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ABSTRACT 

We descrtbe in thls paper a speaker Independent. global word 
recognition task ustng time delay networks. We flrst descrtbe 
these networks as a way for leamlng feature extractors by 
constralned back-propagatlon. Such a tlme-delay network ls 
shown to be capable of deallng wlth a test task: French dlgtt 
recognttlon. The results are dlscussed and compared, on the 
same data sets, wlth those obtained wlth a classlcal time 
warping system. Both connectlonlst and classlcal systems 
achieved no more than 1% errors on the test set. 

1- INTRODUCTION 

Neural networks already have achleved encouragtng results 
(Brtdle, 1984) (Prager, 1986) (Kohonen, 1988) in a variety of 
tasks related to automaUe speech recognltlon problems. Our 
alm here was to compare neural networks, and more precisely 
Time Delay Neural Networks (TDNN) to classlcal methods on a 
wldely studled and well mastered task for today's speech 
recognltion systems. 

An efficient D1W system has been developed for 
some years at LIMSI (Gauvaln, 1986), (Gauvaln et al., 1983). Its 
performances have been shown to be state of the art on vartous 
data bases (Quenot et al., 1989). We thus compared our TDNNs 
and this D1W system on the same speaker Independent diglt 
recognltlon problem. 

We propose in this paper a typlcal experlment of the 
capabilltles of Time Delay Networks (TDNNs) with respect to 
D1W methods. We first descrtbe the speech database we used. 
The time delay archltecture ls then deplcted in the third 
sectlon. In the fourth, we describe the experimental 
framework and comment the results achleved by the network. 

I 
Compartson with the reference D1W expertments 1s provlded 
in the fifth section. 

2- DIGITS DATABASE 

A speech data base, in French, has been elaborated at LIMSI. In 
the expertment reported here, we have only used part of the 
data base, namely the utterances of the 10 diglts by 26 
speakers, male (40%) and female. Each of the speaker 
pronounced each dlglt once. 

We defined two different sets for the expertments: 

the leaming set includes 16 speakers, wlth males and 
females in the same proportlon as in the total set. We thus 
have 160 examples for leamlng. 

- the test set includes the remalnlng 10 speakers (thus different 
from the 16 speakers used for trainlng), whlch makes 100 
examples for testlng. 

All the expertments were always based on the same leaming 
and test sets: speakers were asslgned to the two sets uslng 
alphabetical order, thus lndependently of any phonetical clue. 

The slgnal has been processed in the followlng way, classlcally 
used at LIMSI (Gauvaln, 1986), (Stnger, 1988): the speech slgnal 
from the microphone has been filtered at 5 KHz through a low-
pass filter, then sampled at 10 KHz wlth a 12 bits A/D 
converter. High frequency amplltudes are lncreased at 6 dB per 

octave. A DFI' 1s applled on successive 25.6 ms Urne frames, 
overlapplng by 12.8 ms. Thus 128 energy spectra values are 
generated in the 0-5 K Hz frequency domaln. A Bark scaled 16-
channels filterbank ls then slmulated by averagtng on 
trtangular frequency wlndows. The energy spectra are then 

log-compressed. 

Thls processing thus results in codlng the speech slgnal lnto 
sixteen elght blts values per 12.8 ms time frame. 

NETWORKS 

Our preferred way to descrtbe tlme-delay networks conslsts to 
show how the Gradient Back Propagation (GBP) rule may be 
used in multi-layer perceptrons (MLPs) for dlscovering Ume-
lnvaliant feature extractors. 
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Let us descrtbe now a network for leamtng those feature 
extractors. Each feature extractor is buUt from a set of hidden 
unlts. These unlts are locally connected to a window scannlng 
the input data. The slmplest way to give a Urne invariant 
behavior to these units is to Insure that all their incoming 
we!ghts wlll remain identical durtng the trainlng phase. Such 
extensions of the standard back-propagation algortthm were 
discussed in the PDP book (Rumelhart, 1986). The general 
theme of constrained back-propagation has also been 
extensively studied in (Le Cun, 1988). 

Moreover, the time invariant features may be used as Input 
data for another layer of feature extractors and so on. The 
entire network thus can be trained by constralned back-
propagation. As a side effect, some connections are drawn 
between unlts corresponding to different times. Such networks 
are thus called Time Delay Networks. 

Experiments have been run (Lang, 1988) to compare fully 
connected, locally connected and TDNN networks. The 
experiments have been carrted out on the /b/./d/./e/,/v/ task. 
The results show, even on this very simple task, that the time-
delay trtck is quite approprtate. Other experiments at ATR 
(Waibel, 1987) showed that such networks were capable of 
achieving better results than a 
Hidden Markov Model (HMM) on a 
japanese /b/./d/,/g/ recognition 
task. 

Input 

into one 8 dimensional vector ev.ery two time-slices. A new 
layer of 8 feature extractors, windowed on seven consecutive 
vectors, gtve one 8 dimensional vector every ten time slices. 
The resulting vectors are then fully connected to 10 decision 
cells, one for each digit to be recognlzed. 

4- RESULTS WITH THE NETWORK 

For training the network, we performed some additional 
processing. The Input layer was set with 65 time frames. We 
built 640 patterns out of 160 training utterances: each 
utterance is randomly shifted in the 128 first ms of the 832ms 
wlndow, simulating a poor word segmentation. This is 
repeated 4 times, which Ieads to 4 pattems per utterance. The 
spectrogram energles were linearly scaled into the [-1,+11 
lnterval, lndependently for each speaker. 

In the same way, With only 2 random shifts, we have built 200 
pattems out of the 100 test utterances. Of course, the test 
speakers are not the same than the training speakers. 

The network was tralned ustng an all purpose back-
propagation algortthm, exactly as descrtbed in (Fogelman, 
1987) (Le Cun, 1987). 

Hidden 111 Hidden 12 Output Desired 

deux 
tro1s 
quatre 

cinq 

s!X 

sept 

How do architectures, learning 
time, and performances scale With 
the complexity of the task ? In our 
digit data base, the speech signal 
lasts about one second, which is 
the input to the network. This ls to 
be compared with e.g. the 
/b/./d/./g/ problern (Waibel, 1987) 
where the typical speech data 
Iasted 150 ms only: with our 
!arger framing rate, this means a 
factor of 4 in the nurober of Input 
unlts. We attempt here to reduce 
the nurober of cells in the hidden 
layers by progresslvely reduclng 
the nurober of the cells in the 
feature extractors. However, our figure 1- Diagram of the Time Delay Network. 

network ls about 1300 cells !arge, where Walbel's was about 
400. 

We have one 16 dimensional vector as Input every time sllce 
(flg 1). A flrst layer of 8 feature extractors operatlng on 
wlndows of three consecutlve. vectors transforms these Inputs 

We ran the leaming task about thlrly tlmes. We always stopped 
the Simulation aft:er 30 sweeps of the 640 tratnlng pattems (l.e. 
90 mlnutes on a Sun4 workstatlon). The network never 
achleved less than 98% correct answers on the tralnlng set and 
94% on the test set. 
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The best run produced a network able to correctly dassify 
99.21% of the training pattems and 99% of the test pattems 
(!.e. 1 unrecognized ward out of the 100 test utterances ). 
Unfortunately, our speech data base is dearly too small for 
really validating such a performance. However, we reproduced 
a couple of ttmes this result with different initial weights. lt is 
interesting to notice that after 6 sweeps, the network already 
achieved 97.9% on the training set and 93% on the test set, and 
aft:er 15 sweeps, 98.3% and 98%. (see fig.2) 
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figure 2- Error and Performances curves, for both 
the traJning set and the test set. 

These results show that a small number of epochs is sufficient 
for efficiently training a ttme delay network, without problem 
specific or machlne dependent trtcks. 

However, the error made by the network is dearly not 
acceptable. A 9 ("neuf') had been recognized as a 4 ("quatre"), 
which is rather disappointing at first sight. 

We attempted to visually identify stgnificant Information in 
the first layer weights. For example, it seems easy to recognize 
formant's movements detectors or other phoneHe features 
detectors. But we are unable to really distinguish between the 
randomly produced ones and those that the network 
effectively uses for dassifying the pattems. 

We thus preferred to study the actlvities of the last hidden 
layer cells: there are 6x8 such cells, whose activities can be 
viewed as 6 vectors in an 8-dimenslon space (see fig 1). Each of 
these vectors represents the activity of the 8 masks in 6 

different portians of the s!gnal: the set of the actiV!ty vectors 
for all the ava!lable pattems (training and test sets) !s vector 
quant!zed through a k-means dustering technique. The result 
is a descrtption of each dlglt as a sequence of sub-ward units. 
In figure 3, for example, we show the results of a dustering of 
some patterns in 8 dusters: the network has dearly extracted 
a rather stable decomposit!on of each digit in sub-ward units, 
of a slightly !arger grain than phonemes. (duster 8 appears to 
be the prototype code for "silence") 

UN 1 1 4 8 8 8 SIX 6 6 6 6 6 8 
UN 3 1 4 8 8 8 SIX 6 5 6 8 8 8 
UN 1 1 4 8 8 8 SIX 6 6 6 6 6 8 
UN 1 1 4 8 8 8 SIX 6 6 6 6 6 6 
DEUX 7 2 2 8 8 8 SEPT 6 7 7 8 8 8 
DEUX 7 2 2 8 8 8 SEPT 6 7 2 8 8 8 
DEUX 7 2 2 8 8 8 SEPT 6 7 2 8 6 8 
DEUX 7 2 2 8 8 8 SEPT 6 7 2 8 8 8 
TROIS 7 3 4 4 8 8 HUIT 5 6 4 8 8 8 
TROIS 8 3 3 4 8 8 HUIT 5 6 4 8 8 8 
TROIS 3 3 4 8 8 8 HUIT 5 6 4 8 8 8 
TROIS 7 3 3 4 8 8 HUIT 5 5 6 8 6 8 
QUATRE 2 1 4 4 8 8 NEUF 7 2 1 8 8 8 
QUATRE 7 4 4 4 8 8 NEUF 2 1 6 8 8 8 
QUATRE 7 1 4 4 8 8 NEUF 7 2 2 8 8 8 
QUATRE 7 1 4 4 8 8 NEUF 2 1 6 8 8 8 
CINQ 6 3 2 8 6 8 ZERO 5 2 3 8 8 8 
CINQ 6 7 1 7 6 8 ZERO 5 2 3 3 8 8 
CINQ 6 8 1 2 6 8 ZERO 6 5 3 8 8 8 
CINQ 6 7 1 1 8 8 ZERO 7 2 3 3 3 8 

6gure 3 - Digits decompositton extracted by the network. 

Moreover, th!s dustering technique also shows that the 
decomposition of the 9 that the network has extracted is the 
least stable. This remark could give some insight to start 
understanding the ortgin of the 9 versus 4 error. 

Of course, we do not datm that the results obtained so-far 
actually achieve the extraction of sub-word units which are 
completely understandable and mean!ngful. However, we 
think that following up this line of !nvestigation could 
provide slgnificant results in that area. 

5- DYNAMIC TIME WARPING 

In order to compare the previous results with dass!cal systems 
ones, we used the LIMSI's D'IW system described in 
(Gauvain, 1983) (Mariani, 1983) and (Stnger, 1988) on the same 
training and test utterances, processed as follows. 

Each ttme frame of the spectrogram log-compressed energies is 
first normal!zed. A cos!ne transformation is then applied for 
extracting 8 cepstral coefficients. The time warping process is 
performed using these 8 parameters and the mean energy. The 
sixteen leaming utterances for each ward are preclsely 
segmented , then averaged along their time warping path, 
using an algorlthm descrtbed in (Singer, 1988). The resulting 
references require approxtmatively as much memory space as 
the TDNNs weights. 
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The 100 test utterances have been presented and 99 were 

correctly classlfied. The error source was identlfied as a bad 

segmented training reference. We did not try to check the DTW 

performance using data as badly segmented as those used for 

the TDNN experiment. The DTW system seems indeed very 

sensitive to training data segmentation, however, real 

training data may quite weil segmented in practlce. 

We reach here the Iimits of objectivity while comparing two 

fundamentally different techniques on the same task. Netther 

very precisely segmented, nor strongly unsegmented data are 

better fitted to the reality. Experimental constraints may 

insure or forbid such a precise segmentation. 

6- CONCLUSION 

Wehave presented here a Time Delay Neural Network trained 

on a small French dig!t recognitlon task. Our work clearly 

demonstrates that adequate neural nets have many 

significant abil!ties for speaker Independent speech 

recognitlon tasks. Our best network achieved about the same 

Ievel of results than a weil tuned classical system. We think 

that this is rather encouraging for the Neural Net approach, 

which has not been yet fully explored nor optlmized. In 

additlon, the TDNN has shown its abil!ty to leam on badly 

segmented references, which suggests that a phonetlcal speech 

recognition system could be trained with affordable coarsely 

segmented. databases. 

We tried to compare TDNNs and DTW as far as possible. But 

fundamentally different techniques are best measured by 

fundamentally different tests. Furthermore, cepstral 

coefficients are known as a good parameter set for improving 

speaker independence in a time WarJ>ing process. Very little is 

known about the respective properties of different signal 

processing techniques for feeding a neural net. Spectrograms 

appeared as the easier way for evaluatlng networks, but it 

might be possible that further research will enable to improve 

MLPs 'performances by using more adequate processing. 

Finally, we have given some hints to utilize Time Delay 

Networks for sub-words units extractlon. More investigation 

is needed to get significant However, we think that the 

results obtained so far are an lncentlve to go further in the 
directlon presented here. 
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