compressing scanned documents
for internet distribution. InProceedings of the IC-
DAR’99., pages 625–628, 1999.

[4] D. Huttenlocher, P. Felzenszwalb, and W. Rucklidge.
Digipaper: a versatile color document image represen-
tation. InProceedings of the ICIP’99, volume 1, pages
219–223, 1999.

[5] W. Niblack J. Sheinvald, B. Dom and D. Steele. Un-
supervised image segmentation using the minimum de-
scription length principle. InProceedings of ICPR’92,
1992.

[6] MRC. Mixed rater content (MRC) mode. ITU Recom-
mendation T.44, 1997.

4

mask.ps.gz paper2web.pdf

sgi.pdf stanford.pdf

Figure 5. Test documents from http://www.research.att.com/˜haffner/pdf2djvu

5

