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Abstract. This paper proposes an online solver of the dual formulation
of support vector machines for structured output spaces. We apply it to
sequence labelling using the exact and greedy inference schemes. In both
cases, the per-sequence training time is the same as a perceptron based
on the same inference procedure, up to a small multiplicative constant.
Comparing the two inference schemes, the greedy version is much faster.
It is also amenable to higher order Markov assumptions and performs
similarly on test. In comparison to existing algorithms, both versions
match the accuracies of batch solvers that use exact inference after a
single pass over the training examples.

1 Introduction

The sequence labelling task consists in predicting a sequence of labels (y1. . . yT )
given an observed sequence of tokens (x1. . . xT ). This task is an example of a
structured output learning system (see e.g. [1]). It appears in practical problems
in computational linguistics and signal processing.

Two informal assumptions are crucial for this task. The first states that a la-
bel yt depends only on the surrounding labels and tokens. The second states that
this dependency is invariant with t. These assumptions are expressed through
the parametric formulation of the models, and, in the case of probabilistic mod-
els, through conditional independence assumptions (e.g. Markov models). Part
of the model specification is then the inference procedure that recovers the pre-
dicted labels for any input sequence. Exact inference can be carried out with the
Viterbi algorithm. The more efficient greedy inference, which predicts the labels
in the order of the sequence using the past predictions, can also be competi-
tive in terms of accuracy by considering higher order Markov assumptions. The
parameters for both inference schemes can be learned using structured output
learning algorithms.

Batch sequence algorithms optimize a global objective function that depends
on all training sequences or tokens [2–6]. They mainly consist of an iterative
procedure that run several times over the entire dataset until some convergence
criterion is met. The number of epochs of these algorithms usually increases with
the number of examples, leading to training times that grow faster than the size
of the training set.



A crucial issue with these algorithms is their scalability. When learning the
parameters for exact inference, support vector methods (e.g. [3]) require the ap-
plication of the costly Viterbi algorithm each time a sequence is visited in the
iterative process. Output space factorization methods (e.g. [5]) solve an alterna-
tive problem with additional variables that encode the structure of the possible
predicted sequences. In these methods, each sequence adds a number of such
variables that is polynomial in the length of the sequence. Learning for greedy
inference reduces to a smaller multiclass classification problem and is therefore
much faster. However algorithms then focus on tokens rather than sequences,
dramatically increasing the size of the training set. Batch sequence learning al-
gorithms, having a computational cost that grows more than linearly with the
number of sequences, are impracticable on large datasets because of the high
per-sequence training cost.

Online sequence learning algorithms have been proposed as a scalable alterna-
tive to batch algorithms. They run a single pass on the training set, sequentially
updating their parameters depending on the loss observed after each sequence
(e.g. [7]) or token (e.g. [8]). Their computational cost therefore depends linearly
on the number of observations.

Proponents of such algorithms often mention that generalization bounds for
online algorithms are no worse than generalization bounds for batch algorithms
[9], or that specific algorithms like the second order stochastic gradient descent
(SOSGD) provably loose nothing relatively to the batch optimization of the same
cost [10]. However, the error bounds are not tight, such theoretical guarantees
are thus not very informative, and SOSGD algorithms requires an impractically
large inverse Hessian matrix. In practice, it appears that online algorithms are
still significantly less accurate than batch algorithms.3

In this paper, we propose an online algorithm for the optimization of the
dual formulation of support vector methods for structured output spaces [2, 3].
Following recent works on the fast optimization of Support Vector Machines
[11, 6], the algorithm performs SMO-like optimization steps over pairs of dual
variables, alternating between unseen patterns and currently support patterns.
It can be seen as an adaptation of LaRank ([6]), originally proposed for the batch
optimization of multiclass SVMs, to online structured output learning.

The algorithm we propose shares the scalability property of other online
algorithms, its training time increasing linearly with the number of examples.
Similarly to [3, 6], its number of support vectors is conveniently bounded. Finally,
using an extension of [12] to structured outputs, we show that our algorithm has
at least the same theoretical guarantees in terms of regret (difference between the
online error and the optimal train error) as passive-aggressive online algorithms.
Its only drawback is to keep in memory the current vector expansion. However
this memory usage grows at most linearly with the number of examples and

3 A common workaround consists in performing several passes over the training exam-
ples. But this is no longer an online algorithm and it no longer enjoys the theoretical
guarantees of online algorithms.



does not impact the computational cost. This drawback is shared by other online
algorithms such as kernel or averaged perceptrons.

We present an empirical evaluation of our algorithm on standard bench-
marks for sequence labelling. We test both exact and greedy inference. The per-
formances are very close to state-of-the-art batch optimizers of the same dual,
while being an order of magnitude faster. The new algorithm is then only a
constant time slower than perceptron-like algorithms using the same inference
scheme, while being significantly better in terms of accuracies. We therefore ob-
tain new kinds of compromises in terms of training time/test performance. For
example, the greedy version of our algorithm is approximately as fast as an on-
line perceptron using exact inference, while being almost as accurate as a batch
optimizer.

2 Representation and Inference

In the rest of this paper, we use bold characters for sequences such as the se-
quence of tokens x = (x1. . . xT ) or the sequence of labels y = (y1. . . yT ). Subse-
quences are denoted using superscripts, as in y{t−k..t−1} = (yt−k. . . yt−1). We call
X the set of possible tokens and Y the set of possible labels, augmented with
a special symbol to represent the absence of a label. By convention, a label ys

is the special symbol whenever s ≤ 0. Angle brackets 〈.,.〉 are used to represent
the canonical dot product.

An inference procedure assigns a label yt to each corresponding xt taking
into account the correlations between labels at different positions in the sequence.
This work takes into account correlations between k+1 successive labels (Markov
assumption of order k). More specifically, we assume that the inference procedure
determines the predicted label sequence y on the sole basis of the scores

st(w,x,y) =
〈
w,Φg

(
xt,y{t−k..t−1}, yt

)〉
t = 1...T ,

where w ∈ RD is a parameter vector and function Φg : X × Yk × Y → RD de-
termines the feature space.

2.1 Exact Inference

Exact inference maximizes the sum
∑T

t=1 st(w,x,y) over all possible label se-
quences y. For a given input sequence x, the prediction function fe(w,x) is then
defined by

fe(w,x) = arg max
y∈YT

T∑
t=1

st(w,x,y) (1)

= arg max
y∈YT

〈w,Φe(x,y)〉 ,

where Φe(x,y) =
∑T

t=1 Φg(xt,y{t−k..t−1}, yt).



2.2 Greedy Inference

Greedy inference predicts the successive labels yt in sequence by maximizing〈
w,Φg(xt,y{t−k..t−1}, yt)

〉
where the previously predicted labels y{t−k..t−1} are

frozen. For a given input sequence x, the prediction function fg(w,x) is then
defined by the recursion

f t
g(w,x) = arg max

y∈Y

〈
w,Φg

(
xt, f{t−k..t−1}

g (w,x), y
)〉

. (2)

2.3 Comparison

Although greedy inference is an approximation of exact inference, their differ-
ent computational complexity leads to a more nuanced picture. Exact infer-
ence solves (1) using the Viterbi algorithm. It requires a time proportional to
DT card(Y)k+1 and becomes intractable when the order k of the Markov assump-
tion increases. On the other hand, the recursion (2) runs in time proportional
to DT card(Y). Therefore greedy inference is practicable with large k.

In practice, greedy inference with large k can sometimes achieve a higher
accuracy than exact inference with Markov assumptions of lower order.

3 Training

In this section we write the convex optimization problem used for determining
the parameter vector for both cases of exact and greedy inference. We first
present a large margin formulation of the multiclass problem and show how it
applies to both problems.

3.1 Large-Margin Multiclass Problem

We consider training patterns p1. . . pn and their classes c1. . . cn. Following the
formulation of large-margin learning with interdependent output spaces [2, 3],
the parameters of a prediction function of the form f(p) = arg maxc 〈w,Φ(p, c)〉
can be determined by minimizing the convex function

min
w

1

2
〈w, w〉 + C

nX
i=1

ξi (3)

subject to


∀i ξi ≥ 0
∀i ∀c 6= ci 〈w, Φ(pi, ci) − Φ(pi, c)〉 ≥ ∆(ci, c) − ξi ,

where ∆(ci, c) is the true loss incurred by predicting class c instead of the true
class ci. Following [6], we rewrite this optimization problem in dual form by
introducing one coefficient βc

i for each pattern pi and each class c ∈ C.

max
β

−
X
i,c

∆(c, ci)β
c
i −

1

2

X
i,j,c,c̄

βc
i βc̄

j 〈Φ(pi, c), Φ(pj , c̄)〉

subject to


∀i ∀c βc

i ≤ δ(c, ci) C
∀i

P
c βc

i = 0
(4)



where δ(c, c̄) is 1 when c = c̄ and 0 otherwise. The solution of the primal problem
is then recovered from the optimal coefficients βc

i as

w =
∑
i,c

βc
i Φ(pi, c) .

Multiple algorithms have been proposed to efficiently solve problem (4) even
in cases where the number of classes is very large [3, 6]. As such, an optimizer
of problem (4) can be used for learning the parameters of sequence labelling
models for both exact and greedy inference. For clarity in the presentation, we
give the instantiation of the dual objective for both problems using the notations
introduced in section 2.

3.2 Training for Exact Inference

Since the exact inference prediction function (1) can be written under the form
arg maxc 〈w,Φ(p, c)〉, the above formulation applies directly. The patterns pi are
the token sequences xi and the classes c are complete label sequences y. The
feature function Φ(pi, c) = Φe(xi,y) has been defined in (1) and the loss ∆(y, ȳ)
is the Hamming distance between the sequences y and ȳ.

The dual problem is then

max
β

−
X
i,y

∆(y,yi)β
y
i − 1

2

X
ij

X
yȳ

βy
i βȳ

j Kijyȳ
e

subject to


∀i ∀y βy

i ≤ δ(y,yi) C
∀i

P
y βy

i = 0 .
(5)

with the kernel matrix Kijyȳ
e = 〈Φe(xi,y), Φe(xj , ȳ)〉.

The solution is then w =
∑

iy βy
i Φe(xi,y).

3.3 Training for Greedy Inference

The greedy inference prediction function (2) does not readily have the form
arg maxc 〈w,Φ(p, c)〉 because of its recursive structure. However, each prediction
f t
g has the desired form with one pattern pit for each training token xt

i, and with
classes c taken from the set of labels and compared with ∆(y, ȳ) = 1− δ(y, ȳ).

This approach leads to difficulties because the feature function Φ(pit, y) =
Φg(xt

i, f
{t−k..t−1}
g , y) depends on the prediction function. We avoid this difficulty

by approximating the predicted labels f{t−k..t−1}
g with the true labels y{t−k..t−1}

i .
The corresponding dual problem is then

max
β

−
X
ity

∆(y, yt
i)β

y
it −

1

2

X
itjr

X
yȳ

βy
itβ

ȳ
jrK

itjryȳ
g

subject to


∀i, t ∀y βy

it ≤ δ(y, yt
i) C

∀i, t
P

y βy
it = 0 .

(6)

with the kernel matrix Kitjryȳ
g =

D
Φg(x

t
i,y

{t−k..t−1}
i , y) , Φg(x

r
j ,y

{r−k..r−1}
j , ȳ)

E
.

The solution is then w =
P

ity βy
it Φg(x

t
i,y

{t−k..t−1}
i , y).



3.4 Discussion

Both dual problems (5) and (6) are defined using very different sets of coeffi-
cients β. Experiments (section 6) show considerable differences in sparsity. Yet
the two kernel matrices Ke and Kg generate parameter vectors w in the same
feature space which is determined by the choice of the feature function Φg, or
equivalently the choice of the kernel Kg.

We use the following kernels in the rest of this paper.

Kitjryȳ
g = δ(y, ȳ)

“
k(xt

i, x
r
j ) +

kX
s=1

δ(y t−s
i , ȳ r−s

j )
”

,

Kijyȳ
e =

X
tr

δ(yt, ȳr)
“
k(xt

i, x
r
j ) +

kX
s=1

δ(y t−s, ȳ r−s)
”

,

where k(x, x̄) = 〈x, x̄〉 is a linear kernel defined on the tokens. These two kernels
satisfy the identity Φe(x,y) =

∑
i Φg(xt,y{t−k..t−1}, yt) by construction. Fur-

thermore, the exact inference kernel Ke is precisely the kernel proposed in [2].
The greedy kernel approximates the predicted labels with the true labels. The

same approximation was used in LaSO [8] and in the first iteration of SEARN
[4]. In the context of an online algorithm, other approximations would have
been possible, such as the sequence of predicted labels for the previous values of
the parameter. However, the simpler approximation works slightly better in our
experiments.

4 Online Optimization

This section discusses the online optimization of problems (4), and therefore
problems (5) and (6). We call our algorithm OLaRank (for Online LaRank), be-
cause it uses the same building blocks as the LaRank algorithm [6]. We first
summarize these building blocks. Then, we describe how we adapted the origi-
nal LaRank for our purposes.

4.1 OLaRank Building Blocks

The LaRank algorithm is a batch optimizer of the dual problem (4), for the
specific case of multiclass classification with one representative vector per class.
It can however be straightforwardly adapted to the general case of structured
outputs we consider here. Assuming these adaptations done, LaRank can be
applied to both problems (5) and (6).

Each elementary step of the LaRank algorithm maximizes the objective func-
tion (4) restricted to only two coefficients βc

i and βc̄
i associated with a same

pattern pi. Because these coefficients appear in the same equality constraint,
they must move by opposite amounts. The maximization then simply becomes
one-dimensional and can be solved analytically (see details in [6]). Each elemen-
tary step monotonically improves the dual objective function.



[6] define three ways to select pairs of coefficients, namely ProcessNew, Pro-

cessOld, and Optimize. They prove that a reasonable mixture of these opera-
tions approaches the solution of problem (4) with a predefined accuracy, after a
number of steps that grows linearly with the number of patterns and does not
depend on the number of classes.

OLaRank uses exactly the same three basic operations, with a difference in
the alternation between them. For clarity, we remind these definitions from [6]:
support vectors are the pairs (pi, c) such that βc

i 6= 0, and support patterns are
the patterns pi for which at least one of the βc

i coefficients is nonzero.

– ProcessNew randomly picks a fresh example (pi, ci) and chooses the best
pair of coefficients βc

i and βc̄
i according to the gradient vector of the dual

objective function.
– ProcessOld randomly picks a support pattern pi and chooses the best pair

of coefficient βc
i and βc̄

i according to the gradient vector.
– Optimize randomly picks a support pattern pi and chooses the best pair of

coefficient βc
i and βc̄

i according to the gradient vector but solely among the
coefficients βc

i that are not zero.

The ProcessOld and Optimize steps differ essentially in their computational
costs. In the case of exact inference, ProcessOld requires to run the Viterbi
algorithm to find the label sequence that maximizes the gradient for the cho-
sen support pattern. Optimize only considers label sequences that are currently
support vectors, avoiding the costly inference procedure. In the case of greedy
inference, ProcessOld needs to compute the score of the current token for each
possible label, while Optimize only considers the labels that are currently in the
support vector expansion.

4.2 Scheduling

The LaRank algorithm schedules the three types of steps using a complex adap-
tive scheme that takes into account both the computing time and the progress of
the objective function. This scheme works well for simple multiclass problems.
However, we had mixed experiences with the exact inference models, because the
ProcessOld operations incur a penalization in terms of computation time due
to the Viterbi algorithm. In the end, ProcessOld was not sufficiently applied,
leading to poor performance.

OLaRank implements a much simpler approach. We call Reprocess the com-
bination of one ProcessOld step followed by ten Optimize steps. All our exper-
iments are carried out by repeatedly performing one ProcessNew step followed
by a predefined number nR of Reprocess combinations. The number nR depends
on each problem and is determined like an hyper-parameter using a validation
set (see table 1 and figure 3).

Notice that only performing ProcessNew steps (i.e. nR = 0) yields a typical
passive-aggressive online algorithm [13]. Therefore, the Reprocess operation is
the element that lets OLaRank match the test accuracy of batch optimization
after a single sweep over the training data (see section 6).



5 Theoretical Analysis

This section displays theoretical results concerning the OLaRank algorithm pre-
sented in the previous section: a bound on the number of support vectors and
another on the regret.

5.1 Sparsity Guarantee

All three basic operations (ProcessNew, ProcessOld and Optimize) do nothing
unless they can find a search direction that fulfills two conditions: (1) the deriva-
tive of the objective function along this direction must be greater than τ > 0,
and, (2) a movement of size κ > 0 along that direction is possible without leav-
ing the constraint polytope. Therefore OLaRank is an Approximate Stochastic
Witness Direction Search (ASWDS) algorithm as defined in [11]. The number of
support vectors it adds during learning can be bounded by the following propo-
sition:

Proposition 1. While training on n examples, OLaRank will add no more than

min


n(2 + nR), max{2ρmaxnC

τ2
,
2nC

κτ
}

ff
support vectors, with ρmax = maxi,c ||Φ(pi, c) − Φ(pi, ci)||2.

The bound is actually a bound on the number of ProcessNew and Pro-

cessOld iterations, since each ProcessNew adds either 0 or 2 support vec-
tors, and each ProcessOld adds either 0 or 1 support vector. The term n(2 +
nR) is immediate considering the scheduling described in section 4. The term
max{ 2ρmaxnC

τ2 , 2nC
κτ } is a bound on the maximal number of optimization steps

carried out by LaRank (and therefore OLaRank). Its proof follows the theorem
of [6].

In practice, the smaller term is obviously n(2 + nR), since reasonable values
of nR are between 1 and 20. The interest of the second term of the bound is at
the limit when nR tends to infinity. Then OLaRank converges, at each round, to a
κτ -approximate solution of problem (4), restricted to consider only the examples
that are currently support patterns (see theorem 18 of [11] for the convergence of
ASWDS algorithms). In that case, the bound proves that the number of support
vectors still grows at most linearly with the number of examples given κ and τ .

5.2 Regret Bound

The OLaRank algorithm performs an iterative optimization of the dual, where
only the parameters corresponding to already seen examples can be modified
at each step. The primal-dual view of online learning of [12] allows to obtain
online learning rates for that kind of algorithms in the case of SVMs for binary
classification. In this section, we extend their result to structured predictors (i.e.
online optimizers of equation (4)).



Regret Bound for Online Structured Predictors The learning rates are expressed
with the notion of regret defined by the difference between the mean loss incurred
by the algorithm on the course of learning and the empirical loss of a given weight
vector,

regret(n, w) =
1

n

nX
i=1

`(wi, (pi, ci)) −
1

n

nX
i=1

`(w, (pi, ci))

with wi the primal weight vector before seeing the i-th example, and `(w, (p, c))
the loss incurred by any weight vector w on the example (p, c). In our setup, the
loss `(wi, (pi, ci)) is defined as»

max
c∈C

∆(ci, c) − 〈w, Φ(pi, ci) − Φ(pi, c)〉
–
+

where [x]+ = max(x, 0).
The following theorem gives a bound on the regret for any algorithm per-

forming an online optimization of the dual of equation (4):

Theorem 1. Assume that for all i, the dual increase after seeing example (pi, ci) is
at least Cµρ(`(wi, (pi, ci))), with

µρ(x) =
1

ρC
min(x, ρC)

„
x − 1

2
min(x, ρC)

«
then, we have:

∀w, regret(n, w) ≤ ||w||2

2nC
+

ρC

2
.

The proof exactly follows section 5 of [12]. The crucial point of this theorem
is to directly relate the dual increase when seeing an example and the regret
bound: the more we can prove that the dual increases in the course of learning,
the more we can have guarantees on the performance.

Application The following result allows to use theorem 1 to bound the regret for
the OLaRank algorithm:

Proposition 2. For a given i, the dual increase after performing a ProcessNew step
on example (pi, ci) is equal to Cµρi(`(wi, (pi, ci))), with ρi = ||Φ(pi, ci) − Φ(pi, c

∗
i )||2

and c∗i = arg maxc∈C
`
∆(ci, c) + 〈wi, Φ(pi, c)〉

´
.

This proposition is easily established by directly calculating the dual increase
caused by ProcessNew step (see [6]) and expressing the result using the function
µρ. Since Reprocess cannot decrease the dual, the whole OLaRank algorithm in-
creases the dual by at least Cµρi(`(wi, (pi, ci))) after seeing example i. Moreover,
as µρ monotonically decreases with ρ theorem 1 can be applied to OLaRank with
ρ = maxi ρi.

Interpretation Proposition 2 first shows that OLaRank has the same guarantees
(in terms of regret) than a typical passive-aggressive algorithm. Indeed he latter
is equivalent to performing only ProcessNew operations.



In addition, Theorem 1 provides a partial justification of the Reprocess

function. Indeed, it expresses that we can relate the dual increase to the regret.
As such, if, for instance, Reprocess operations bring a dual increase of the same
order of magnitude as ProcessNew operations at each round, then the regret of
OLaRank would be typically two times smaller than the current bound. Although
we do not have any analytical results concerning the dual increase ratio between
ProcessNew and Reprocess operations, the theorem suggest that the true regret
of OLaRank should be much smaller than the bound.

Finally, we can notice that the regret we consider here does not match the true
applicative setting of greedy inference. Indeed, we consider in the regret bound
a set of examples that is fixed independently of the parameter vector w with
which we compare. But on test examples the greedy inference scheme uses the
past predictions instead of the true labels. Nevertheless the bound is informative
to compare online to batch learning. Indeed, if we consider the examples (pi, ci)
in the regret bound to be the training set, Theorem 1 relates the online error
with the error of the batch optimal. Then, we can claim that the online error of
OLaRank will not be too far from the batch optimal trained with the same set
of examples. The partial justification for the Reprocess function of the previous
paragraph is still valid.

6 Experiments

This section reports experiments performed on various label sequence learn-
ing tasks to study the behavior of our online learning algorithm. We denote
OLaRankGreedy, OLaRank using greedy inference and OLaRankExact when using
exact inference. Since such tasks are common in the recent literature, we focus
on fully supervised tasks where labels are provided for every time index. After
presenting the experimental tasks we chose, we compare the performances of
OLaRankExact and OLaRankGreedy to both batch and online methods to empiri-
cally validate their efficiency. We then investigate how the choice of the inference
method influences the performances.

6.1 Experimental Setup

Experiments were carried out on three datasets. The Optical Character Recogni-
tion dataset (OCR) contains handwritten words, with average length of 8 char-
acters, written by 150 human subjects and collected by [14]. This is a small
dataset for which the performance evaluation is performed using 10-fold cross-
validation. The Chunking dataset from the CoNLL 2000 shared task4 consists
of sentences divided in syntactically correlated segments or chunks. This dataset
has more than 75,000 input features. The Wall Street Journal dataset5 (WSJ)
is a larger dataset with around 1 million words in more than 40,000 sentences
and with a large number of features. The labels associated with each word are
“part-of-speech” tags.
4 http://www.cnts.ua.ac.be/conll2000/chunking/
5 http://www.cis.upenn.edu/∼treebank/



Table 1. Datasets and parameters used for the experiments.

TRAINING SET TESTING SET CLASSES FEATURES C OLaRankGreedy OLaRankExact
SEQUENCES(TOKENS) SEQUENCES(TOKENS) nR k nR k

OCR 650 (∼4,600) 5500 (∼43,000) 26 128 0.1 5 10 10 1
Chunking 8,931 (∼212,000) 2,012 (∼47,000) 21 ∼76,000 0.1 1 2 5 1
WSJ 42,466 (∼1,000,000) 2,155 (∼53,000) 44 ∼130,000 0.1 1 2 5 1

Table 1 summarizes the main characteristics of these three datasets and spec-
ifies the parameters we have used for both batch and online algorithms: the con-
stant C, the number nR of Reprocess steps for each ProcessNew step, and the
order k of the Markov assumptions. They have been chosen by cross-validation
for the batch setting, online algorithms using the same parameters as their batch
counterparts. Exact inference algorithm such as OLaRankExact are limited to first
order Markov assumptions for tractability reasons.

6.2 General Performances

We report the training times for a number of algorithms as well as the percentage
of correctly predicted labels on the test sets (For Chunking, we also provide F1
scores on test sets). Results for exact inference algorithms are reported in table 2.
Results for greedy inference algorithms are reported in table 3.

Batch Counterparts As discussed in the introduction, our main points of com-
parison are the prediction accuracies achieved by batch algorithms that fully
optimize the same dual problems as our online algorithms.

In the case of exact inference, our baseline is given by the SVM-HMM results
using the cutting plane optimization algorithm described by [3]. In the case of
greedy inference, we simply produced baseline results by running OLaRankGreedy
several times over the training set until the Karush-Kuhn-Tucker conditions are
satisfied. These results are labelled LaRankGreedyBatch.

Tables 2 and 3 show that both OLaRankGreedy and OLaRankExact reach
competitive testing set performances relative to these baselines while saving a
lot of training time.

Figure 1 depicts relative time increments. Denoting t0 the running time of a
model on a small portion of the training set of size s0, the time increment on a
training set of size s is defined as ts/t0. We also define the corresponding size
increment as s/s0. This allows to represent scaling in time for different models.
Figure 1 thus shows that our models scale linearly in time while a common batch
method as SVM-HMM does not.

The dual objective values reached by the online algorithms based on OLaRank
and by their batch counterparts are quite similar as presented on table 4. OLaRankEx-
act and OLaRankGreedy have good optimization abilities; they both reach a dual
value close to the convergence point of their corresponding batch algorithms.



Table 2. Compared accuracies and times of methods using exact inference.

OCR Chunking (F1 score) WSJ

CRF Test. accuracy (%) - 96.03 (93.75) 96.75
(batch) Train. time (sec.) - 568 3,400

SVM-HMM Test. accuracy (%) 78.20 95.98 (93.64) 96.81
(batch) Train. time (sec.) 180 48,000 350,000

CRF Test. accuracy (%) - 95.26 (92.47) 94.42
(online) Train. time (sec.) - 30 240

PerceptronExact Test. accuracy (%) 51.44 93.74 (89.31) 91.49
(online) Train. time (sec.) 0.2 10 180

PAExact Test. accuracy (%) 56.13 95.15 (92.21) 94.67
(online) Train. time (sec.) 0.5 15 185

OLaRankExact Test. accuracy (%) 75.77 95.82 (93.34) 96.65
(online) Train. time (sec.) 4 130 1380

Table 3. Compared accuracies and times of methods using greedy inference.

OCR Chunking (F1 score) WSJ

LaRankGreedyBatch Test. accuracy (%) 83.77 95.86 (93.59) 96.63
(batch) Train. time (sec.) 15 490 9,000

PerceptronGreedy Test. accuracy (%) 51.82 93.24 (88.84) 92.70
(online) Train. time (sec.) 0.05 3 10

PAGreedy Test. accuracy (%) 61.23 94.61 (91.55) 94.15
(online) Train. time (sec.) 0.1 5 25

OLaRankGreedy Test. accuracy (%) 81.15 95.81 (93.46) 96.46
(online) Train. time (sec.) 1.4 20 175

Fig. 1. Scaling with time on Chunk-
ing dataset, log-log plot. Solid black
line: OLaRankGreedy, Dashed black line:
OLaRankExact, Gray line: SVM-HMM.

Chunking WSJ

SVM-HMM (batch) 1360 9072

PAExact (online) 443 2122

OLaRankExact (online) 1195 7806

LaRankGreedyBatch (batch) 940 8913

PAGreedy (online) 410 2922

OLaRankGreedy (online) 905 8505

Table 4. Values of dual objective after
training phase.



We also provide the dual of PAExact and PAGreedy, the passive-aggressive ver-
sions (i.e. without Reprocess) of OLaRankExact and OLaRankGreedy. These low
values illustrate the crucial influence of Reprocess in the optimization process,
independent of the inference method.

Other Comparisons We also provide comparisons with a number of popular
algorithms for both exact and greedy inference.

For exact inference, the CRF results were obtained using a fast stochastic
gradient descent implementation6 of Conditional Random Fields: online results
were obtained after one stochastic gradient pass over the training data; batch
results were measured after reaching a performance peak on a validation set. The
PerceptronExact results were obtained using the perceptron update described
by [7] and the same exact inference scheme as OLaRankExact. The PAExact
results were obtained with the passive-aggressive version of OLaRankExact, that
is without Reprocess or Optimize steps.

For greedy inference, we report results for both PerceptronGreedy and PA-
Greedy. Like OLaRank, these algorithms were used in a strict online setup, per-
forming only a single pass over the training examples.

Results in tables 2 and 3 clearly display a gap between the accuracies of
these common online methods and the accuracies achieved by our two algo-
rithms OLaRankGreedy and OLaRankExact. The OLaRank based algorithms are
the only online algorithms able to match the accuracies of the batch algorithms.
Although higher than those of other online algorithms, their training times re-
main reasonable. For example, on our largest dataset, WSJ, OLaRankGreedy
reaches a test set accuracy competitive with the most accurate algorithms while
requiring less training time than PerceptronExact (about four milliseconds per
training sequence).

Results on the Chunking and WSJ benchmarks have been widely reported
in the literature. Our Chunking results are competitive with the best results
reported in the evaluation of the CoNLL 2000 shared task [15] (F1 score 93.48).
More recent works include including [16] (F1 score 94.13, training time 800 sec-
onds) and [?] (F1 score 94.19, training time 5000 seconds). The Stanford Tag-
ger [17] reaches 97.24% accuracy on the WSJ task but requires 150,000 seconds
of training. These state-of-the-art systems slightly exceed the performances re-
ported in this work because they exploit highly engineered feature vectors. Both
OLaRankExact and OLaRankGreedy need a fraction of these training times to
achieve the full potential of our relatively simple feature vectors.

6.3 Comparing Greedy and Exact Inference

This section focuses on an empirical comparison of the differences caused by the
inference scheme on learning.

6 http://leon.bottou.org/projects/sgd



Inference Cost The same training set contains more training examples for an
algorithm based on a greedy inference scheme. This has a computational cost.
However the training time gap between PAExact and PAGreedy in tables 2 and
3 indicates that using exact inference entails much higher computational costs
because the inference procedure is more complex (see section 2.3).

Fig. 2. Sparsity measures during learning on Chunking dataset. (Solid line:
OLaRankGreedy, Dashed line: OLaRankExact.)

Sparsity As support vectors for OLaRankExact are complete sequences, local
dependencies are not represented in an invariant fashion. OLaRankExact thus
needs to store an important proportion of its training examples as support pat-
tern while OLaRankGreedy only require a small fraction of them as illustrated in
figure 2. Moreover, for each support pattern, OLaRankExact also need to store
more support vectors.

Reprocess Figure 3 displays the gain in test accuracy that OLaRankGreedy and
OLaRankExact get according to the number of Reprocess. This gain is computed
relatively to the passive-aggressive algorithms which are similar but do not per-
form any Reprocess. OLaRankExact requires more Reprocess (10 on OCR) than
OLaRankGreedy (only 5) to reach its best accuracy. This empirical result is veri-
fied on all three datasets. Using exact inference instead of greedy inference causes
additional computations in the OLaRank algorithm.

Markov Assumption Length This section indicates that using exact inference in
our setup involves both time and sparsity penalties. Moreover the loss in accuracy
that could occur when using a greedy inference process and not an exact one
can be compensated by using Markov assumptions of order higher than 1. As
shown on figure 4 it can even lead to better generalization performances.



Fig. 3. Gain in test accuracy compared to
the passive-aggressives according to nR on
OCR. (Solid line: OLaRankGreedy, Dashed
line: OLaRankExact)

Fig. 4. Test accuracy according to the
Markov interaction length on OCR.
(Solid line: OLaRankGreedy, Dashed line:
OLaRankExact for which k = 1)

7 Conclusion

The OLaRank algorithm applied to sequence labelling combines the linear scaling
property of perceptrons and the accuracy of batch solvers.

Using the OLaRank algorithm with both exact and greedy inference leads to
two competitive sequence labelling algorithm. Both learn in a single pass over the
training data and reach the performance of equivalent batch algorithms. Both
offer training times that scale linearly with the number of examples. Both have
been shown to achieve good performances on well studied benchmark tasks.

Online learning and greedy inference offer the most attractive combination
of short training time, high sparsity and accuracy.
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