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Making Vapnik-Chervonenkis bounds accurate

Léon Bottou

Abstract This chapter shows how returning to the combinatorial nature of the

Vapnik-Chervonenkis bounds provides simple ways to increase their accuracy, take

into account properties of the data and of the learning algorithm, and provide em-

pirically accurate estimates of the deviation between training error and testing error.

1 Introduction

Although the Vapnik-Chervonenkis (VC) learning theory [18, 19, 20, 15, 16] has

been justly acclaimed as a major conceptual breakthrough, applying its essential

theorems to practical problems often yields very loose bounds. In the case of the pat-

tern recognition problem, the theorems provide distribution–independent uniform

bounds on the deviation between the expected classification error and the empiri-

cal classification error. Their derivation reveals many possible causes for their poor

quantitative performance:

i) Practical data distributions may lead to smaller deviations than the worst possible

data distribution.

ii) Uniform bounds hold for all possible classification functions. Better bounds may

hold when one restricts the analysis to functions that perform well on plausible

training sets.

iii) A symmetrization lemma translates the main combinatorial result into a bound

on the deviation between expected and empirical errors. This lemma is a conser-

vative inequality.

iv) The combinatorial characterization of the Vapnik-Chervonenkis capacity is a

conservative upper bound.
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2 Léon Bottou

v) The union bound P([iAi)∑i P(Ai) constitutes a critical step of the proof. This

bound could be reasonably accurate if the events were independent events with

low probability. Nothing guarantee that this is the case.

An apparently different class of bounds, sometimes called sample compression

bounds, often provides much more realistic estimates of the generalization error.

Such bounds predate the VC theory: for instance, it was mentioned in Paphos that

Chervonenkis knew that the expected error of the generalized portrait algorithm is

roughly bounded by the fraction of support vectors found in the training set [21,

17]. This bounds depends on the number of support vectors, an empirical quantities

measured a posteriori.

The purpose of this contribution is to explore the gap between these two style

of bounds using only simple mathematics and a simple empirical case study. This

simplicity results from an apparently bold step: instead of assuming that the ex-

amples are independently drawn from an unknown distribution, we will reason on

random partitions of an arbitrary data set into equally sized training and testing

sets. Deviation estimates then result from the combinatorial argument that forms

the central part of the traditional Vapnik-Chervonenkis proofs. Avoiding the sym-

metrization lemma (see point iii above) also provides a simple way to obtain data–

and algorithm–dependent bounds (points i and ii) and to define empirical data–

and algorithm–dependent capacities (point iv) [3, 4, 24]. The union bound (point

v above) then remains the main source of quantitative problems.

Although refined bounding techniques have been proposed to address all these

issue [6, 8, 12, 7, 5, 13], their sophistication often obscures their connection to the

practical reality. We believe that the simple framework described in this contribution

provides useful intuitions.

The following discussion is organized as follows. After presenting the random

split paradigm, we explain how to easily derive bounds in the style of Vapnik-

Chervonenkis and make them take into account the specificities of the data dis-

tribution and of the learning algorithm. We then estimate the performance of these

bounds on a simple case study and show that more refinements are necessary to

obtain a bound with a reasonable amount of computation.

2 Setup

Let Q(z,w) be a loss function that measures the correctness on sample z of the

answer produced by a learning machine parameterized by w 2 F . In this paper we

only consider the case of binary loss functions that take the value one if the answer

is wrong and zero if it is correct. For instance, in the case of a pattern recognition

system, each sample z is a pair (x,y) composed pattern x and a class label y. Given a

classifier fw(x) parametrized by w, the loss function Q(z,w) is zero when fw(x) = y

and is one otherwise.

Let S be a set of 2` labeled examples z1, · · · ,z2`. There are C`
2` ways to split

this set into equally sized training and testing sets, S1 and S2, containing each `
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examples. For each choice of a training set S1 and a test set S2, and for each value of

the parameter w, we define the training error ν1, the test error ν2 and the total error

ν as:

ν1(w) =
1

` ∑
z2S1

Q(z,w) , ν2(w) =
1

` ∑
z2S2

Q(z,w)

ν(w) =
1

2` ∑
z2S

Q(z,w)

Consider a deterministic learning algorithm A that processes the training set S1

and produces a parameter wS1 . This parameter value usually performs well on the

training set S1 in the hope that it will also perform well on the testing set S2. For

instance, the empirical risk minimization principle suggests to design an algorithm

that minimizes ν1(w) in the hope to ensure that ν2(w
S1) is small.

All results presented here concern the distribution of the deviation between the

training error ν1(w
S1) and the testing error ν2(w

S1) when one considers all possible

splits S1 [S2 of the dataset S and obtain wS1 by running the learning algorithm A ,

Pr
{ ∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣> ε
 

. (1)

The notation Pr(H ) denotes the ratio of the number of splits for which condition

H is true over the total number C`
2` of possible splits S1[S2 of the dataset S. We use

this notation instead of the traditional probability notation to emphazise the purely

combinatorial nature of this problem.

We argue that the real life behavior of learning algorithms is well characterized

by the tail of this distribution. Thousands of machine learning papers are in fact

supported by experimental studies that follow the same protocol: randomly holding

out testing data, applying the learning algorithm to the remaining data, and assess-

ing its performance on the testing data. A good testing set performance is widely

accepted as convincing evidence supporting the use of a specific learning algorithm

for a specific learning problem. Bounding the tail of the distribution (1) provides as

strong an evidence.

In contrast, traditional statistical approaches of the learning problem assume that

the training examples are drawn independently from an unknown distribution. The

expected error IE(Q(z,wS1)) then represents the future performance of the system on

new examples drawn from this same distribution. Bounding the difference between

the training error and the expected error provides a stronger guarantee because the

assumed existence of the ground truth distribution provides a means to reason about

the algorithm performance on arbitrarily large training sets. Consider for instance

a binary classification algorithm that relies on a polynomial discriminant function

whose degree grows linearly with the number of training examples. Running such

an algorithm on a training set S1 of a sufficiently small size ` could conceivably

give acceptable performance on the testing set S2 of the same size. However this

acceptable performance does not guarantee that running the algorithm on all 2`
available examples would not overfit.
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Avoiding the ground truth assumption is attractive for philosophical reasons. Al-

though epistemology frequently relies on the idea that the world is ruled by simple

universal truths waiting to be uncovered, it can be argued that the only thing that

is available to us for sure is the finite set of examples. From this point of view, the

ground truth distribution is a metaphysical concept because there is no statistical test

to determine whether or not our dataset is composed of independent and identically

distributed examples and no hope to identify their distribution.

Avoiding the ground truth assumption is also attractive for technical reasons.

Working with the combinatorial distribution (1) affords simple ways to derive tail

bounds that leverage specific properties of the data or of the learning algorithm.

3 Misclassification Vectors

For each value of the parameter w, the loss function Q(z,w) maps the full set of

examples S onto a binary vector q(w) = (Q(z1,w), . . . ,Q(zn,w)) of length 2` that

we shall call misclassification vector. The ordering of its coefficients does not de-

pend on the dataset split: the i-th component of q(w) indicates whether the learning

system parametrized by w processes the example zi incorrectly, regardless of its

appartenance to either the training set or the testing set.

The misclassification vector q(w) encapsulates all that we need to know about

the performance of the system parametrized by vector w. Parameter values that lead

to the same misclassification vector will also lead to the same total error, training

error, and the testing error. Therefore we often write them as ν(q), ν1(q) and ν2(q)
instead of ν(w), ν1(w) and ν2(w).

The function η(q,ε) =Pr{|ν2(q)−ν1(q)|> ε} does not depend on the ordering

of the coefficients in the misclassification vector q because all possible splits are

considered and because the quantities ν1(q) and ν2(q) do not depend on the ordering

of the coefficients within each subset. We therefore write η(q,ε) = η(`,ν(q),ε).
Consider an urn containing 2ν` red marbles and 2(1− ν)` white marbles. Out

of the C`
2` possible ways to draw ` marbles without replacement, there are ex-

actly Ck
2ν`C

`−k
2(1−ν)`

ways to draw exactly k red marbles. The analytic expression of

η(`,ν ,ε) is obtained by summing this quantity for all values of k that ensure that the

difference between the number k of red marbles drawn from the urn and the number

2ν`− k of red marbles left in the urn exceeds `ε:

η(`,ν ,ε) =
1

C`
2`

∑
2|ν`−k|>`ε

Ck
2ν`C`−k

2(1−ν)` (2)

There are efficient numerical methods for computing this hypergeometric tail [14].

Since the function η(`,ν ,ε) is monotonically decreasing with ε , we define the

inverse function ε(`,ν ,η) and write

8q Pr{ |ν2(q)−ν1(q)|> ε(`,ν(q),η) } = η . (3)
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Although there is no known analytic form for the inverse function ε(`,ν ,η), its

exact values can be directly read from a table of its inverse η(`,ν ,ε). This function

is also well described by relatively accurate bounds and approximations such as

those derived by Vapnik and Chervonenkis [15, inequality A5, page 176].

ε(`,ν ,η) 
s

4

✓

ν +
1

2`

◆✓

1−ν +
1

2`

◆

log(2/η)

`+1
(4)

⇡
r

4ν(1−ν) log(2/η)

`
. (5)

4 Data– and Algorithm–Independent Bounds

Let ∆F (S) = {q(w) : w 2F} be the set of misclassification vectors associated with

all potential values of the parameter w. Bounds on the deviation (1) are then derived

from the following chain of inequalities.

Pr
{ ∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣> ε(`,ν(wS1),η)
 

= Pr
{ ∣

∣ν2(q
S1)−ν1(q

S1)
∣

∣> ε(`,ν(qS1),η)
 

 Pr
{

9q 2 ∆F (S) : |ν2(q)−ν1(q)|> ε(`,ν(q),η)|
 

 ∑
q2∆F (S)

Pr{ |ν2(q)−ν1(q)|> ε(`,ν(q),η) } = η Card∆F (S) . (6)

The first inequality above majorizes (1) by a uniform bound. The second inequality

is an application of the union bound Pr(A[B) Pr(A)+Pr(B), and the final result

is obtained by applying equation (3).

Traditional data– and algorithm–independent deviation bounds control ε(`,ν ,η)
by the more convenient expression (4) and then invoke the landmark combinatorial

lemma of Vapnik and Chervonenkis [18, theorem 1], which states that Card∆F (S)
is either equal to 22` or smaller than (2`e/h)h for some positive integer h that does

not depend on the data S and is now called the VC-dimension of the family of

indicator functions { z 7! Q(w,z) : w 2 F }. Simple algebraic manipulations then

yield data– and algorithm–independent bounds for both the absolute and the relative

deviation.

Pr

8

<

:

∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣>

s

h(1+ log `
h
)− log

η
2

`−1

9

=

;

 η ,

Pr

8

<

:

∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣

q

ν(wS1)+ 1
2`

> 2

s

h(1+ log `
h
)− log

η
2

`

9

=

;

 η .
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5 Data– and Algorithm–Dependent Bounds

There are several obvious ways to make these bounds tighter. Instead of using the

bound (4), we can tabulate the exact values of ε(`,ν ,η) as suggested in section 3.

Instead of bounding Card∆F (S), we can design empirical procedures to measure its

value [22, 3]. The only remaining causes of inaccuracy are then the two inequalities

appearing in the derivation (6), namely the uniform bound and the union bound.

The first source of concern is the majorization of the error deviation by a uniform

bound. Many elements of ∆F (S) are misclassification vectors that no reasonable

learning algorithm would produce. Realistic learning algorithms tend to produce

solutions that perform well on the training examples and also contain critical ca-

pacity control aspects. For instance one can argue that multilayer network training

often achieve good performance because their poor optimization algorithm is un-

able to find solutions far away from the initialial point. All these aspects severely

restricts the set of misclassification vectors.

Therefore, instead of considering the set ∆F (S) of the misclassification vectors

associated with all potential parameter w 2 F , we can consider the set ∆A (S) of

the misclassification vectors associated with the parameters produced by applying

algorithm A to all training set S1 extracted from data set S:

∆A (S) =
{

q(A (S1)) 8S1 ⇢ S s.t.Card(S1) = `
 

.

Replicating the derivation (6) leads to a data– and algorithm–dependent deviation

bound,

Pr
{ ∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣> ε(`,ν(wS1),η)
 

 η Card∆A (S) . (7)

The second source of concern is the union bound which, in (6), majorizes the

probability of the union of K events A1 . . .AK of probability η by the sum Kη of

their probabilities. Let us tentatively assume that the events Ai can be considered

pairwise independent. We can then write

Kη −Pr ([kAk)  ∑
i< j

Pr(Ai \A j) ⇡ K2

2
η2 (8)

and show that the majorization error is much smaller than Kη . The deviation

bound (7) is likely to be quite accurate if this assumption holds. Whether this is

true will be clarified in section 7.

6 Empirical Study

In order to illustrate the performance of bound (7), we report on a simple experimen-

tal study using 1000 examples of MNIST handwritten digit recognition dataset [2].



D
R
A

FT
A

PR
IL

20
14

Making Vapnik-Chervonenkis bounds accurate 7

Fig. 1 Bounds on the median

relative deviation (top) and

median testing error ν2

(bottom) as a function of

Card∆A (S). The dotted line

indicates the observed values.
0
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The classifier is a medium-size convolutional network Lenet5 described in [10] with

60,000 adjustable parameters. Training is performed using mean square error back-

propagation with learning rates periodically adjusted by estimating the diagonal of

the Hessian matrix [11]. This case study should be viewed as a typical example

of multilayer neural network training technology using a proven implementation.

In particular, this learning algorithm should not be seen as a simple empirical risk

minimization algorithm because the cost function is nonconvex and because the

first-order nature of the algorithm favors solutions that are relatively close to the

initial conditions.

We train this classifier on 1000 random splits of the examples into equally sized

training and testing sets containing `= 500 examples each. We always use the same

weight initialization. The observed median training error, median testing error and

median relative deviation are, respectively,

Median
⇥

ν1(w
S1)
⇤

⇡ 0.075 , Median
⇥

ν2(w
S1)
⇤

⇡ 0.14 ,

Median

"

|ν2(w
S1)−ν1(w

S1)|
p

ν(wS1)(1−ν(wS1)

#

⇡ 0.21 .

The median deviation can also be estimated by setting the right hand side of (7)

to 0.5 and using the approximation (5),

Median

"

|ν2(w
S1)−ν1(w

S1)|
p

ν(wS1)(1−ν(wS1))
− 2

r

log(4Card∆A (S))

l

#

?⇡ 0 (9)

Figure 1 (top plot) shows how the bound on the relative deviation (9) depends on

the value Card∆A (S). Figure 1 (bottom) plots a corresponding bound on the median

testing error ν2, obtained by setting the training error ν1 = 0.075 and numerically

solving (9) for ν2 with ν = (ν1 +ν2)/2. Both plots show that Card∆A (S) must be
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as low as 62 for the bounds to match empirical observations. However these plots

also show that values as large as 108 still provide reasonable estimates.

In contrast, since it is clear that the VC dimension of such a large multilayer

neural network exceeds the total number of examples, Card∆F (S) = 22` ⇡ 10301,

leading to a vacuous bound on the median testing error, ν2  1.25.

We can attempt to directly measure Card∆A (S) by counting the number N0(t)
of distinct misclassification vectors seen after training the classifier on t random

splits. Such an attempt was unsuccessful because we lack the computing resources

to process a large enough number of splits. We stopped after processing 18,000 ran-

dom splits and producing 18,000 distinct misclassification vectors. Birthday prob-

lem considerations [1] show that Card∆A (S) > 108 with confidence greater than

80%. As illustrated in Figure 1, even such large values of Card∆A (S) can still lead

to reasonable estimates, within a factor two of the observed deviations.

Since directly counting Card∆A (S) is computationally too expensive, we must

design simpler empirical procedures to characterize the properties of the set ∆A (S)
of misclassification vectors.

7 Coverings

The solid curve in figure 2 shows the histogram of the Hamming distances measured

between the misclassification vectors associated with pairs of random splits. This

histogram shows a very peaky distribution. We can accurately determine the location

of this peak by processing a moderate number of pairs. All our misclassification

vectors appear to be located at or around Hamming distance 75 of each other.

Fig. 2 Histogram of

Hamming distances between

misclassification vectors.

The solid curve shows the

histogram of the Hamming

distances separating random

pairs of misclassification

vectors. The dashed

curve shows what this

histogram would have been

if the coefficient of the

misclassification vectors were

independently sampled from

a Bernoulli distribution. 0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200 250

Observed

Shuffled

It is well known that the distribution of the Hamming distance separating two d-

dimensional binary vectors follows a very peaky distribution centered on 2d p(1− p)
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where p is the probability of nonzero coefficients [9]. The dotted curve figure 2 rep-

resents the histogram obtained by randomly shuffling the coefficient of each mis-

classification vectors before computing the Hamming distances. This curve verifies

the theoretical prediction with a peak centered at 4`ν(1− ν) ⇡ 180. The actual

misclassification vectors q(wS1) therefore appear considerably less dispersed than

random binary vectors. This observation invalidates the independence assumption

that could have given us confidence in the accuracy of the union bound (8).

This peaky Hamming distance distribution suggests to characterize the set ∆A (S)
of misclassification vectors using covering numbers. Let Bc(q) represent a Ham-

ming ball of radius c centered on q. The covering number Nc(∆) is the smallest

number of Hamming balls of radius c necessary to cover the set ∆ :

Nc(∆) = min
C✓∆

Card(C) such that ∆ ✓ [
q2C

Bc(q) .

Let us consider an arbitrary split of the data set into training and testing sets and as-

sume that there exists q0 2 Bc(q) such that |ν2(q
0)−ν1(q

0)|> ε . A simple derivation

then establishes that |ν2(q)−ν1(q)|> ε − c/`.
Combining this observation with (3) gives

8q Pr
n

9q0 2 Bc(q) :
∣

∣ν2(q
0)−ν1(q

0)
∣

∣>
c

`
+ ε(`,ν(q),η)

o

= η ,

and a chain of inequality similar to (6) gives

Pr
n

∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣>
c

`
+ ε(`,ν(wS1),η)

o

 η Nc(∆A (S)) . (10)

Fig. 3 Empirical covering

sizes. Each curve shows how

many Hamming balls (of size

40 to 100) are needed to cover

the misclassification vectors

obtained using the number of

splits specified on the X axis.

These curves should reach

the corresponding convering

number when the number of

splits increases to infinity.
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We construct coverings with the following greedy algorithm. Let q1,q2, . . . be the

misclassification vectors associated with successive random splits of our dataset. We

construct a covering Ct of the first t vectors using the following recursive procedure:
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Fig. 4 Covering-based

bounds on the median testing

error ν2(q
S1 ) as a function of

the Hamming ball radius c.

The dotted line indicates the

observed median testing error.
0
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0.4

0.5

40 60 80 100 120

if qt belongs to one of the Hamming balls centered on an element of Ct−1, we set

Ct =Ct−1, otherwise we set Ct =Ct−1 [{qt}.

This empirical covering size Nc(t)=Card(Ct) should converge to an upper bound

on N (∆A (S)) when t increases. Figure 3 plots the empirical covering sizes for

several values of the Hamming ball radius c. When the radius is smaller than peak of

the Hamming distance histogram, this convergence cannot be observed in practice.

When the radius is larger than the peak, Nc(t) converges to a small value.

In the intermediate regime, the empirical covering size appears to converge but

its limit is hard to determine. We can work around this difficulty by writing

Pr
n

∣

∣ν2(w
S1)−ν1(w

S1)
∣

∣>
c

`
+ ε(`,ν(wS1),η)

o

 η Nc(T )+Pr(RT ) , (11)

where Rt ✓ ∆A (S) denotes the set of misclassification vectors that are not covered

by any of the Hamming balls centered on the elements of CT . Let qt+1, . . . ,qt+s

denote the longest sequence of misclassification vectors such that Ct+s = Ct . None

of these vectors belongs to Rt . Since they are obtained by considering random splits

independent from the t previous random splits, the probability that none of this

vectors belongs to Rt is (1−Pr(Rt))
s. We can therefore write with confidence 1− ε

that Pr(RT )Pr(Rt) 1− s
p

ε − log(ε)/s. Empirical covering sizes Nc(T ) were

collected for T = 10,000. They range from N120(10000) = 1 to N50(10000) = 3317.

We cannot ensure that Pr(RT ) is small enough when c < 50.

Setting the right-hand side of (11) to 0.5, using approximation (5), and solving

for ν2(w
S1) yields a bound on the median testing error. Figure 4 plots this bound as

a function of the Hamming ball radius c. Although their empirical accuracy is far

from ideal, these covering-based bounds are within a factor of two of the observed

testing error. This is clearly better than the vacuous bounds usually afforded by the

data– and algorithm–independent bounding technique.
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Fig. 5 Empirical variance

of the loss function. Only

a fraction of the examples

zi have losses Q(zi,w
S1 ) that

vary from one split to the next.

The other examples are either

always correctly classified or

always misclassified.

0

0.05

0.1

0.15
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8 Discussion

There is still a significant margin to improve the accuracy of these empirical bounds.

The most interesting effect revealed by our empirical study certainly is the low dis-

persion of the misclassification vectors (figure 2) because it implies that the union

bound is very inaccurate. Although relying on empirical covering numbers should

in principle reduce the negative impact of this low dispersion, Dudley’s chaining

technique [6, 13] is a much more refined way to improve on the union bound.

Vorontsov’s recent work [23] is therefore very interesting because it leverages a

more refined characterization of the distribution of misclassification vectors in a

manner related to Dudley’s chaining.

It is also interesting to investigate the cause of the low dispersion of the mis-

classification vectors. The observed Hamming distance histogram (figure 2) looks

strikingly like the Hamming distance histogram separating random binary vectors

of lower dimensionality. Could it be that only a subset of the examples are respon-

sible for the misclassification vector variations? This would mean that most of the

examples are always correctly recognized (or misrecognized when their label is in-

correct) regardless of the dataset split. This hypothesis is confirmed by figure 5

which plots the observed variance of the loss Q(zi,w
S1) for all examples zi ordered

by decreasing variance. This observation is interesting because it established a con-

nection with sample compression bounds: the only examples that matter are those

that switch from being correctly classified to being misclassified when one changes

how the data is split into training and testing sets. The connection between capac-

ity and compression therefore appears to be a manifestation of the subtleties of the

union bound.

Finally, one of the main criticisms against the approach outlined in this paper is

its computational requirement. Why spend time characterizing the set of misclassi-

fication vectors to produce a mediocre bound on the testing error while a fraction of

this time is sufficient to compute the testing error itself? This is a valid criticism of

this work as an empirical measuring technique. However this work also has value

because it helps us understand the subtleties of the learning mathematics. Measuring

and understanding are two equally important aspects of the scientific approach.
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Rejoinder: Making V.-C. bounds accurate

Léon Bottou

I am very grateful to my colleagues Olivier Catoni and Vladimir Vovk because their

insightful comments add considerable value to my article.

Olivier elegantly points out out how similar conclusions can be achieved with

a PAC-Bayesian approach. He convinced me to try filling my knowledge gap by

reading parts of his excellent monograph [2]. The introductory material of [1] also

provides a broad overview of the connections between PAC-Bayesian bounds and

more traditional empirical process bounds. I find instructive to observe how the same

fundamental phenomena can be discussed from a purely combinatorial viewpoint

(as in my text) or from a purely probabilistic approach (as in Olivier’s comment.)

Besides providing a beautiful connection between sample compression bounds

and conformal prediction, Vladimir raises two issues that I should have discussed

much more precisely in the first place. The first issue focuses on the level of data

dependence for learning bounds. Four successive data dependence levels make the

bounds potentially more accurate and also less useful for predicting the risk because

they depend on quantities that have not been observed at the time of the prediction.

Since combinatorial bounds belong to the last category (“data super-dependence”),

they are not very useful to predict the expected risk. The second issue raises ques-

tions about the exact difference between the exchangeability assumption and the

i.i.d. assumption. These two issues are in fact intimately connected.

De Finetti’s theorem characterizes exchangeable sample distributions as mixtures

of i.i.d. distributions. Such mixtures are usually not i.i.d. distributions themselves.

Consider for instance a sample of k real numbers drawn from a equal mixture of

normal distributions centered in two distinct points x,y ∈ IR. The expected sample

mean is of course (x+ y)/2. However, regardless of k, one half of the samples has

an empirical mean close to x and the other half has an empirical mean close to y. We

have exchangeability but the law of large numbers does not apply.

Such a situation is far from unrealistic. Every data collection campaign is in

practice corrupted by uncontrolled variables that can be viewed as latent mixture

Léon Bottou
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variables. Despite this, the combinatorial error bounds accurately describe what can

be observed when one splits the data into training set and testing set. One cannot

expect these same bounds to predict the expected error because it is impossible to

construct such a prediction without additional assumption (such as independence

assumptions). This is why, in practice, gathering representative data consistently

remains the hardest part of building a machine learning application.

Finally, I find instructive to question whether predicting the expected risk is the

true purpose of learning bounds. Under i.i.d. assumptions, the most accurate “induc-

tively data-dependent” way to estimate the expected risk almost always consists of

holding out testing data. Held out data affords considerably better confidence inter-

vals; they easily compensate what is lost by reducing the training set size. In fact, it

is easy to see that one can match the best learning bounds by holding out a fraction

of examples inversely proportional to logCardΩA (S).
Let us nevertheless imagine a training set so small that we cannot afford to save

a few testing examples, and let us also ignore the fact that the resulting learning sys-

tem will probably perform too poorly to be of any use. Rather than using a learning

bound, the practitioner would be wise to use a k-fold cross-validation approach and

average the predictions of the k learning systems. Under the appropriate convexity

conditions, this ensemble should perform at least as well as the average of the errors

estimated on each fold.

Why then are we devoting considerable efforts to construct more accurate learn-

ing bounds? The history of our field provides an easy answer: building more accu-

rate learning bounds forces us to describe new phenomena and acquire new insights.

These insights are often useful to inspire and to characterize new learning algo-

rithms. Consider for instance the under-dispersion of the error vectors (figure 7.2).

If our data super-dependent learning bound cannot be accurate without taking this

effect into account, we can expect that accurate risk bounds or efficient learning

algorithms should somehow to take this phenomenon into account.
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