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Abstract

Achieving good performance in statistical pattern
recognition Tequires matching the capacily of the classi-
fier to the amount of training data. If the classifier has
too many adjustable parameters (large capacity/, 1t 13
likely to learn the training daia without difficulty, bui
will probably not generalize properly to patierns thal
do not belong 1o the training set. Conversely, if the
capacily of the classifier is not large encugh, 1t might
not be able to learn the task at all. In belween, there
is an opiimal classifier capacity which ensures the best
ezpected generalization for a given amount of training
data.

The method of Structural Risk Minimization
(SRM) refers to tuning the capacity of the classifier to
the available amount of training data. In this paper,
we illustraie the method of SRM with several examples
of algorithms. We present ezperiments which confirm
theoretical predictions of performance improvement in
application io handwritlen digit recognition.

1 Capacity and Structural Risk Min-

imization

A common way of training a classifier is to ad-
just the parameters w in the classification function
F(x,w) to minimize the training error Egrqgin, i.6. the
frequency of errors on a set of p training examples.
But the classification function F(x,w*) which mini-
mizes the training error does not necessarily minimize
the generalization error estimated on a separate test
set Eteat-

Any family of classification functions {F(x,w)}
can be characterized by its capacity or Vapnik-
Chervonenkis dimension (VC-dimension) [1]. The VC-
dimension can be in some cases as simple as the num-
ber of free parameters of the classifier, but it is in most
practical cases quite difficult to determine analytically.

A typical behavior of training error and generaliza-
tion error as a function of the capacity is shown in
figure 1. For a fixed number p of training examples,
as the capacity increases, the training error decreases,
while the test error goes through a minimum. Be-
fore the minimum, the problem is overdetermined, i.e.
the capacity is too small for the amount of training
data. Beyond the minimum, the problem is under-
determined. The key issue is therefore to match the
capacity of the classifier to the amount of training data
in order to get best generalization performance.

The method of Structural Risk Minimization
(SRM) [1] provides an efficient way of achieving that
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Figure 1: Dependence of the training error and gener-
alization error on the capacity for a fixed size p of the
training set.

goal. On the family of classifiers { F(x, w)}, we define
a structure consisting in nested subsets of elements of
the family:

S$1C82CS8C...CS5 C....

We thus ensure that the capacity h, of the subset of
classifiers S, is less than h,41 of subset S,41:

hi<hy<hs<..<h <...

The method of SRM amounts to finding the subset
S°Pt for which the classifier F(x, w*), which minimizes
the training error within such subset, yields the best
overall generalization performance.

2 Using Curvature Properties of the
MSE Cost Function

Consider three apparently different methods of im-
proving generalization performance: Principal Com-
ponent Analysis (PCA - a preprocessing transforma-
tion of input space) [2], Optimal Brain Damage (OBD
- an architectural modification through weight prun-
ing) [3], and a regularization method, Weigit Decay
(WD - a modification of the learning algorithm) [1].
For the case of a linear classifier, these three ap-
proaches control the capacity of the learning system
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Figure 2: Dependence of M SE on a single parameter
w;.

through the same underlying mechanism: a reduction
of the effective dimension of weight space, based on
the curvature properties of the Mean Squared Error
(MSE) cost function used for training.

The classification function of a linear classifiers is
F(x,w) = 6o(wTx), where w” is the transpose of w
and the function ; takes two values 0 and 1 indicating
to which class x belongs. The VC-dimension of such
classifier is equal to the dimension of input space ! (or
the number of weights): h = dim(w) = dim(x) = n.

Our training algorithm consists in minimizing the
Mean Square Error cost function (MSE) [4]:

MSE = (1/p) i(ylc - wlxF)? |
k=1

where x* is the k** example, and y* is the corre-
sponding desired output and p the number of train-
ing examples. Consider the dependence of M SE on
one of the parameters w; (figure 2). One way of re-
ducing the capacity is to set w; to zero. For the lin-
ear classifier, this reduces the VC-dimension by one:
h' = dim(w) — 1 = n— 1. At the optimum wx, the
MSE increase resulting from setting w; = 0 is to low-
est order proportional to the curvature of the M SE at
wx. Since the decrease in capacily should be achieved
at the smallest possible expense in M SE increase, di-
rections in weight space corresponding to small M SE
curvature are good candidates for elimination.

The curvature of the MSE is specified by the Hes-
sian matrix H of second derivatives of the M SE with
respect to the weights. For a linear classifier, the Hes-
sian matrix is given by twice the correlation matrix of

1 We assume, for simplicity, that the first component of vector
X is constant and set to 1, so that the corresponding weight
introduces the bias value.
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the training inputs,
P
H=(2/p) Y x*xT .
k=1

The Hessian matrix is symmetric, and can be diago-
nalized to get rid of cross terms, to facilitate decisions
about the simultaneous elimination of several direc-
tions in weight space. The elements of the Hessian
matrix after diagonalization are the eigenvalues J;;
the corresponding eigenvectors give the principal di-
rections w; of the MSE. In the rotated axis, the in-
crease AMSE due to setting w} = 0 takes a simple
form

AMSE =~ %/\,-(w,'-*)z .

The quadratic approximation becomes an exact equal-
ity for the linear classifier. Principal directions w! cor-
responding to small eigenvalues A; of H are good can-
didates for elimination.

In [5], we show that PCA, OBD and WD are three
similar ways of implementing SRM and reducing the
VC-dimension to ' < h = n:

1. PCA ranks the classifiers according to the num-
ber m < n of largest eigenvalues A; kept in the
transformation, A’ = m.

2. OBD ranks the classifiers according to the num-
ber m < n of weights corresponding to the
largest AMSE that survived pruning, A’ = m.

3. WD ranks the classifiers according to the norm
of the weight vector w. This can be shown to be
equivalent to minimizing the new cost function

MSE +y||w|? .

As a function of the structural parameter y (La-
grange multiplier), an effective capacity [5] can
be defined as:

R=3" X/ +7)

i=1

Weights become negligible for ¥ > X;, and re-
main unchanged for v < ;.

3 Smoothing, Polynomial Classifiers
and Weight Decay

Combining several different structures achieves fur-
ther performance improvements. The combination of
exponential smoothing (a preprocessing transforma-
tion of input space) and WD (a modification of the
learning algorithm) 1s shown here to improve character
recognition. The generalization ability is dramatically
improved by the further introduction of second-order
polynomial classifiers (an architectural modification).

Smoothing is a preprocessing which aims at reduc-
ing the effective dimension of input space by degrading



Figure 3: Examples of various level of smoothing
performed with an exponential convolutional kernel:

ezp[—sqri(k® + 1)/ ).
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Table 1: Eyese for Smoothing, WD, and Higher-Order
Combined.

[ B T v T 1 order [ 2™ order |

0 ¥ 6.3 1.5
1T 5% 5.0 0.8
7 F 15 1.2
0 [[+F 13 13
any || 0% 12.7 3.3

the resolution: after smoothing, decimation of the in-
puts could be performed without further image degra-
dation. Smoothing is achieved here through convolu-
tion with an exponential kernel [5], which smoothing
parameter (8 determines the structure. Examples of
handwritten digits for various levels of smoothing are
shown in figure 3.

Polynomial classifiers can be substituted to lin-
ear classifiers: F(x,w) = 6o(wT&(x)), where &(x)
is an m-dimensional vector (m > n) with compo-
nents: Zi,T3,...Zn, (2121), (2122), = » éz,,zn), rens
(z,25...z,). The structure is geared towards increas-
ing the capacity, and is controlled by the order of the
polynomial: 81 contains all the linear terms, S, linear
plus quadratic, etc. Computations are kept tractable
with the method proposed in reference [6].

4 Experimental results

Experiments were performed on the benchmark
problem of handwritten digit recognition described in
reference [7]. The database consists of 1200 (16 x 16)
binary pixel images, divided into 600 training ex-
amples and 600 test examples. Ten classifiers were
trained, each one separating one class from all others.

In figure 4, we present the results obtained with
Weight Decay alone. Effective capacity A’ and struc-
tural parameter v vary in opposite direction. For the
value v* yielding the smallest error on the test set,
the capacity is only 1/3 of the nominal capacity, in
the absence of Weight Decay. At the price of some
error on the training set, the error rate on the test set
is reduced by half. Very similar curves are obtained
with PCA and OBD.

In table 1 we report results obtained when several
structures are combined. Weight Decay with y = y*
reduces Ejey; by-a factor of 2. Input space smoothing
used in conjunction with WD results in an additional
reduction by a factor of 1.5. The best performance
is achieved for the highest level of smoothing, # =
10, for which the blurring is considerable (figure 3).
Smoothing has no effect in the absence of WD. This 1s
a property of exponential smoothing which is a linear
invertible operation.

The use of a second-order polynomial classifier pro-
vides an additional factor of 5 reduction in Ey.,:. For
the second order, the number of weights scales like the
square of the number of inputs n? = 66049. But the
effective capacity A’ = 3, As/(Xi+7) is found to be
only 196, for the optimum values of v and S.
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Figure 4: Weight Decay (linear classifier, no smooth-
in%). Percent error (top) and capacity A’ (bottom) as
a function of log .
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5 Conclusions

The method of SRM provides a powerful tool for
tuning the capacity. We have shown that struc-
tures acting at different levels (preprocessing, archi-
tecture, learning mechanism) can produce similar ef-
fects. We have then combined three different struc-
tures to improve generalization. These structures have
interesting complementary properties. The introduc-
tion of higher-order polynomial increases the capacity.
Smoothing and Weight Decay act in conjunction to
decrease it.
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