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ABSTRACT

We describe in this paper a speaker independent, global word
recognition task using time delay networks. We first describe
these networks as a way for learning feature extractors by
constrained back-propagation. Such a time-delay network is
shown to be capable of dealing with a test task: French digit
recognition. The results are discussed and compared, on the
same data sets, with those obtained with a classical time
warping system. Both connectionist and classical systems
achieved no more than 1% errors on the test set.

1- INTRODUCTION

Neural networks already have achieved encouraging results
(Bridle, 1984) (Prager, 1986) (Kohonen, 1988) in a variety of
tasks related to automatic speech recognition problems, Our
aim here was to compare neural networks, and more precisely
Time Delay Neural Networks (TDNN]) to classical methods on a
widely studied and well mastered task for today's speech
recognition systems.

An efficient DTW system has been developed for
some years at LIMSI (Gauvain, 1986), (Gauvain et al., 1983). Its
performances have been shown to be state of the art on various
data bases {Quenot et al., 1989). We thus compared our TDNNs
and this DTW system on the same speaker independent digit
recognition problem.

We propose in this paper a typical experiment of the
capabilities of Time Delay Networks (TDNNs) with respect to
DTW methods. We first describe the speech database we used.
The time delay architecture is then depicted in the third
section. In the fourth, we describe the experimental
framework and comment the results achieved by the network.
Comparison with the reference DTW experiments is provided[
in the fifth section.
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2- DIGITS DATABASE

A speech data base, in French, has been elaborated at LIMSI. In
the experiment reported here, we have only used part of the
data base, namely the utterances of the 10 digits by 26
speakers, male (40%) and female. Each of the speaker
pronounced each digit once.

We defined two different sets for the experiments:

- the learning set includes 16 speakers, with males and
females in the same proportion as in the total set. We thus
have 160 examples for learning.

- the test set includes the remaining 10 speakers (thus different
from the 16 speakers used for training), which makes 100

examples for testing.

All the experiments were always based on the same learning
and test sets: speakers were assigned to the two sets using

alphabetical order, thus independently of any phonetical clue.

The signal has been processed in the following way, classically
used at LIMSI (Gauvain, 1986}, (Singer, 1988): the speech signal
from the microphone has been filtered at 5 KHz through a low-
pass filter, then sampled at 10 KHz with a 12 bits A/D
converter. High frequency amplitudes are increased at 6 dB per
octave. A DFT is applied on successive 25.6 ms time frames,
overlapping by 12.8 ms. Thus 128 energy spectra values are
generated in the 0-5 K Hz frequency domain. A Bark scaled 16-
channels filterbank is then simulated by averaging on
triangular frequency windows. The energy spectra are then

log-compressed.

This processing thus results in coding the speech signal into
sixteen eight bits values per 12.8 ms time frame.

3- TIME-DELAY NETWORKS

Our preferred way to describe time-delay networks consists to
show how the Gradient Back Propagation (GBP) rule may be
used in multi-layer perceptrons (MLPs) for discovering time-

invariant feature extractors.
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Let us describe now a network for learning those feature
extractors. Each feature extractor is built from a set of hidden
units. These units are locally connected to a window scanning
the input data. The simplest way to give a time invariant
behavior to these units is to insure that all their incoming
weights will remain identical during the training phase. Such
extensions of the standard back-propagation algorithm were
discussed in the PDP book (Rumelhart, 1986). The general
theme of constrained back-propagation has also been
extensively studied in (Le Cun, 1988).

Moreover, the time invariant features may be used as input
data for another layer of feature extractors and so on. The
entire network thus can be trained by constrained back-
propagation. As a side effect, some connections are drawn
between units corresponding to different times. Such networks
are thus called Time Delay Networks,

Experiments have been run (Lang, 1988) to compare fully
connected, locally connected and TDNN networks. The
experiments have been carried out on the /b/,/d/./e/./v/ task.
The resuits show, even on this very simple task, that the time-
delay trick is quite appropriate. Other experiments at ATR
(Waibel, 1987) showed that such networks were capable of
achieving better results than a
Hidden Markov Model (HMM) on a
japanese /b/,/d/./g/ recognition
task.

Input

How do architectures, learning
time, and performances scale with
the complexity of the task ? In our
digit data base, the speech signal
lasts about one second, which is
the input to the network. This is to
be compared with e.g. the
/b/./d/./g/ problem (Waibel, 1987)
where the typical speech data
lasted 150 ms only: with our
larger framing rate, this means a
factor of 4 in the number of input
units. We attempt here to reduce
the number of cells in the hidden
layers by progressively reducing
the number of the cells in the

feature extractors. However, our

network is about 1300 cells large, where Waibel's was about
400.

We have one 16 dimensional vector as input every time slice
(fig 1). A first layer of 8 feature extractors oj)eratmg on

windows of three consecutive.vectors transforms these inputs
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into one 8 dimensional vector every two time-slices. A new
layer of 8 feature extractors, windowed on seven consecutive
vectors, give one 8 dimensional vector every ten time slices.
The resulting vectors are then fully connected to 10 decision
cells, one for each digit to be recognized.

4- RESULTS WITH THE NETWORK

For training the network, we performed some additional
processing. The input layer was set with 65 time frames. We
built 640 patterns out of 160 training utterances: each
utterance is randomly shifted in the 128 first ms of the 832ms
window, simulating a poor word segmentation. This is
repeated 4 times, which leads to 4 patterns per utterance. The
spectrogram energies were linearly scaled into the [-1,+1]

interval, independently for each speaker.

In the same way, with only 2 random shifts, we have built 200
patterns out of the 100 test utterances. Of course, the test

speakers are not the same than the training speakers.

The network was trained using an all purpose back-
propagation algorithm, exactly as described in (Fogelman,
1987) (Le Cun, 1987).
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figure 1- Diagram of the Time Delay Network.

We ran the learning task about thirty times. We always stopped
the simulation after 30 sweeps of the 640 training patterns (i.e.
90 minutes on a Sun4 workstation). The network never
achieved less than 98% correct answers on the training set and

94% on the test set.
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The best run produced a network able to correctly classify
99.21% of the training patterns and 99% of the test patterns
(i.e. 1 unrecognized word out of the 100 test utterances ).
Unfortunately, our speech data base is clearly too small for
really validating such a performance. However, we reproduced
a couple of times this result with different initial weights. It is
interesting to notice that after 6 sweeps, the network already
achieved 97.9% on the training set and 93% on the test set, and
after 15 sweeps, 98.3% and 98%. (see fig.2)
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figure 2- Error and Performances curves, for both
the training set and the test set.

These results show that a small number of epochs is sufficient
for efficiently training a time delay network, without problem

specific or machine dependent tricks.

However, the error made by the network is clearly not
acceptable. A 9 ("neuf”) had been recognized as a 4 ("quatre"),
which is rather disappointing at first sight.

We attempted to visually identify significant information in
the first layer weights. For example, it seems easy to recognize
formant's movements detectors or other phonetic features
detectors. But we are unable to really distinguish between the
randomly produced ones and those that the network

effectively uses for classifying the patterns.

We thus preferred to study the activities of the last hidden
layer cells: there are 6x8 such cells, whose activities can be
viewed as 6 vectors in an 8-dimension space (see fig 1). Each of

these vectors represents the activity of the 8 masks in 6
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different portions of the signal: the set of the activity vectors
for all the available patterns (training and test sets) is vector
quantized through a k-means clustering technique. The result
is a description of each digit as a sequence of sub-word units.
In figure 3, for example, we show the results of a clustering of
some patterns in 8 clusters: the network has clearly extracted
a rather stable decomposition of each digit in sub-word units,
of a slightly larger grain than phonemes. (cluster 8 appears to
be the prototype code for "silence")

UN 114888 SIX 6 6 6668
UN 3148288 SIX 65628838
UN 114888 SIX 6 666638
UN 114888 SIX 6 66666
DEUX 722888 SEPT 677888
DEUX 722888 SEPT 6728288
DEUX 7228288 SEPT 672868
DEUX 7228188 SEPT 6728288
TROIS 734488 HUIT 5648288
TROIS 833488 HUIT 564888
TROILS 334888 HUIT 5648288
TROIS 733488 RUIT 5568¢68
QUATRE 2 1 4 4 8 8 NEUF 721888
QUATRE 7 4 4 4 8 8 NEUF 2168288
QUATRE 7 1 4 4 8 8 NEUF 722888
QUATRE 7 1 4 4 8 8 NEUF 216888
CINQ 632868 ZERO 523888
CINQ 671768 ZERO 523388
CINQ 681268 ZERO 653888
CINQ 671188 ZERO 723338

figure 3 - Digits decomposition extracted by the network.

Moreover, this clustering technique also shows that the
decomposition of the 9 that the network has extracted is the
least stable. This remark could give some insight to start
understanding the origin of the 9 versus 4 error.

Of course, we do not claim that the results obtained so-far
actually achieve the extraction of sub-word units which are
completely understandable and meaningful. However, we
think that following up this line of investigation could
provide significant results in that area.

5- DYNAMIC TIME WARPING

In order to compare the previous results with classical systems

ones, we used the LIMSI's DTW system described in
{Gauvain, 1983) (Mariani, 1983) and (Singer, 1988) on the same

training and test utterances, processed as follows.

Each time frame of the spectrogram log-compressed energies is
first normalized. A cosine transformation is then applied for
extracting 8 cepstral coefficients. The time warping process is
performed using these 8 parameters and the mean energy. The
sixteen learning utterances for each word are precisely
segmented , then averaged along their time warping path,
using an algorithm described in (Singer, 1988). The resuiting
references require approximatively as much memory space as
the TDNNs weights.
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The 100 test utterances have been presented and 99 were
correctly classified. The error source was identified as a bad
segmented training reference. We did not try to check the DTW
performance using data as badly segmented as those used for
the TDNN experiment. The DTW system seems indeed very
sensitive to training data segmentation, however, real
training data may quite well segmented in practice.

We reach here the limits of objectivity while comparing two
fundamentally different techniques on the same task. Neither
very precisely segmented, nor strongly unsegmented data are
better fitted to the reality. Experimental constraints may
insure or forbid such a precise segmentation.

6- CONCLUSION

We have presented here a Time Delay Neural Network trained
on a small French digit recognition task. Our work clearly
demonstrates that adequate neural nets have many
significant abilities for speaker independent speech
recognition tasks. Our best network achieved about the same
level of results than a well tuned classical system. We think
that this is rather encouraging for the Neural Net approach,
which has not been yet fully explored nor optimized. In
addition, the TDNN has shown its ability to learn on badly
segmented references, which suggests that a phonetical speech
recognition system could be trained with affordable coarsely
segmented databases.

We tried to compare TDNNs and DTW as far as possible. But
fundamentally different techniques are best measured by
fundamentally different tests. Furthermore, cepstral
coefficients are known as a good parameter set for improving
speaker independence in a time warping process. Very little is
known about the respective properties of different signal
processing techniques for feeding a neural net. Spectrograms
appeared as the easier way for evaluating networks, but it
might be possible that further research will enable to improve

MLPs ‘performances by using more adequate processing.

Finally, we have given some hints to utilize Time Delay
Networks for sub-words units extraction., More investigation
is needed to get significant resuilts, However, we think that the
results obtained so far are an incentive to go further in the
direction presented here.
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