Electronic Document Publishing using DjVu

Artem Mikheev(1), Luc Vincent(1), Mike Hawrylycz(1), and
Léon Bottou(2)

! Lizardtech Software, 1008 Western Avenue,
Seattle WA 98105, USA
lvincent@lizardtech.com
http://wuw.lizardtech.com
2 NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540-6634, USA
leon@bottou.org

[Proc. DAS’02, IAPR International Workshop on Document Analysis Systems,
Princeton, NJ, Aug 2002]

Abstract. Online access to complex compound documents with client
side search and browsing capability is one of the key requirements of
effective content management. “DjVu” (Déja Vu) is a highly efficient
document image compression methodology, a file format, and a deliv-
ery platform that, when considered together, has shown to effectively
address these issues [1]. Originally developed for scanned color docu-
ments, the DjVu technology was recently expanded to electronic docu-
ments. The small file sizes and very efficient document browsing make
DjVu a compelling alternative to such document interchange formats as
PostScript or PDF. In addition, DjVu offers a uniform viewing experi-
ence for electronic or scanned original documents, on any platform, over
any connection speed, which is ideal for digital libraries and electronic
publishing. This paper describes the basics of DjVu encoding, with em-
phasis on the particular challenges posed by electronic sources. The DjVu
Virtual Printer Driver we implemented as “Universal DjVu Converter”
is then introduced. Basic performance statistics are given, and enterprise
workflow applications of this technology are highlighted.

1 Scanned Document Publishing and DjVu

Document image processing for the Internet, including storage, presentation, and
transmission systems for complex compound documents is one of the fundamen-
tal challenges of current content management systems. Enterprise applications,
including corporate Intranet usage and internal workflow management systems
require rapid transmission and feature-rich viewing that enable users to quickly
access and browse important documents. The advent of wireless communications
only further stresses the technology required to address these problems as trans-
mission costs remain significant and the processing capacity of portable client
devices is limited.

2 Mikheev, Vincent, Hawrylycz & Bottou

In parallel, digital libraries are becoming a more accepted form of infor-
mation archiving, search, retrieval, and taxonomy. However, online document
libraries will succeed only to the extent that they prove adequate and effective
for common and mass usage. A key to surmounting these technological hurdles is
understanding the workflow of the document storage, transmission, and viewing
and the adoption of standards and applications that perform naturally at each
stage of the process.

The last several years have seen a growing demand for technology that could
handle color documents, whether scanned or electronic, in an effective manner.
Such applications as online digital libraries with ancient or historical documents,
online catalogs for e-commerce sites, online publishing, forms processing, and
scientific publication, are in need of an efficient compression technique for color
documents. The availability of low-cost, high quality color scanners, the recent
emergence of high-speed production color scanners, and the appearance of ultra
high resolution digital cameras open the door to such applications.

Compression technology for bitonal (black and white) document images has
a long history [2]. It is the basis of a large and fast growing industry with
widely accepted standards (Group 3, MMR/Group 4), as well as still emerging
standards (JBIG1, JBIG2). Standard color image compression algorithms are
grossly inadequate for the type of applications mentioned earlier because asso-
ciated file sizes are still excessively large if one wants to preserve the readability
of the text: compressed with JPEG, a color image of a typical magazine page
scanned at 100dpi (dots per inch) is around 100-200KB, and is barely readable.
The same page at 300dpi is of acceptable quality, but occupies at least 500KB
to 1 MB. These sizes are impractical for online document browsing, even with
broadband connections.

A notable observation about document encoding is that preserving the read-
ability of the text and the sharpness of line art requires high resolution (typically
300-600dpi) and the preservation of sharp edges. On the other hand, preserv-
ing the appearance of continuous-tone images and background paper textures
does not require as high a resolution (typically, 100dpi is sufficient). An obvious
way to take advantage of this is to segment these elements into separate layers.
The foreground layer would contain the text and line drawings, while the back-
ground layer would contain continuous-tone pictures and background textures.
This multi-layer raster representation is a key element in various emerging doc-
ument interchange products and standards such as MRC, TIFF-FX, JPEG2000
(part 6), and of course DjVu! The separation method brings another consider-
able advantage to DjVu: since the text layer is separated, it can be stored in a
chunk at the beginning of the image file and decoded by the viewer as soon as
it arrives in the client machine. Along with the DjVu “Hidden Text Layer”, this
enables immediate access for text search and retrieval applications.

The general requirements for an acceptable user experience may be described
as follows: The text and line diagrams should appear on the display after only
a few seconds delay. This means that the text layer must fit within 20-40KB,
under the assumption of a 56KB /sec modem connection. The pictures and other

Electronic Document Publishing using DjVu 3

background items would subsequently appear, improving the image quality as
more bits arrive. The overall size of the file should be in the order of 50-100KB
to bound the overall transmission time and storage requirements.

Thanks to its outstanding compression capabilities, excellent image quality,
simple and effective file format, and highly efficient viewing and browsing, DjVu
has proven to provide a content delivery platform that can successfully meet all
the challenges mentioned above [1,3-6]. With DjVu, pages scanned at 300dpi
in full color can be compressed down to 30-80KB files from 25MB originals
with excellent quality. This puts the size of high-quality scanned pages in the
same order of magnitude as a typical HTML page. Like HTML pages, DjVu
pages are displayed progressively within a web browser window, via a custom
plugin. Panning, zooming, and navigation is highly efficient, even though pages
are internally kept in a partially decoded representation, which requires only
about 2MB of cache. In short, the DjVu technology has all the features required
to provide an excellent end-user experience when browsing collections of complex
color documents.

2 DjVu Encoding Basics

The basic idea behind DjVu is to separate the text from the background and
pictures and to use different techniques to compress each of those components.
Traditional methods are either designed to compress natural images with few
edges (JPEG), or to compress black and white document images almost entirely
composed of sharp edges (Group 3, MMR/Group 4, and JBIG1). The DjVu
technique combines the best of both approaches. A foreground/background sep-
aration algorithm segments images into separately compressed layers:

— The background layer contains a low resolution (typically 100 dpi.) back-
ground image representing details that are best encoded using a continuous
tone technique. This usually includes the document background and the pic-
tures. For the background and foreground images, DjVu uses a progressive,
wavelet-based compression algorithm called IW/44 or DjVuPhoto. IW44 of-
fers many key advantages over existing continuous-tone image compression
methods that are particularly useful for efficient panning and zooming of
large images.

— The foreground layer contains a high resolution bitonal mask image (typ-
ically 300 to 600 dpi) that accurately defines the shape of details with sharp
edges such as text and line-art. The optional color information is either en-
coded as a solid color per connected component in the mask, or as a very low
resolution foreground image (typically 25 dpi) whose colors are applied using
the mask as a stencil. The bitonal mask image is encoded with a new bi-level
image compression algorithm dubbed JB2 or DjVuBitonal. It is a variation
on AT&T’s proposal to the emerging JBIG2 standard. The basic idea of JB2
is to locate individual shapes on the page (such as characters), and to use a
shape clustering algorithm to find similarities between shapes [7, 8].

4 Mikheev, Vincent, Hawrylycz & Bottou

The DjVu encoder was designed to be as generic as possible. The only in-
formation it requires about the document is its scanning resolution. This puts
an extraordinary constraint on the segmentation algorithms used to obtain the
foreground /background separation. Most of the details are beyond the scope of
this aritcle and the reader is referred to [9].

3 DjVu for Electronic Documents

Scanned documents and documents of electronic source origin present distinct
challenges for encoding. While DjVu was initially designed for scanned docu-
ments, it soon became apparent that it could also significantly improve the com-
pression rate and speed of rendering of electronic documents such as PostScript,
PDF or MSWord. These document description languages are generally slow to
render, may produce very large files and are often platform dependent (mostly
because of the fonts and character sets they rely on).

Converting such documents into DjVu can be done by first rendering them
into a high-resolution color raster image and then converting it to DjVu. How-
ever, relying on a purely pixel-based intermediate representation is less than
ideal in that it disregards essential information about the document, such as
what is text and what is not. This information could be used to significantly
improve conversion quality, which, for electronic documents, is essential. In ad-
dition, intermediate pixel-based representations are expensive to compute and
require large amounts of RAM. One would therefore like the conversion process
to work directly on the existing structured page information [10], that is, high
level objects such as text, fonts, colors, embedded images, etc., instead of pixels.

Structured page information for electronic documents is used in a large vari-
ety of file formats such as the MSWord .doc files, PDF files, or PostScript files.
Printing such files converts the structured information into a list of drawing op-
erations such as “fill a rectangle”, “draw a line”, “draw an image” or “draw a
piece of text”. This can be interpreted as an ordered list of predefined graphic
objects, which can—and often do—overlap. The challenge is to efficiently turn
this ordered list into only two layers, for subsequent DJVu compression.

A novel and general framework for unifying the concepts underlying scanned
and electronic DjVu segmentation was recently presented in [9]. The authors
show how a concept known as the Minimum Description Length (MDL) principle
[11] can be used as a type of universal segmentation tool to determine which
objects are defined in the foreground and background for both scanned and
electronic documents. In essence the MDL principle works by minimizing the
overall coding cost. This coding cost is the sum of the number of bits necessary
to encode the image (the encoding bit cost) and the number of bits necessary
to encode the discrepancy between the encoded image and the original image
(the discrepancy bit cost). This general approach can be successfully used on
raster data (scanned documents) as well as electronic documents, albeit using
substantially different algorithms.

Electronic Document Publishing using DjVu 5

Though DjVu converted file sizes vary depending on the type of electronic
document converted to DjVu, file sizes generally compare favorably. As a rule of
thumb, one can expect a file size reduction of a factor 2 to 50. This is somewhat
remarkable considering that the originals were electronic. The resulting DjVu
files are a completely portable version of their original electronic counterparts:
they do not depend on any system-specific objects such as fonts; like all DjVu
files, they are very efficient to transmit, display, store, and they can be viewed
on any platform. In addition, they contain a hidden text layer that is a faithful
representation of the text in the original electronic document, and is key for
search and retrieval. This makes DjVu an excellent document interchange format.

Our electronic to DjVu document conversion framework and algorithms are
referred to as DjVuDigital. Current implementations include a Ghostscript driver
[12], which enables the creation of DjVu from PostScript and PDF, and a Win-
dows Virtual Printer Driver, which we now describe.

4 The DjVu Virtual Printer Driver

An important class of a file format conversion applications are called Virtual
Printer Drivers (VPD). These are applications that configure as if they were
standard system or network printers, but serve the role of file format interchange
devices. There are many brands and variations of VPDs currently on the market
that allow conversion between most of the commonly used graphic file formats.
Adobe PDFWriter™ is essentially a VPD converting Postscript or MSWord
documents into PDF. Below we describe the steps and workflow of the Lizardtech
Software DjVu VPD. The details are given with respect to an implementation
on the Microsoft Windows architecture, but the principles are the same for most
operating systems.

4.1 Representation of Printed Qutput in Metafile Form

Most popular Windows applications have printing functionality: the user is able
to specify the specific printer device and output the document to that device.
The first step in converting an electronic document to DjVu is the representation
of the structured page information as an Enhanced Metafile. Enhanced Metafiles
are used in the DjVu VPD to store a picture created by using the Win32 GDI
functions.

The Windows Enhanced Metafile format (EMF) is used to represent both
scalable vector and bitmap graphics under Windows. This format is widely used
in Windows applications for clipboard, client-server data exchange and within
the Windows spooler. An EMF file consists of the following elements: a header,
a table of handles to GDI objects, a private palette, and an array of metafile
records. EMF facilitates a device independence description of objects. It gives
a uniform object representation whether it appears on a printer, a plotter, the
desktop, or in the client area of any Win32-based application. In this respect,

6 Mikheev, Vincent, Hawrylycz & Bottou

one can think of EMFs as the Windows equivalent of Adobe PostScript files. An
example is shown in Fig. 1.

Although there are many ways for the application to perform printing to a
document, the two main methods are:

1. Print by rasterizing consecutive vertical bands of the document. Then send
the representation of those bands in the bitmap form to the printer.
2. Print by drawing separate drawing elements on the printer device context.

The second method leads to much faster printing in most cases and is used
by most modern applications. One consequence of this method is that the corre-
sponding generated EMF contains a sequence of overlapping drawing elements
that need to be rendered. While, at first, this may seem like a drawback, it is
quite advantageous to the algorithm used by the VPD.

The size of the metafile generated depends greatly on the content of the source
electronic document. For example, let us consider printing the front page of the
Web site CNN (http://www.cnn. com) using Internet Explorer 5.5. Depending
on daily variations on the site, the typical Metafile it produces is 2.5MB in
size, which is somewhat typical for letter-size documents printed at 300dpi. This
metafile contains about 60,000 different records, however only 8,000 of them rep-
resent drawing elements. Rarely, documents can produce metafiles of extremely
large size. In one instance, we came across a 1-page document which generated a
metafile of close to 100MB! This particular metafile contained 5 Million records,
about 450,000 of which corresponding to the actual drawing elements.

DjVu documents being raster-based, they contain a certain resolution value,
which needs to be specified before conversion. Currently acceptable values are
in the range 50 to 4,800 dpi, with 400 dpi being the default. After conversion,
the DjVu document will have physical dimensions defined by the printing appli-
cation. These dimensions are easily computed from the user-specified resolution
and the dimensions stored in the metafile.

4.2 Parsing the Metafile and Record Classification

The enhanced metafile is a sequence of records representing drawing operations
applied to a specific Windows Device Context. These records are accessed using
standard Win32 API calls. Some EMF records correspond to mode setting op-
erations: they do not modify actual graphic content, but are important in that
they determine how subsequent record should be rendered. Records that actu-
ally modify pixels of the Metafile Device Context are parsed, rendered, and then
a decision is made whether they belong to the foreground or background DjVu
layer.

This is complicated by the fact that, in order for overlaps to be accurately
processed, EMF records need to be considered in reverse drawing order, that
is, starting from the EMF record corresponding to the last element that should
be drawn (topmost drawing element). For more information on this process, see
[10]. For each page, two segmented layers are produced, which can then be sent

Electronic Document Publishing using DjVu 7

+- 11 ENHMETAHEADER

- 21 SelectObject{hDC, GetStockObject(BLACK_PEN));, 12 bytes
- 31 SeleckObject(hDC, GetStockObject(WHITE_BRUSH));, 12 byt
-4y SeleckObject(hDC, GetStockObjeck{DEVICE_DEFAULT _FOMT)
- 51 MaveToEx(hDC, 0, 0, MULL);, 16 bytes

- By SetBrushOrgEx(hDC, 0, O, NULL);, 16 bytes

- 71 SetlCMMode(hDC, 1);, 12 bytes

-1 SetCalorSpace(hDC, GetStockObject{Dx14 *Unknown®);, 1
-8 /I Unknown record [119], 20 bytes

- 10: SetViewportOrgEx(hDC, 0, 0, NULL);, 16 bytes

--111 SaveDC(hDC);, 8 bytes

- 121 SetViewportOrgEx(hDC, 0, 0, NULL);, 16 bytes

- 131 DeleteObject{hRegion);, 64 bytes

- 141 hObj[1]=CreateSolidBrush{0x2FFFFFF);, 24 bytes

- 151 SelectObject(hDC, hObj[1]);, 12 bytes

- 16: SelectObject(hDC, GetStockObjeck{MULL_PEND);, 12 bytes
- 171 5etROP2(hDC, RZ_COPYPEN);, 12 bytes

- 181 SetBkMode(hDC, OPAQUE);, 12 bytes

- 19: Polygon(hDC, Points_1, 43;, 44 bytes

- 20: SetBkMode(hDC, OPAQUE);, 12 bytes

Fig. 1. Realization of an Enhanced Metafile (EMF) and representative EMF com-

mands.

8 Mikheev, Vincent, Hawrylycz & Bottou

to the back-end DjVu compressor. This back-end is essentially identical as the
one used for scanned documents. In particular, it should be noted that it takes
advantage of redundancy across pages in the JB2 compression, and also avoids
spending any bits on IW44 compressed background regions that will be covered
by foreground pixels.

Text capture is performed concurrently, without the need for any OCR. In-
deed, EMF files contain bounding box and text character information. This
information is parsed as essentially another object of the structured page infor-
mation, and enables the DjVu “hidden text layer” to be easily created.

4.3 Overview of Virtual Printer Driver Workflow

The DjVu Virtual Printer Driver we implemented seamlessly installs like any
system printer. Once installed, the process of conversion to DjVu starts after the
user has selected a “Print” command from the host application’s print menu.
When the visible local or network printers are displayed, the user selects “DjVu
VPD?” from the drop down list. This causes the Windows application to generate
an EMF file and then brings up the interface shown in Fig. 2. This interface
includes a preview pane, which makes it easy to correct any application-specific
settings required for producing the desired output.

Lizordtech vitualprineing x

2 owvu | @ wisio |

Dipu Output: 1E:\Tﬂd\.t’-\pp\dwufﬁénonamadwu Browee ! —it - = —

e =

r =<n

Resolution (BF1) [300 == = |

~Fo : =20

el | Srnechnbi Tecl - o

& 2o % View Resul 2Ow

Load Profile B =

Advanced | Save Profile : : g

Page 1/

Coevert I Cancel | Help |

Fig. 2. Main Screen of DjVu Virtual Printer Driver

At this point, the user has to specify the main conversion parameters: resolu-
tion, whether or not to include the hidden text layer, and final orientation of the
document. The “Advanced Parameters” dialog box, shown in Fig. 3, allows the
user to fine tune conversion for the specific document variation. In particular,
control is given for the quality of the background encoding, the relative weight

Electronic Document Publishing using DjVu 9

of importance of foreground versus background, and the limitations on the color
palate to be used. In 99% of cases, these advanced options do not need to be
changed from their defaults.

Dj¥u Advanced Parameters K %]

-Foreground/Backoground Separation —————————————— — — —

Send to Background Objects with |255 [1: 4000]
MNumber of Colars Greater Than

Sanaraion Thisiad |25 IFnreground.; Background
e T T e e
| Foreground Encoding-
M axirurn Number of Colors |255 [1: 4000]

MNumber of Pages per Shared |3El [1:10000)
Dictionary

Forground Compression | Lossless 'I

i"BackgmLmd Encoding -
Subsampling Factar |3 [1.0:100]

| Background Qualiy |?1-

(i A T Rt ST o e R P i i e Tl Y I e T |

Bound Document to Printed Aea [V

Viewing Application II:;'\F'rog[am Files\Intsmnet Explorerviexplor Browse l

OK l Cancel

Fig. 3. Advanced Parameter Screen of Virtual Printer Driver

5 Results and Conclusions

Extensive tests were conducted during the development of the VPD, analyzing
both image quality upon conversion and printer performance. We found that the
VPD performed well on a broad sample of document types, with specialized doc-
ument types such as high resolution maps, or images with very large numbers of
objects sometimes requiring tuning of the parameter settings for optimal results.
The bulk of the tests were on desktop workstation running Pentium-4/1.4GHz
with 256 MB RAM. Documents of many several types were used for these tests,
Fig. 4 showing some representative document types.

10 Mikheev, Vincent, Hawrylycz & Bottou

ki S DK - Badpmomd

Thepichlem: Cola yemond documenn
1= wibdpar
Mo Eacink
T ha aboacrad opk pupx £

Fig. 4. Sample documents printed using the VPD

Electronic Document Publishing using DjVu 11

For each document class the original and converted sizes were recorded as
well as the time to convert. The results shown in Table 1 were found to be typical
expected performance.

Table 1. Comparative size and conversion times using the VPD for several common
document types, shown in Fig. 4. Performance data was obtained on a Pentium 4,
1.4GHz.

Document Format |Number|Original| DjVu | Time to

Name of Pages| Size Size | Convert

NY Times PDF 92 (259 MB|8.57 MB|12m 32 s

HBS Review PDF 132 [8.75 MB|4.63 MB|11m 5 s
Vector Map PDF 1 1.67 MB|117KB| 19s

Slides PowerPoint| 23 1.7 MB |1.05 MB| 5 m 32 s
BBC Web page| HTML 3 174 KB | 116 KB 14s

Our results indicate that the DjVu VPD successfully converts almost all
Windows type documents. Long PowerPoint documents including complex back-
grounds sometimes take a long time to convert, owing to the inefficient way
shaded backgrounds are represented in EMF records. This type of driver could
have enormous benefit to the digital libraries and in enterprise applications where
archival and business critical documents need to be published in a readily acces-
sible manner.

The ability to capture searchable text is an extremely attractive feature in
the above applications. As the text layer can be carried along with the encoded
document, DjVu is easily integrated with document search and content manage-
ment systems.

A remarkable property of DjVu is the extreme file size reduction possible.
This makes DjVu a natural choice in wireless and very constrained bandwidth
situations. The DjVu VPD and its underlying technology could play an impor-
tant role in the large scale preparation of documents for this use. With the recent
addition of electronic document conversion to its portfolio, DjVu becomes a seri-
ous, powerful document interchange format, able to address the needs of a wide
range of users.

A full range of DjVu authoring products, from non-commercial software pack-
ages to full-feature, advanced packages designed for enterprise users, are available
from Lizardtech Software, http://www.lizardtech.com. The technology is also
partly available as open source at http://djvu.sourceforge.net. In addition,
a growing number of third-party tools, from imaging packages such as Irfan View
(http://www.irfanview. com)to searching and indexing engines such as the Re-
alview DjVu Index Filter (http://www.realview. com.au),are supporting DjVu.
The web site http://www.djvuzone.org is dedicated to the DjVu community,
with news, documentations and many links to Digital libraries which use DjVu.

12

Mikheev, Vincent, Hawrylycz & Bottou

References

10.

11.

12.

. Bottou, L., Haffner, P., Howard, P., Simard, P., Bengio, Y., LeCun, Y.: High

quality document image compression with DjVu. Journal of Electronic Imaging 7
(1998) 410-428

Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and In-
dexing Documents and Images. Van Nostrand Reinhold, New York (1994)
LeCun, Y., Bottou, L., , Haffner, P., Howard, P.: DjVu: a compression method
for distributing scanned documents in color over the internet. In: Proceedings of
Color 6, IST. (1998)

Bottou, L., Haffner, P., Howard, P., Simard, P., Bengio, Y., LeCun, Y.: Brows-
ing through high quality document images with DjVu. In: Proceedings of IEEE
Conference on Advanced in Digital Libraries. (1998)

Haffner, P., LeCun, Y., Bottou, L., Howard, P., Vincent, P.: Color documents on
the web with DjVu. In: Proceedings of IEEE International Conference on Image
Processing, Kobe, Japan (1999) 239-243

LeCun, Y., Bottou, L., Haffner, P., Triggs, J., Riemers, B., Vincent, L.: Overview
of the djvu document compression technology. In: SDIUT’01, Symposium on Doc-
ument Image Understanding Technologies, Columbia, MA, University of Maryland
(2001) 119-122

Ascher, R.N., Nagy, G.: Means for achieving a high degree of compaction on scan-
digitized printed text. IEEE Trans. Comput. C-23 (1974) 1174-1179

Howard, P.G.: Text image compression using soft pattern matching. Computer
Journal 40(2/3) (1997) 146-156

Haffner, P., Bottou, L., LeCun, Y., Vincent, L.: A general segmentation scheme
for DjVu document compression. In Talbot, H., Berman, M., eds.: ISMM’02, In-
ternational Symposium on Mathematical Morphology, Sydney, Australia, CSIRO
Publications (2002)

Bottou, L., Haffner, P., LeCun, Y.: Conversion of digital documents to multilayer
raster formats. In: ICDAR’2001, International Conference on Document Analysis
and Recognition, Seattle, WA (2001)

Rissanen, J.: Stochastic complexity and modeling. Annals of Statistics 14 (1986)
1080-1100

GhostScript: Home page at http://www.ghostscript.com (2002)

