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Abstract

We provide a simple proof of convergence
covering both the Adam and Adagrad adap-
tive optimization algorithms when applied
to smooth (possibly non-convex) objective
functions with bounded gradients. We show
that in expectation, the squared norm of the
objective gradient averaged over the trajec-
tory has an upper-bound which is explicit
in the constants of the problem, parameters
of the optimizer and the total number of it-
erations N . This bound can be made ar-
bitrarily small: Adam with a learning rate
α = 1/

√
N and a momentum parameter on

squared gradients β2 = 1 − 1/N achieves
the same rate of convergence O(ln(N)/

√
N)

as Adagrad. Finally, we obtain the tight-
est dependency on the heavy ball momentum
among all previous convergence bounds for
non-convex Adam and Adagrad, improving
from O((1 − β1)−3) to O((1 − β1)−1). Our
technique also improves the best known de-
pendency for standard SGD by a factor 1−β1.

1 Introduction

First-order methods with adaptive step sizes have
proved useful in many fields of machine learning, be
it for sparse optimization (Duchi et al., 2013), ten-
sor factorization (Lacroix et al., 2018) or deep learn-
ing (Goodfellow et al., 2016). Duchi et al. (2011) in-
troduced Adagrad, which rescales each coordinate by
a sum of squared past gradient values. While Adagrad
proved effective for sparse optimization (Duchi et al.,
2013), experiments showed that it under-performed
when applied to deep learning (Wilson et al., 2017).
RMSProp (Tieleman and Hinton, 2012) proposed an
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exponential moving average instead of a cumulative
sum to solve this. Kingma and Ba (2015) developed
Adam, one of the most popular adaptive methods in
deep learning, built upon RMSProp and added correc-
tive terms at the beginning of training, together with
heavy-ball style momentum.

In the online convex optimization setting, Duchi et al.
(2011) showed that Adagrad achieves optimal regret
for online convex optimization. Kingma and Ba (2015)
provided a similar proof for Adam when using a de-
creasing overall step size, although this proof was later
shown to be incorrect by Reddi et al. (2018), who in-
troduced AMSGrad as a convergent alternative. Ward
et al. (2019) proved that Adagrad also converges to a
critical point for non convex objectives with a rate
O(ln(N)/

√
N) when using a scalar adaptive step-size,

instead of diagonal. Zou et al. (2019b) extended this
proof to the vector case, while Zou et al. (2019a) dis-
played a bound for Adam, showing convergence when
the decay of the exponential moving average scales as
1− 1/N and the learning rate as 1/

√
N .

In this paper, we present a simplified and unified
proof of convergence to a critical point for Adagrad
and Adam for stochastic non-convex smooth opti-
mization. We assume that the objective function is
lower bounded, smooth and the stochastic gradients
are almost surely bounded. We recover the standard
O(ln(N)/

√
N) convergence rate for Adagrad for all

step sizes, and the same rate with Adam with an ap-
propriate choice of the step sizes and decay param-
eters, in particular, Adam can converge without us-
ing the AMSGrad variant. Compared to previous
work, our bound significantly improves the depen-
dency on the momentum parameter β1. The best
know bounds for Adagrad and Adam are respectively
in O((1 − β1)−3) and O((1 − β1)−5) (see Section 3),
while our result is in O((1−β1)−1) for both algorithms.
Our proof technique for heavy-ball momentum can also
be applied to plain SGD, and improves the dependency
on 1 − β1 from a −2 to a −1 exponent (Yang et al.,
2016). This improvement is a step toward understand-
ing the practical efficiency of heavy-ball momentum.
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Outline. The precise setting and assumptions are
stated in the next section, and previous work is then
described in Section 3. The main theorems are pre-
sented in Section 4, followed by a full proof for the
case without momentum in Section 5. The proof of the
convergence with momentum is deferred to the sup-
plementary material, along with the same technique
applied to SGD. Finally we compare our bounds with
experimental results, both on toy and real life prob-
lems in Section 6.

2 Setup

2.1 Notation

Let d ∈ N be the dimension of the problem (i.e. the
number of parameters of the function to optimize) and
take [d] = {1, 2, . . . , d}. Given a function h : Rd →
R, we denote by ∇h its gradient and ∇ih the i-th
component of the gradient. We use a small constant
ε, e.g. 10−8, for numerical stability. Given a sequence
(un)n∈N with ∀n ∈ N, un ∈ Rd, we denote un,i for
n ∈ N and i ∈ [d] the i-th component of the n-th
element of the sequence.

We want to optimize a function F : Rd → R. We
assume there exists a random function f : Rd → R
such that E [∇f(x)] = ∇F (x) for all x ∈ Rd, and that
we have access to an oracle providing i.i.d. samples
(fn)n∈N∗ . We note En−1 [·] the conditional expectation
knowing f1, . . . , fn−1. In machine learning, x typically
represents the weights of a linear or deep model, f
represents the loss from individual training examples
or minibatches, and F is the full training objective
function. The goal is to find a critical point of F .

2.2 Adaptive methods

We study both Adagrad (Duchi et al., 2011) and
Adam (Kingma and Ba, 2015) using a unified formula-
tion. We assume we have 0 < β2 ≤ 1, 0 ≤ β1 < β2, and
a non negative sequence (αn)n∈N∗ . We define three
vectors mn, vn, xn ∈ Rd iteratively. Given x0 ∈ Rd
our starting point, m0 = 0, and v0 = 0, we define for
all iterations n ∈ N∗,

mn,i = β1mn−1,i +∇ifn(xn−1) (1)

vn,i = β2vn−1,i + (∇ifn(xn−1))
2 (2)

xn,i = xn−1,i − αn
mn,i√
ε+ vn,i

. (3)

The parameter β1 is a heavy-ball style momentum pa-
rameter (Polyak, 1964), while β2 controls the rate at
which the scale of past gradients is forgotten. Taking
β1 = 0, β2 = 1 and αn = α gives Adagrad. While the
original Adagrad algorithm did not include a heavy-
ball-like momentum, our analysis also applies to the

case β1 > 0. On the other hand, when 0 < β2 < 1,
0 ≤ β1 < β2, taking

αn = α(1− β1)

√
1− βn2
1− β2

(4)

leads to an algorithm close to Adam. We moved the
1−β1 and 1−β2 factors originally in (1) and (2) to the
step size αn, as this allows for a common treatment of
Adam and Adagrad. We also integrate the corrective
term

√
1− βn2 into the step size. However, we chose

to drop the corrective term in 1 − βn1 in the original
algorithm. Indeed, keeping both can make αn non
monotonic, which complicates the proof. The first few
1/(1−β1) iterations will be smaller than with the usual
Adam, i.e., for a typical β1 of 0.9 (Kingma and Ba,
2015), our algorithm differs from Adam only for the
first 50 iterations.

2.3 Assumptions

We make three assumptions. We first assume F is
bounded below by F∗, that is,

∀x ∈ Rd, F (x) ≥ F∗. (5)

We then assume the `∞ norm of the stochastic gradi-
ents is uniformly almost surely bounded, i.e. there is
R ≥

√
ε (
√
ε is used here to simplify the final bounds)

so that

∀x ∈ Rd ‖∇f(x)‖∞ ≤ R−
√
ε a.s., (6)

and finally, the smoothness of the objective function,
e.g., its gradient is L-Liptchitz-continuous with respect
to the `2-norm:

∀x, y ∈ Rd, ‖∇F (x)−∇F (y)‖2 ≤ L ‖x− y‖2 . (7)

3 Related work

Early work on adaptive methods (McMahan and
Streeter, 2010; Duchi et al., 2011) showed that Ada-
grad achieves an optimal rate of convergence of
O(1/

√
N) for convex optimization (Agarwal et al.,

2009). Later, RMSProp (Tieleman and Hinton, 2012)
and Adam (Kingma and Ba, 2015) were developed for
training deep neural networks, using an exponential
moving average of the past squared gradients.

Kingma and Ba (2015) offered a proof that Adam with
a decreasing step size converges for convex objectives.
However, the proof contained a mistake spotted by
Reddi et al. (2018), who also gave examples of convex
problems where Adam does not converge to an optimal
solution. They proposed AMSGrad as a convergent
variant, which consisted in retaining the maximum
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value of the exponential moving average. When α goes
to zero, AMSGrad is shown to converge in the convex
and non-convex setting (Fang and Klabjan, 2019; Zhou
et al., 2018). Despite this apparent flaw in the Adam
algorithm, it remains a widely popular optimizer, be
it for image generation (Karras et al., 2019), music
synthesis (Dhariwal et al., 2020), or language mod-
eling (Devlin et al., 2019), raising the question, does
Adam really not converge? When β2 goes to 1 and
α to zero, our results and previous work (Zou et al.,
2019a) show that Adam does converge with the same
rate as Adagrad. This is coherent with the counter
examples of Reddi et al. (2018), because they uses a
small exponential decay parameter β2 < 1/5.

The convergence of Adagrad for non-convex objec-
tives was first tackled by Li and Orabona (2019), who
proved the convergence of Adagrad, but under restric-
tive conditions (e.g., α ≤

√
ε/L). The proof tech-

nique was improved by Ward et al. (2019), who showed
the convergence of “scalar” Adagrad, i.e., with a sin-
gle learning rate, for any value of α with a rate of
O(ln(N)/

√
N). Our approach builds on this work but

we extend it to apply to both Adagrad and Adam,
in their coordinate-wise version, as used in practice,
while also supporting heavy-ball momentum.

The coordinate-wise version of Adagrad was also tack-
led by Zou et al. (2019b), offering a convergence result
for Adagrad with either heavy-ball or Nesterov style
momentum. We obtain the same rate for heavy-ball
momentum with respect to N (i.e., O(ln(N)/

√
N)),

but we improve the dependence on the momentum
parameter β1 from O((1 − β1)−3) to O((1 − β1)−1).
Chen et al. (2019) also provided a bound for Ada-
grad and Adam, but without convergence guarantees
for Adam for any hyper-parameter choice, and with a
worse dependency on β1. Finally, a convergence bound
for Adam was introduced by Zou et al. (2019a). We
recover the same scaling of the bound with respect to
α and β2. However their bound has a dependency
of O((1 − β1)−5) with respect to β1, while we get
O((1− β1)−1), a significant improvement.

Non adaptive methods like SGD are also well studied
in the non convex setting (Ghadimi and Lan, 2013),
with a convergence rate of O(1/

√
N) for a smooth ob-

jective with bounded variance of the gradients. Unlike
adaptive methods, SGD requires knowing the smooth-
ness constant. When adding heavy-ball momentum,
Yang et al. (2016) showed that the convergence bound
degrades as O((1 − β1)−2), assuming that the gradi-
ents are bounded. We apply our proof technique for
momentum to SGD in the Appendix, Section B and
improve this dependency to O((1− β1)−1).

4 Main results

For a number of iterations N ∈ N∗, we note τN a
random index with value in {0, . . . , N − 1}, so that

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (8)

If β1 = 0, this is equivalent to sampling τ uniformly
in {0, . . . , N−1}. If β1 > 0, the last few 1

1−β1
itera-

tions are sampled rarely, and iterations older than a
few times that number are sampled almost uniformly.
Our results bound the expected squared norm of the
gradient at iteration τ , which is standard for non con-
vex stochastic optimization (Ghadimi and Lan, 2013).

4.1 Convergence bounds

For simplicity, we first give convergence results for
β1 = 0, along with a complete proof in Section 5. We
then provide the results with momentum, with their
proofs in the Appendix, Section A.6. We also provide
a bound on the convergence of SGD with an improved
dependency on β1 in the Appendix, Section B.2, along
with its proof in Section B.4.

No heavy-ball momentum

Theorem 1 (Convergence of Adagrad without mo-
mentum). Given the assumptions from Section 2.3,
the iterates xn defined in Section 2.2 with hyper-
parameters verifying β2 = 1, αn = α with α > 0 and
β1 = 0, and τ defined by (8), we have for any N ∈ N∗,

E
[
‖∇F (xτ )‖2

]
≤ 2R

F (x0)− F∗
α
√
N

+
1√
N

(
4dR2 + αdRL

)
ln

(
1 +

NR2

ε

)
. (9)

Theorem 2 (Convergence of Adam without momen-
tum). Given the assumptions from Section 2.3, the it-
erates xn defined in Section 2.2 with hyper-parameters
verifying 0 < β2 < 1, αn = α

√
1−βn

2

1−β2
with α > 0 and

β1 = 0, and τ defined by (8), we have for any N ∈ N∗,

E
[
‖∇F (xτ )‖2

]
≤ 2R

F (x0)− F∗
αN

+ C

(
1

N
ln

(
1 +

R2

(1− β2)ε

)
− ln(β2)

)
, (10)

with C =
4dR2

√
1− β2

+
αdRL

1− β2
.
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With heavy-ball momentum
Theorem 3 (Convergence of Adagrad with momen-
tum). Given the assumptions from Section 2.3, the it-
erates xn defined in Section 2.2 with hyper-parameters
verifying β2 = 1, αn = α with α > 0 and 0 ≤ β1 < 1,
and τ defined by (8), we have for any N ∈ N∗ such
that N > β1

1−β1
,

E
[
‖∇F (xτ )‖2

]
≤ 2R

√
N
F (x0)− F∗

αÑ

+

√
N

Ñ
C ln

(
1 +

NR2

ε

)
, (11)

with Ñ = N − β1

1−β1
, and,

C = αdRL+
12dR2

1− β1
+

2α2dL2β1
1− β1

.

Theorem 4 (Convergence of Adam with momen-
tum). Given the assumptions from Section 2.3, the it-
erates xn defined in Section 2.2 with hyper-parameters
verifying 0 < β2 < 1, 0 ≤ β1 < β2, and,
αn = α(1− β1)

√
1−βn

2

1−β2
with α > 0, and τ defined by

(8), we have for any N ∈ N∗ such that N > β1

1−β1
,

E
[
‖∇F (xτ )‖2

]
≤ 2R

F (x0)− F∗
αÑ

+ C

(
1

Ñ
ln

(
1 +

R2

(1− β2)ε

)
− N

Ñ
ln(β2)

)
,

(12)

with Ñ = N − β1

1−β1
, and

C =
αdRL(1− β1)

(1− β1/β2)(1− β2)

+
12dR2

√
1− β1

(1− β1/β2)3/2
√

1− β2

+
2α2dL2β1

(1− β1/β2)(1− β2)3/2
.

4.2 Analysis of the bounds

Dependency on d. The dependency in d is present
in previous works on coordinate wise adaptive meth-
ods (Zou et al., 2019a,b). Indeed, for the diagonal
version of Adagrad and Adam, we will see in Section 5
that we apply Lemma 5.2 once per dimension. The
contribution from each coordinate is mostly indepen-
dent of the actual scale of its gradients (as it only
appears in the log), so that the right hand side of the
convergence bound will grow as d. In contrast, the
scalar version of Adagrad (Ward et al., 2019) has a
single learning rate, so that Lemma 5.2 is only applied
once, removing the dependency on d. However, this
variant is rarely used in practice.

Almost sure bound on the gradient. We chose
to assume the existence of an almost sure uniform `∞-
bound on the gradients given by (6). It is possible
instead to assume a uniform bound on the gradients
in expectation. We use (6) in Lemma 5.1, to obtain
(23) and (26), however in that case, a bound on the ex-
pected squared norm of the gradients is sufficient. We
then use (6) to derive (31) and (33) in Section 5.2. For
those, one can assume only a bound in expectation and
use Hölder inequality, as done by Ward et al. (2019)
and Zou et al. (2019b). This however deteriorates the
bound, as instead of a bound on E

[
‖∇F (xτ )‖22

]
, one

would obtain a bound on E
[
‖∇F (xτ )‖4/32

]2/3
.

Impact of heavy-ball momentum. Looking at
Theorems 3 and 4, we see that increasing β1 always
deteriorates the bounds. Taking β1 = 0 in those theo-
rems gives us almost exactly the bound without heavy-
ball momentum from Theorems 1 and 2, up to a factor
3 in the terms of the form dR2.

As discussed in Section 3, previous bounds for Adagrad
in the non-convex setting deteriorates as O((1−β1)−3)
(Zou et al., 2019b), while bounds for Adam deteri-
orates as O((1 − β1)−5) (Zou et al., 2019a). Instead,
our unified proof for Adam and Adagrad achieves a de-
pendency of O((1−β1)−1), a significant improvement.
We refer the reader to the Appendix, Section A.3, for
a detailed analysis. Note that our proof technique can
also be applied to SGD and achieve a dependency of
O((1−β1)−1), compared to O((1−β1)−2) for the best
existing result Yang et al. (2016). We provide a com-
plete proof in the Appendix, Section B.

While our dependency still contradicts the benefits of
using momentum observed in practice, see Section 6,
our tighter analysis is a step in the right direction.

4.3 Optimal finite horizon Adam is Adagrad

Let us take a closer look at the result from Theorem 2.
It could seem like some quantities can explode but ac-
tually not for any reasonable values of α, β2 and N .
Let us assume ε � R2, α = N−a and β2 = 1 − N−b.
Then we immediately have

E
[
‖∇F (xτ )‖2

]
≤ 2R

F (x0)− F∗
N1−a

+ C

(
1

N
ln

(
R2N b

ε

)
+N−b

)
, (13)
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with C = 4dR2N b/2 + dRLN b−a. Putting those to-
gether and ignoring the log terms for now,

E
[
‖∇F (xτ )‖2

]
/ 2R

F (x0)− F∗
N1−a + 4dR2N b/2−1

+ 4dR2N−b/2 +RLN b−a−1 +
L

2
N−a.

The best overall rate we can obtain is O(1/
√
N), and

it is only achieved for a = 1/2 and b = 1, i.e., α =
α1/
√
N and β2 = 1−1/N . We can see the resemblance

between Adagrad on one side and Adam with a finite
horizon and such parameters on the other. Indeed,
an exponential moving average with a parameter β2 =
1 − 1/N as a typical averaging window length of size
N , while Adagrad would be an exact average of the
past N terms. In particular, the bound for Adam now
becomes

E
[
‖∇F (xτ )‖2

]
≤ F (x0)− F∗

α1

√
N

+
1√
N

(
dR+

α1dL

2

)(
ln

(
1 +

RN

ε

)
+ 1

)
,

(14)

which differ from (9) only by a +1 next to the log term.

Adam and Adagrad are twins. Our analysis high-
lights an important fact: Adam is to Adagrad like
constant step size SGD is to decaying step size SGD.
While Adagrad is asymptotically optimal, it has a
slower forgetting of the initial condition F (x0)−F∗, as
1/
√
N instead of 1/N for Adam. The fast forgetting of

the initial condition of Adam comes at a cost as it does
not converge. It is however possible to choose α and
β2 to achieve an ε critical point for ε arbitrarily small
and, for a known time horizon, they can be chosen to
obtain the exact same bound as Adagrad.

5 Proofs for β1 = 0 (no momentum)

We assume here for simplicity that β1 = 0, i.e., there
is no heavy-ball style momentum. Taking n ∈ N∗, the
recursions introduced in Section 2.2 can be simplified
into {

vn,i = β2vn−1,i + (∇ifn(xn−1))
2
,

xn,i = xn−1,i − αn∇ifn(xn−1)√
ε+vn,i

.
(15)

Remember that we recover Adagrad when αn = α for
α > 0 and β2 = 1, while Adam can be obtained taking
0 < β2 < 1 and

αn = α

√
1− βn2
1− β2

, (16)

for α > 0.

Throughout the proof we denote by En−1 [·] the con-
ditional expectation with respect to f1, . . . , fn−1. In
particular, xn−1 and vn−1 are deterministic knowing
f1, . . . , fn−1. For all n ∈ N∗, we also define ṽn ∈ Rd so
that for all i ∈ [d],

ṽn,i = β2vn−1,i + En−1
[
(∇ifn(xn−1))

2
]
, (17)

i.e., we replace the last gradient contribution by its
expected value conditioned on f1, . . . , fn−1.

5.1 Technical lemmas

A problem posed by the update (15) is the correla-
tion between the numerator and denominator. This
prevents us from easily computing the conditional ex-
pectation and as noted by Reddi et al. (2018), the
expected direction of update can have a positive dot
product with the objective gradient. It is however pos-
sible to control the deviation from the descent direc-
tion, following Ward et al. (2019) with this first lemma.

Lemma 5.1 (adaptive update approximately follow
a descent direction). For all n ∈ N∗ and i ∈ [d], we
have:

En−1
[
∇iF (xn−1)

∇ifn(xn−1)
√
ε+ vn,i

]
≥ (∇iF (xn−1))

2

2
√
ε+ ṽn,i

− 2REn−1

[
(∇ifn(xn−1))

2

ε+ vn,i

]
. (18)

Proof. We take i ∈ [d] and note G = ∇iF (xn−1), g =
∇ifn(xn−1), v = vn,i and ṽ = ṽn,i.

En−1
[

Gg√
ε+ v

]
= En−1

[
Gg√
ε+ ṽ

]
+ En−1

[
Gg

(
1√
ε+ v

− 1√
ε+ ṽ

)
︸ ︷︷ ︸

A

]
. (19)

Given that g and ṽ are independent knowing
f1, . . . , fn−1, we immediately have

En−1
[

Gg√
ε+ ṽ

]
=

G2

√
ε+ ṽ

. (20)

Now we need to control the size of the second term A,

A = Gg
ṽ − v

√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

= Gg
En−1

[
g2
]
− g2

√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

|A| ≤ |Gg|
En−1

[
g2
]

√
ε+ v(ε+ ṽ)︸ ︷︷ ︸
κ

+ |Gg| g2

(ε+ v)
√
ε+ ṽ︸ ︷︷ ︸

ρ

.
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The last inequality comes from the fact that√
ε+ v +

√
ε+ ṽ ≥ max(

√
ε+ v,

√
ε+ ṽ) and∣∣En−1 [g2]− g2∣∣ ≤ En−1

[
g2
]

+ g2. Following Ward
et al. (2019), we can use the following inequality to
bound κ and ρ,

∀λ > 0, x, y ∈ R, xy ≤ λ

2
x2 +

y2

2λ
. (21)

First applying (21) to κ with

λ =

√
ε+ ṽ

2
, x =

|G|√
ε+ ṽ

, y =
|g|En−1

[
g2
]

√
ε+ ṽ

√
ε+ v

,

we obtain

κ ≤ G2

4
√
ε+ ṽ

+
g2En−1

[
g2
]2

(ε+ ṽ)3/2(ε+ v)
.

Given that ε + ṽ ≥ En−1
[
g2
]
and taking the condi-

tional expectation, we can simplify as

En−1 [κ] ≤ G2

4
√
ε+ ṽ

+
En−1

[
g2
]

√
ε+ ṽ

En−1
[
g2

ε+ v

]
. (22)

Given that
√
En−1 [g2] ≤

√
ε+ ṽ and

√
En−1 [g2] ≤ R,

we can simplify (22) as

En−1 [κ] ≤ G2

4
√
ε+ ṽ

+REn−1
[
g2

ε+ v

]
. (23)

Now turning to ρ, we use (21) with

λ =

√
ε+ ṽ

2En−1 [g2]
, x =

|Gg|√
ε+ ṽ

, y =
g2

ε+ v
,

we obtain

ρ ≤ G2

4
√
ε+ ṽ

g2

En−1 [g2]
+

En−1
[
g2
]

√
ε+ ṽ

g4

(ε+ v)2
, (24)

Given that ε + v ≥ g2 and taking the conditional ex-
pectation we obtain

En−1 [ρ] ≤ G2

4
√
ε+ ṽ

+
En−1

[
g2
]

√
ε+ ṽ

En−1
[
g2

ε+ v

]
, (25)

which we simplify using the same argument as for (23)
into

En−1 [ρ] ≤ G2

4
√
ε+ ṽ

+REn−1
[
g2

ε+ v

]
. (26)

Notice that in (24), we possibly divide by zero. It
suffice to notice that if En−1

[
g2
]

= 0 then g2 = 0 a.s.
so that ρ = 0 and (26) is still verified. Summing (23)
and (26) we can bound

En−1 [|A|] ≤ G2

2
√
ε+ ṽ

+ 2REn−1
[
g2

ε+ v

]
. (27)

Injecting (27) and (20) into (19) finishes the proof.

Anticipating on Section 5.2, the previous Lemma gives
us a bound on the deviation from a descent direction.
While for a specific iteration, this deviation can take
us away from a descent direction, the next lemma tells
us that the sum of those deviations cannot grow larger
than a logarithmic term. This key insight introduced
in Ward et al. (2019) is what makes the proof work.
Lemma 5.2 (sum of ratios with the denominator be-
ing the sum of past numerators). We assume we have
0 < β2 ≤ 1 and a non-negative sequence (an)n∈N∗ . We
define for all n ∈ N∗, bn =

∑n
j=1 β

n−j
2 aj. We have

N∑
j=1

aj
ε+ bj

≤ ln

(
1 +

bN
ε

)
−N ln(β2). (28)

Proof. Given that concavity of ln, and the fact that
bj > aj ≥ 0, we have for all j ∈ N∗,

aj
ε+ bj

≤ ln(ε+ bj)− ln(ε+ bj − aj)

= ln(ε+ bj)− ln(ε+ β2bj−1)

= ln

(
ε+ bj
ε+ bj−1

)
+ ln

(
ε+ bj−1
ε+ β2bj−1

)
.

The first term forms a telescoping series, while the
second one is bounded by − ln(β2). Summing over all
j ∈ [N ] gives the desired result.

5.2 Proof of Adam and Adagrad without
momentum

Let us take an iteration n ∈ N∗, we define the update
un ∈ Rd:

∀i ∈ [d], un,i =
∇ifn(xn−1)
√
ε+ vn,i

. (29)

Adagrad. As explained in Section 2.2, we have αn =
α for α > 0. Using the smoothness of F (7), we have

F (xn+1) ≤ F (xn)−α∇F (xn)Tun.+
α2L

2
‖un‖22 . (30)

Taking the conditional expectation with respect to
f0, . . . , fn−1 we can apply the descent Lemma 5.1. No-
tice that due to the a.s. `∞ bound on the gradients
(6), we have for any i ∈ [d],

√
ε+ ṽn,i ≤ R

√
n, so that,

α (∇iF (xn−1))
2

2
√
ε+ ṽn,i

≥ α (∇iF (xn−1))
2

2R
√
n

. (31)

This gives us

En−1 [F (xn)] ≤ F (xn−1)− α

2R
√
n
‖∇F (xn−1)‖22

+

(
2αR+

α2L

2

)
En−1

[
‖un‖22

]
.
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Summing the previous inequality for all n ∈ [N ], tak-
ing the complete expectation, and using that

√
n ≤√

N gives us,

E [F (xN )] ≤ F (x0)− α

2R
√
N

N−1∑
n=0

E
[
‖∇F (xn)‖22

]
+

(
2αR+

α2L

2

)N−1∑
n=0

E
[
‖un‖22

]
.

From there, we can bound the last sum on the right
hand side using Lemma 5.2 once for each dimension.
Rearranging the terms, we obtain the result of Theo-
rem 1.

Adam. As given by (4) in Section 2.2, we have αn =

α
√

1−βn
2

1−β2
for α > 0. Using the smoothness of F defined

in (7), we have

F (xn) ≤ F (xn−1)− αn∇F (xn−1)Tun +
α2
nL

2
‖un‖22 .

(32)

We have for any i ∈ [d],
√
ε+ ṽn,i ≤ R

√∑n−1
j=0 β

j
2 =

R
√

1−βn
2

1−β2
, thanks to the a.s. `∞ bound on the gradi-

ents (6), so that,

αn
(∇iF (xn−1))

2

2
√
ε+ ṽn,i

≥ α (∇iF (xn−1))
2

2R
. (33)

Taking the conditional expectation with respect to
f1, . . . , fn−1 we can apply the descent Lemma 5.1 and
use (33) to obtain from (32),

En−1 [F (xn)] ≤ F (xn−1)− α

2R
‖∇F (xn−1)‖22

+

(
2αnR+

α2
nL

2

)
En−1

[
‖un‖22

]
.

Given that β2 < 1, we have αn ≤ α√
1−β2

. Summing
the previous inequality for all n ∈ [N ] and taking the
complete expectation yields

E [F (xN )] ≤ F (x0)− α

2R

N−1∑
n=0

E
[
‖∇F (xn)‖22

]
+

(
2αR√
1− β2

+
α2L

2(1− β2)

)N−1∑
n=0

E
[
‖un‖22

]
.

Applying Lemma 5.2 for each dimension and rearrang-
ing the terms finishes the proof of Theorem 2.

6 Experiments

On Figure 1, we compare the effective dependency of
the average squared norm of the gradient in the pa-
rameters α, β1 and β2 for Adam, when used on a toy
task and CIFAR-10.

6.1 Setup

Toy problem. In order to support the bounds pre-
sented in Section 4, in particular the dependency in β2,
we test Adam on a specifically crafted toy problem. We
take x ∈ R6 and define for all i ∈ [6], pi = 10−i. We
take (Qi)i∈[6], Bernoulli variables with P [Qi = 1] = pi.
We then define f for all x ∈ Rd as

f(x) =
∑
i∈[6]

(1−Qi) Huber(xi−1)+
Qi√
pi

Huber(xi+1),

(34)
with for all y ∈ R,

Huber(y) =

{
y2

2 when |y| ≤ 1

|y| − 1
2 otherwise.

Intuitively, each coordinate is pointing most of the
time towards 1, but exceptionally towards -1 with a
weight of 1/

√
pi. Those rare events happens less and

less often as i increase, but with an increasing weight.
Those weights are chosen so that the variances of all
the coordinates of the gradient are equals1 It is nec-
essary to take different probabilities for each coordi-
nate. If we use the same p for all, we observe a phase
transition when 1 − β2 ≈ p, but not the continuous
improvement we obtain on Figure 1a.

We plot the variation of E
[
‖F (xτ )‖22

]
after 106 itera-

tions with batch size 1 when varying either α, 1−β1 or
1 − β2 through a range of 13 values uniformly spaced
in log-scale between 10−6 and 1. When varying α, we
take β1 = 0 and β2 = 1− 10−6. When varying β1, we
take α = 10−5 and β2 = 1−10−6 (i.e. β2 is so that we
are in the Adagrad-like regime). Finally, when varying
β2, we take β1 = 0 and α = 10−6. When varying α and
β2, we start from x0 close to the optimum by running
first 106 iterations with α = 10−4, then 10−6 itera-
tions with α = 10−5, always with β2 = 1− 10−6. This
allows to have F (x0) − F∗ ≈ 0 in (10) and (12) and
focus on the second part of both bounds. All curves
are averaged over three runs. Error bars are plotted
but not visible in log-log scale.

CIFAR-10. We train a simple convolutional net-
work (Gitman and Ginsburg, 2017) on the CIFAR-102

image classification dataset. Starting from a random
initialization, we train the model on a single V100 for
600 epochs with a batch size of 128, evaluating the
full training gradient after each epoch. This is a proxy

1We deviate from the a.s. bounded gradient assumption
for this experiment, see Section 4.2 for a discussion on a.s.
bound vs bound in expectation.

2https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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10−6 10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

Parameter

E
[ ‖∇

F
(x

τ
)‖

2 2

]

(a) Average squared norm of the gradient on a toy task,
see Section 6, for more details. For the α and 1 − β2
curves, we initialize close to the optimum to make the
F0 − F∗ term negligible.

10−6 10−5 10−4 10−3 10−2 10−1 100

101

102

Parameter

α

1− β1
1− β2

(b) Average squared norm of the gradient of a small
convolutional model Gitman and Ginsburg (2017)
trained on CIFAR-10, with a random initialization.
The full gradient is evaluated every epoch.

Figure 1: Observed average squared norm of the objective gradients after a fixed number of iterations when
varying a single parameter out of α, 1 − β1 and 1 − β2, on a toy task (left, 106 iterations) and on CIFAR-10
(right, 600 epochs with a batch size 128). All curves are averaged over 3 runs, error bars are negligible except
for small values of α on CIFAR-10. See Section 6 for details.

for E
[
‖F (xτ )‖22

]
, which would be to costly to evalu-

ate exactly. All runs use the default config α = 10−3,
β2 = 0.999 and β1 = 0.9, and we then change one of
the parameter.

We take α from a uniform range in log-space between
10−6 and 10−2 with 9 values, for 1 − β1 the range is
from 10−5 to 0.3 with 9 values, and for 1 − β2, from
10−6 to 10−1 with 11 values. Unlike for the toy prob-
lem, we do not initialize close to the optimum, as even
after 600 epochs, the norm of the gradients indicates
that we are not at a critical point. All curves are av-
eraged over three runs. Error bars are plotted but not
visible in log-log scale, except for large values of α.

6.2 Analysis

Toy problem. Looking at Figure 1a, we observe a
continual improvement as β2 increases. Fitting a lin-
ear regression in log-log scale of E[‖∇F (xτ )‖22] with re-
spect to 1−β2 gives a slope of 0.56 which is compatible
with our bound (10), in particular the dependency in
O(1/

√
1− β2). As we initialize close to the optimum,

a small step size α yields as expected the best perfor-
mance. Doing the same regression in log-log scale, we
find a slope of 0.87, which is again compatible with the
O(α) dependency of the second term in (10). Finally,
we observe a limited impact of β1, except when 1−β1
is small. The regression in log-log scale gives a slope
of -0.16, while our bound predicts a slope of -1.

CIFAR 10. Let us now turn to Figure 1b. As we
start from random weights for this problem, we ob-
serve that a large step size gives the best performance,
although we observe a high variance for the largest
α. This indicates that training becomes unstable for
large α, which is not predicted by the theory. This is
likely a consequence of the bounded gradient assump-
tion (6) not being verified for deep neural networks.
We observe a small improvement as 1 − β2 decreases,
although nowhere near what we observed on our toy
problem. Finally, we observe a sweet spot for the mo-
mentum β1, not predicted by our theory. We conjec-
ture that this is due to the variance reduction effect
of momentum (averaging of the gradients over multi-
ple mini-batches, while the weights have not moved so
much as to invalidate past information).

7 Conclusion

We provide a simple proof on the convergence of
Adam and Adagrad without heavy-ball style momen-
tum. Our analysis highlights a link between the two
algorithms: with right the hyper-parameters, Adam
converges like Adagrad. The extension to heavy-ball
momentum is more complex, but we significantly im-
prove the dependence on the momentum parameter
for Adam, Adagrad, as well as SGD. We exhibit a toy
problem where the dependency on α and β2 experi-
mentally matches our prediction. However, we do not
predict the practical interest of momentum, so that
improvements to the proof are needed for future work.
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A Simple Convergence Proof of Adam and Adagrad

Supplementary material for A Simple Convergence Proof of Adam
and Adagrad

Overview

In Section A, we detail the results for the convergence of Adam and Adagrad with heavy-ball momentum. For
an overview of the contributions of our proof technique, see Section A.4.

Then in Section B, we show how our technique also applies to SGD and improves its dependency in β1 compared
with previous work by Yang et al. (2016), from O((1 − β1)−2) to O(1 − β1)−1. The proof is simpler than for
Adam/Adagrad, and show the generality of our technique.

A Convergence of adaptive methods with heavy-ball momentum

A.1 Setup and notations

We recall the dynamic system introduced in Section 2.3. In the rest of this section, we take an iteration n ∈ N∗,
and when needed, i ∈ [d] refers to a specific coordinate. Given x0 ∈ Rd our starting point, m0 = 0, and v0 = 0,
we define 

mn,i = β1mn−1,i +∇ifn(xn−1),

vn,i = β2vn−1,i + (∇ifn(xn−1))
2
,

xn,i = xn−1,i − αn mn,i√
ε+vn,i

.

(A.1)

For Adam, the step size is given by

αn = α(1− β1)

√
1− βn2
1− β2

. (A.2)

For Adagrad (potentially extended with heavy-ball momentum), we have β2 = 1 and

αn = α(1− β1). (A.3)

Notice we include the factor 1− β1 in the step size rather than in (A.1), as this allows for a more elegant proof.
The original Adam algorithm included compensation factors for both β1 and β2 (Kingma and Ba, 2015) to correct
the initial scale of m and v which are initialized at 0. Adam would be exactly recovered by replacing (A.2) with

αn = α
1− β1
1− βn1

√
1− βn2
1− β2

. (A.4)

However, the denominator 1−βn1 potentially makes (αn)n∈N∗ non monotonic, which complicates the proof. Thus,
we instead replace the denominator by its limit value for n → ∞. This has little practical impact as (i) early
iterates are noisy because v is averaged over a small number of gradients, so making smaller step can be more
stable, (ii) for β1 = 0.9 (Kingma and Ba, 2015), (A.2) differs from (A.4) only for the first 50 iterations.

Throughout the proof we note En−1 [·] the conditional expectation with respect to f1, . . . , fn−1. In particular,
xn−1, vn−1 is deterministic knowing f1, . . . , fn−1. We introduce

Gn = ∇F (xn−1) and gn = ∇fn(xn−1). (A.5)

Like in Section 5.2, we introduce the update un ∈ Rd, as well as the update without heavy-ball momentum
Un ∈ Rd:

un,i =
mn,i√
ε+ vn,i

and Un,i =
gn,i√
ε+ vn,i

. (A.6)

For any k ∈ N with k < n, we define ṽn,k ∈ Rd by

ṽn,k,i = βk2 vn−k,i + En−k−1

 n∑
j=n−k+1

βn−j2 g2j,i

 , (A.7)



Alexandre Défossez, Léon Bottou, Francis Bach, Nicolas Usunier

i.e. the contribution from the k last gradients are replaced by their expected value for know values of
f1, . . . , fn−k−1. For k = 1, we recover the same definition as in (17).

A.2 Results

For any total number of iterations N ∈ N∗, we define τN a random index with value in {0, . . . , N − 1}, verifying

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (A.8)

If β1 = 0, this is equivalent to sampling τ uniformly in {0, . . . , N − 1}. If β1 > 0, the last few 1
1−β1

iterations
are sampled rarely, and all iterations older than a few times that number are sampled almost uniformly. We
bound the expected squared norm of the total gradient at iteration τ , which is standard for non convex stochastic
optimization (Ghadimi and Lan, 2013).

Note that like in previous works, the bound worsen as β1 increases, with a dependency of the form O((1−β1)−1).
This is a significant improvement over the existing bound for Adagrad with heavy-ball momentum, which scales
as (1 − β1)−3 (Zou et al., 2019b), or the best known bound for Adam which scales as (1 − β1)−5 (Zou et al.,
2019a).

Technical lemmas to prove the following theorems are introduced in Section A.5, while the proof of Theorems
A.1 and A.2 are provided in Section A.6.
Theorem A.1 (Convergence of Adam with momentum). Given the hypothesis introduced in Section 2.3, the

iterates xn defined in Section 2.2 with hyper-parameters verifying 0 < β2 < 1, αn = α(1 − β1)
√∑n−1

j=0 β
j
2 with

α > 0 and 0 < β1 < β2, we have for any N ∈ N∗ such that N > β1

1−β1
, taking τ defined by (A.8),

E
[
‖∇F (xτ )‖2

]
≤ 2R

F (x0)− F∗
αÑ

+
E

Ñ

(
ln

(
1 +

R2

ε(1− β2)

)
−N ln(β2)

)
, (A.9)

with
Ñ = N − β1

1− β1
, (A.10)

and

E =
αdRL(1− β1)

(1− β1/β2)(1− β2)
+

12dR2
√

1− β1
(1− β1/β2)3/2

√
1− β2

+
2α2dL2β1

(1− β1/β2)(1− β2)3/2
. (A.11)

Theorem A.2 (Convergence of Adagrad with momentum). Given the hypothesis introduced in Section 2.3, the
iterates xn defined in Section 2.2 with hyper-parameters verifying β2 = 1, αn = (1 − β1)α with α > 0 and
0 < β1 < 1, we have for any N ∈ N∗ such that N > β1

1−β1
, taking τ as defined by (A.8),

E
[
‖∇F (xτ )‖2

]
≤ 2R

√
N
F (x0)− F∗

αÑ
+

√
N

Ñ

(
αdRL+

12dR2

1− β1
+

2α2dL2β1
1− β1

)
ln

(
1 +

NR2

ε

)
, (A.12)

with
Ñ = N − β1

1− β1
. (A.13)

A.3 Analysis of the results with momentum

First notice that taking β1 → 0 in Theorems A.1 and A.2, we almost recover the same result as stated in 2 and
1, only losing on the term 4dR2 which becomes 12dR2.

Simplified expressions with momentum Assuming N � β1

1−β1
and β1/β2 ≈ β1, which is verified for typical

values of β1 and β2 (Kingma and Ba, 2015), it is possible to simplify the bound for Adam (A.9) as

E
[
‖∇F (xτ )‖2

]
/ 2R

F (x0)− F∗
αN

+

(
αdRL

1− β2
+

12dR2

(1− β1)
√

1− β2
+

2α2dL2β1
(1− β1)(1− β2)3/2

)(
1

N
ln

(
1 +

R2

ε(1− β2)

)
− ln(β2)

)
. (A.14)
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Similarly, if we assume N � β1

1−β1
, we can simplify the bound for Adagrad (A.12) as

E
[
‖∇F (xτ )‖2

]
/ 2R

F (x0)− F∗
α
√
N

+
1√
N

(
αdRL+

12dR2

1− β1
+

2α2dL2β1
1− β1

)
ln

(
1 +

NR2

ε

)
, (A.15)

Optimal finite horizon Adam is still Adagrad We can perform the same finite horizon analysis as in
Section 4.3. If we take α = α̃√

N
and β2 = 1− 1/N , then (A.14) simplifies to

E
[
‖∇F (xτ )‖2

]
/ 2R

F (x0)− F∗
α̃
√
N

+
1√
N

(
α̃dRL+

12dR2

1− β1
+

2α̃2dL2β1
1− β1

)(
ln

(
1 +

NR2

ε

)
+ 1

)
. (A.16)

The term (1 − β2)3/2 in the denominator in (A.14) is indeed compensated by the α2 in the numerator and we
again recover the proper ln(N)/

√
N convergence rate, which matches (A.15) up to a +1 term next to the log.

A.4 Overview of the proof, contributions and limitations

Compared with previous work (Zou et al., 2019b,a), the re-centering of past gradients in (A.19) is a key aspect
to improve the dependency in β1, with a small price to pay using the smoothness of F which is compensated by
the introduction of extra G2

n−k,i in (A.1). Then, a tight handling of the different summations as well as the the
introduction of a non uniform sampling of the iterates (A.8), which naturally arises when grouping the different
terms as int (A.54), allow to obtain the overall improved dependency in O((1− β1)−1).

The same technique can be applied to SGD, the proof becoming simpler as there is no correlation between the
step size and the gradient estimate, see Section B. If you want to better understand the handling of momentum
without the added complexity of adaptive methods, we recommand starting with this proof.

A limitation of the proof technique is that we do not show that heavy-ball momentum can lead to a variance
reduction of the update. Either more powerful probabilistic results, or extra regularity assumptions could allow
to further improve our worst case bounds of the variance of the update, which in turn might lead to a bound
with an improvement when using heavy-ball momentum.

A.5 Technical lemmas

We first need an updated version of 5.1 that includes momentum.
Lemma A.1 (Adaptive update with momentum approximately follows a descent direction). Given x0 ∈ Rd, the
iterates defined by the system (A.1) for (αj)j∈N∗ that is non-decreasing, and under the conditions (5), (6), and
(7), as well as 0 ≤ β1 < β2 ≤ 1, we have for all iterations n ∈ N∗,

E

∑
i∈[d]

Gn,i
mn,i√
ε+ vn,i

 ≥ 1

2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]
− α2

nL
2

4R

√
1− β1

(
n−1∑
l=1

‖un−l‖22
n−1∑
k=l

βk1
√
k

)
− 3R√

1− β1

(
n−1∑
k=0

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)
. (A.17)

Proof. We use multiple times (21) in this proof, which we repeat here for convenience,

∀λ > 0, x, y ∈ R, xy ≤ λ

2
x2 +

y2

2λ
. (A.18)

Let us take an iteration n ∈ N∗ for the duration of the proof. We have∑
i∈[d]

Gn,i
mn,i√
ε+ vn,i

=
∑
i∈[d]

n−1∑
k=0

βk1Gn,i
gn−k,i√
ε+ vn,i

=
∑
i∈[d]

n−1∑
k=0

βk1Gn−k,i
gn−k,i√
ε+ vn,i︸ ︷︷ ︸

A

+
∑
i∈[d]

n−1∑
k=0

βk1 (Gn,i −Gn−k,i)
gn−k,i√
ε+ vn,i︸ ︷︷ ︸

B

, (A.19)
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Let us now take an index 0 ≤ k ≤ n− 1. We show that the contribution of past gradients Gn−k and gn−k due to
the heavy-ball momentum can be controlled thanks to the decay term βk1 . Let us first have a look at B. Using
(A.18) with

λ =

√
1− β1

2R
√
k + 1

, x = |Gn,i −Gn−k,i| , y =
|gn−k,i|√
ε+ vn,i

,

we have

|B| ≤
∑
i∈[d]

n−1∑
k=0

βk1

( √
1− β1

4R
√
k + 1

(Gn,i −Gn−k,i)2 +
R
√
k + 1√

1− β1
g2n−k,i
ε+ vn,i

)
. (A.20)

Notice first that for any dimension i ∈ [d], ε+ vn,i ≥ ε+ βk2 vn−k,i ≥ βk2 (ε+ vn−k,i), so that

g2n−k,i
ε+ vn,i

≤ 1

βk2
U2
n−k,i (A.21)

Besides, using the L-smoothness of F given by (7), we have

‖Gn −Gn−k‖22 ≤ L
2 ‖xn−1 − xn−k−1‖22

= L2

∥∥∥∥∥
k∑
l=1

αn−lun−l

∥∥∥∥∥
2

2

≤ α2
nL

2k

k∑
l=1

‖un−l‖22 , (A.22)

using Jensen inequality and the fact that αn is non-decreasing. Injecting (A.21) and (A.22) into (A.20), we
obtain

|B| ≤

(
n−1∑
k=0

α2
nL

2

4R

√
1− β1βk1

√
k

k∑
l=1

‖un−l‖22

)
+

(
n−1∑
k=0

R√
1− β1

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)

=
√

1− β1
α2
nL

2

4R

(
n−1∑
l=1

‖un−l‖22
n−1∑
k=l

βk1
√
k

)
+

R√
1− β1

(
n−1∑
k=0

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)
. (A.23)

Now going back to the A term in (A.19), we will study the main term of the summation, i.e. for i ∈ [d] and
k < n

E
[
Gn−k,i

gn−k,i√
ε+ vn,i

]
= E

[
∇iF (xn−k−1)

∇ifn−k(xn−k−1)
√
ε+ vn,i

]
. (A.24)

Notice that we could almost apply Lemma 5.1 to it, except that we have vn,i in the denominator instead of
vn−k,i. Thus we will need to extend the proof to decorrelate more terms. We will further drop indices in the
rest of the proof, noting G = Gn−k,i, g = gn−k,i, ṽ = ṽn,k+1,i and v = vn,i. Finally, let us note

δ2 =

n∑
j=n−k

βn−j2 g2j,i and r2 = En−k−1
[
δ2
]
. (A.25)

In particular we have ṽ − v = r2 − δ2. With our new notations, we can rewrite (A.24) as

E
[
G

g√
ε+ v

]
= E

[
G

g√
ε+ ṽ

+Gg

(
1√
ε+ v

− 1√
ε+ ṽ

)]
= E

[
En−k−1

[
G

g√
ε+ ṽ

]
+Gg

r2 − δ2
√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)

]

= E
[

G2

√
ε+ ṽ

]
+ E

Gg r2 − δ2
√
ε+ v

√
ε+ ṽ(

√
ε+ v +

√
ε+ ṽ)︸ ︷︷ ︸

C

 . (A.26)
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We first focus on C:

|C| ≤ |Gg| r2√
ε+ v(ε+ ṽ)︸ ︷︷ ︸
κ

+ |Gg| δ2

(ε+ v)
√
ε+ ṽ︸ ︷︷ ︸

ρ

,

due to the fact that
√
ε+ v +

√
ε+ ṽ ≥ max(

√
ε+ v,

√
ε+ ṽ) and

∣∣r2 − δ2∣∣ ≤ r2 + δ2.

Applying (A.18) to κ with

λ =

√
1− β1

√
ε+ ṽ

2
, x =

|G|√
ε+ ṽ

, y =
|g| r2√

ε+ ṽ
√
ε+ v

,

we obtain

κ ≤ G2

4
√
ε+ ṽ

+
1√

1− β1
g2r4

(ε+ ṽ)3/2(ε+ v)
.

Given that ε+ ṽ ≥ r2 and taking the conditional expectation, we can simplify as

En−k−1 [κ] ≤ G2

4
√
ε+ ṽ

+
1√

1− β1
r2√
ε+ ṽ

En−k−1
[
g2

ε+ v

]
. (A.27)

Now turning to ρ, we use (A.18) with

λ =

√
1− β1

√
ε+ ṽ

2r2
, x =

|Gδ|√
ε+ ṽ

, y =
|δg|
ε+ v

,

we obtain

ρ ≤ G2

4
√
ε+ ṽ

δ2

r2
+

1√
1− β1

r2√
ε+ ṽ

g2δ2

(ε+ v)2
. (A.28)

Given that ε+ v ≥ δ2, and En−k−1
[
δ2

r2

]
= 1, we obtain after taking the conditional expectation,

En−k−1 [ρ] ≤ G2

4
√
ε+ ṽ

+
1√

1− β1
r2√
ε+ ṽ

En−k−1
[
g2

ε+ v

]
. (A.29)

Notice that in A.28, we possibly divide by zero. It suffice to notice that if r2 = 0 then δ2 = 0 a.s. so that ρ = 0
and (A.29) is still verified. Summing (A.27) and (A.29), we get

En−k−1 [|C|] ≤ G2

2
√
ε+ ṽ

+
2√

1− β1
r2√
ε+ ṽ

En−k−1
[
g2

ε+ v

]
. (A.30)

Given that r ≤
√
ε+ ṽ by definition of ṽ, and that using (6), r ≤

√
k + 1R, we have, reintroducing the indices

we had dropped

En−k−1 [|C|] ≤
G2
n−k,i

2
√
ε+ ṽn,k+1,i

+
2R√

1− β1

√
k + 1En−k−1

[
g2n−k,i
ε+ vn,i

]
. (A.31)

Taking the complete expectation and using that by definition ε+ vn,i ≥ ε+ βk2 vn−k,i ≥ βk2 (ε+ vn−k,i) we get

E [|C|] ≤ 1

2
E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]
+

2R√
1− β1βk2

√
k + 1E

[
g2n−k,i

ε+ vn−k,i

]
. (A.32)

Injecting (A.32) into (A.26) gives us

E [A] ≥
∑
i∈[d]

n−1∑
k=0

βk1

(
E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]
−

(
1

2
E

[
G2
n−k,i√

ε+ ṽn,k,i

]
+

2R√
1− β1βk2

√
k + 1E

[
g2n−k,i

ε+ vn−k,i

]))

=
1

2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i√

ε+ ṽn,k+1,i

]− 2R√
1− β1

∑
i∈[d]

n−1∑
k=0

(
β1
β2

)k√
k + 1E

[
‖Un−k‖22

] . (A.33)
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Injecting (A.33) and (A.23) into (A.19) finishes the proof.

Similarly, we will need an updated version of 5.2.

Lemma A.2 (sum of ratios of the square of a decayed sum and a decayed sum of square). We assume we have
0 < β2 ≤ 1 and 0 < β1 < β2, and a sequence of real numbers (an)n∈N∗ . We define bn =

∑n
j=1 β

n−j
2 a2j and

cn =
∑n
j=1 β

n−j
1 aj. Then we have

n∑
j=1

c2j
ε+ bj

≤ 1

(1− β1)(1− β1/β2)

(
ln

(
1 +

bn
ε

)
− n ln(β2)

)
. (A.34)

Proof. Now let us take j ∈ N∗, j ≤ n, we have using Jensen inequality

c2j ≤
1

1− β1

j∑
l=1

βj−l1 a2l ,

so that

c2j
ε+ bj

≤ 1

1− β1

j∑
l=1

βj−l1

a2l
ε+ bj

.

Given that for l ∈ [j], we have by definition ε+ bj ≥ ε+ βj−l2 bl ≥ βj−l2 (ε+ bj), we get

c2j
ε+ bj

≤ 1

1− β1

j∑
l=1

(
β1
β2

)j−l
a2l

ε+ bl
. (A.35)

Thus, when summing over all j ∈ [n], we get

n∑
j=1

c2j
ε+ bj

≤ 1

1− β1

n∑
j=1

j∑
l=1

(
β1
β2

)j−l
a2l

ε+ bl

=
1

1− β1

n∑
l=1

a2l
ε+ bl

n∑
j=l

(
β1
β2

)j−l

≤ 1

(1− β1)(1− β1/β2)

n∑
l=1

a2l
ε+ bl

. (A.36)

Applying Lemma 5.2, we obtain (A.34).

We also need two technical lemmas on the sum of series.

Lemma A.3 (sum of a geometric term times a square root). Given 0 < a < 1 and Q ∈ N, we have,

Q−1∑
q=0

aq
√
q + 1 ≤ 1

1− a

(
1 +

√
π

2
√
− ln(a)

)
≤ 2

(1− a)3/2
. (A.37)
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Proof. We first need to study the following integral:

∫ ∞
0

ax

2
√
x

dx =

∫ ∞
0

eln(a)x

2
√
x

dx , then introducing y =
√
x,

=

∫ ∞
0

eln(a)y
2

dy , then introducing u =
√
−2 ln(a)y,

=
1√

−2 ln(a)

∫ ∞
0

e−u
2/2du∫ ∞

0

ax

2
√
x

dx =

√
π

2
√
− ln(a)

, (A.38)

where we used the classical integral of the standard Gaussian density function.

Let us now introduce AQ:

AQ =

Q−1∑
q=0

aq
√
q + 1,

then we have

AQ − aAQ =

Q−1∑
q=0

aq
√
q + 1−

Q∑
q=1

aq
√
q , then using the concavity of

√
·,

≤ 1− aQ
√
Q+

Q−1∑
q=1

aq

2
√
q

≤ 1 +

∫ ∞
0

ax

2
√
x

dx

(1− a)AQ ≤ 1 +

√
π

2
√
− ln(a)

,

where we used (A.38). Given that
√
− ln(a) ≥

√
1− a we obtain (A.37).

Lemma A.4 (sum of a geometric term times roughly a power 3/2). Given 0 < a < 1 and Q ∈ N, we have,

Q−1∑
q=0

aq
√
q(q + 1) ≤ 4a

(1− a)5/2
. (A.39)

Proof. Let us introduce AQ:

AQ =

Q−1∑
q=0

aq
√
q(q + 1),
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then we have

AQ − aAQ =

Q−1∑
q=0

aq
√
q(q + 1)−

Q∑
q=1

aq
√
q − 1q

≤
Q−1∑
q=1

aq
√
q
(

(q + 1)−√q
√
q − 1

)

≤
Q−1∑
q=1

aq
√
q ((q + 1)− (q − 1))

≤ 2

Q−1∑
q=1

aq
√
q

= 2a

Q−2∑
q=0

aq
√
q + 1 , then using Lemma A.3,

(1− a)AQ ≤
4a

(1− a)3/2
.

A.6 Proof of Adam and Adagrad with momentum

Common part of the proof Let us a take an iteration n ∈ N∗. Using the smoothness of F defined in (7),
we have

F (xn) ≤ F (xn−1)− αnGTnun +
α2
nL

2
‖un‖22 .

Taking the full expectation and using Lemma A.1,

E [F (xn)] ≤ E [F (xn−1)]− αn
2

∑
i∈[d]

n−1∑
k=0

βk1E

[
G2
n−k,i

2
√
ε+ ṽn,k+1,i

]+
α2
nL

2
E
[
‖un‖22

]

+
α3
nL

2

4R

√
1− β1

(
n−1∑
l=1

‖un−l‖22
n−1∑
k=l

βk1
√
k

)
+

3αnR√
1− β1

(
n−1∑
k=0

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)
. (A.40)

Notice that because of the bound on the `∞ norm of the stochastic gradients at the iterates (6), we have for any

k ∈ N, k < n, and any coordinate i ∈ [d],
√
ε+ ṽn,k+1,i ≤ R

√∑n−1
j=0 β

j
2. Introducing Ωn =

√∑n−1
j=0 β

j
2, we have

E [F (xn)] ≤ E [F (xn−1)]− αn
2RΩn

n−1∑
k=0

βk1E
[
‖Gn−k‖22

]
+
α2
nL

2
E
[
‖un‖22

]
+
α3
nL

2

4R

√
1− β1

(
n−1∑
l=1

‖un−l‖22
n−1∑
k=l

βk1
√
k

)
+

3αnR√
1− β1

(
n−1∑
k=0

(
β1
β2

)k√
k + 1 ‖Un−k‖22

)
. (A.41)

Now summing over all iterations n ∈ [N ] for N ∈ N∗, and using that for both Adam (A.2) and Adagrad (A.3),
αn is non-decreasing, as well the fact that F is bounded below by F∗ from (5), we get

1

2R

N∑
n=1

αn
Ωn

n−1∑
k=0

βk1E
[
‖Gn−k‖22

]
︸ ︷︷ ︸

A

≤ F (x0)− F∗ +
α2
NL

2

N∑
n=1

E
[
‖un‖22

]
︸ ︷︷ ︸

B

+
α3
NL

2

4R

√
1− β1

N∑
n=1

n−1∑
l=1

E
[
‖un−l‖22

] n−1∑
k=l

βk1
√
k︸ ︷︷ ︸

C

+
3αNR√
1− β1

N∑
n=1

n−1∑
k=0

(
β1
β2

)k√
k + 1E

[
‖Un−k‖22

]
︸ ︷︷ ︸

D

. (A.42)
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First looking at B, we have using Lemma A.2,

B ≤ α2
NL

2(1− β1)(1− β1/β2)

∑
i∈[d]

(
ln
(

1 +
vN,i
ε

)
−N log(β2)

)
. (A.43)

Then looking at C and introducing the change of index j = n− l,

C =
α3
NL

2

4R

√
1− β1

N∑
n=1

n∑
j=1

E
[
‖uj‖22

] n−1∑
k=n−j

βk1
√
k

=
α3
NL

2

4R

√
1− β1

N∑
j=1

E
[
‖uj‖22

] N∑
n=j

n−1∑
k=n−j

βk1
√
k

=
α3
NL

2

4R

√
1− β1

N∑
j=1

E
[
‖uj‖22

]N−1∑
k=0

βk1
√
k

j+k∑
n=j

1

=
α3
NL

2

4R

√
1− β1

N∑
j=1

E
[
‖uj‖22

]N−1∑
k=0

βk1
√
k(k + 1)

≤ α3
NL

2

R

N∑
j=1

E
[
‖uj‖22

] β1
(1− β1)2

, (A.44)

using Lemma A.4. Finally, using Lemma A.2, we get

C ≤ α3
NL

2β1
R(1− β1)3(1− β1/β2)

∑
i∈[d]

(
ln
(

1 +
vN,i
ε

)
−N log(β2)

)
. (A.45)

Finally, introducing the same change of index j = n− k for D, we get

D =
3αNR√
1− β1

N∑
n=1

n∑
j=1

(
β1
β2

)n−j√
1 + n− jE

[
‖Uj‖22

]

=
3αNR√
1− β1

N∑
j=1

E
[
‖Uj‖22

] N∑
n=j

(
β1
β2

)n−j√
1 + n− j

≤ 6αNR√
1− β1

N∑
j=1

E
[
‖Uj‖22

] 1

(1− β1/β2)3/2
, (A.46)

using Lemma A.3. Finally, using Lemma 5.2 or equivalently Lemma A.2 with β1 = 0, we get

D ≤ 6αNR√
1− β1(1− β1/β2)3/2

∑
i∈[d]

(
ln
(

1 +
vN,i
ε

)
−N ln(β2)

)
. (A.47)

This is as far as we can get without having to use the specific form of αN given by either (A.2) for Adam or
(A.3) for Adagrad. We will now split the proof for either algorithm.
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Adam For Adam, using (A.2), we have αn = (1 − β1)Ωnα. Thus, we can simplify the A term from (A.42),
also using the usual change of index j = n− k, to get

A =
1

2R

N∑
n=1

αn
Ωn

n∑
j=1

βn−j1 E
[
‖Gj‖22

]

=
α(1− β1)

2R

N∑
j=1

E
[
‖Gj‖22

] N∑
n=j

βn−j1

=
α

2R

N∑
j=1

(1− βN−j+1
1 )E

[
‖Gj‖22

]

=
α

2R

N∑
j=1

(1− βN−j+1
1 )E

[
‖∇F (xj−1)‖22

]

=
α

2R

N−1∑
j=0

(1− βN−j1 )E
[
‖∇F (xj)‖22

]
. (A.48)

If we now introduce τ as in (A.8), we can first notice that

N−1∑
j=0

(1− βN−j1 ) = N − β1
1− βN1
1− β1

≥ N − β1
1− β1

. (A.49)

Introducing

Ñ = N − β1
1− β1

, (A.50)

we then have

A ≥ αÑ

2R
E
[
‖∇F (xτ )‖22

]
. (A.51)

Further notice that for any coordinate i ∈ [d], we have vN,i ≤ R2

1−β2
, besides αN ≤ α 1−β1√

1−β2
, so that putting

together (A.42), (A.51), (A.43), (A.45) and (A.47) we get

E
[
‖∇F (xτ )‖22

]
≤ 2R

F0 − F∗
αÑ

+
E

Ñ

(
ln

(
1 +

R2

ε(1− β2)

)
−N log(β2)

)
, (A.52)

with

E =
αdRL(1− β1)

(1− β1/β2)(1− β2)
+

2α2dL2β1
(1− β1/β2)(1− β2)3/2

+
12dR2

√
1− β1

(1− β1/β2)3/2
√

1− β2
. (A.53)

This conclude the proof of theorem A.1.
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Adagrad For Adagrad, we have αn = (1− β1)α, β2 = 1 and Ωn ≤
√
N so that,

A =
1

2R

N∑
n=1

αn
Ωn

n∑
j=1

βn−j1 E
[
‖Gj‖22

]

≥ α(1− β1)

2R
√
N

N∑
j=1

E
[
‖Gj‖22

] N∑
n=j

βn−j1

=
α

2R
√
N

N∑
j=1

(1− βN−j+1
1 )E

[
‖Gj‖22

]

=
α

2R
√
N

N∑
j=1

(1− βN−j+1
1 )E

[
‖∇F (xj−1)‖22

]

=
α

2R
√
N

N−1∑
j=0

(1− βN−j1 )E
[
‖∇F (xj)‖22

]
. (A.54)

Reusing (A.49) and (A.50) from the Adam proof, and introducing τ as in (8), we immediately have

A ≥ αÑ

2R
√
N

E
[
‖∇F (xτ )‖22

]
. (A.55)

Further notice that for any coordinate i ∈ [d], we have vN ≤ NR2, besides αN = (1 − β1)α, so that putting
together (A.42), (A.55), (A.43), (A.45) and (A.47) with β2 = 1, we get

E
[
‖∇F (xτ )‖22

]
≤ 2R

√
N
F0 − F∗
αÑ

+

√
N

Ñ
E ln

(
1 +

NR2

ε

)
, (A.56)

with

E = αdRL+
2α2dL2β1

1− β1
+

12dR2

1− β1
. (A.57)

This conclude the proof of theorem A.2.

B Non convex SGD with heavy-ball momentum

We extend the existing proof of convergence for SGD in the non convex setting to use heavy-ball momen-
tum (Ghadimi and Lan, 2013). Compared with previous work on momentum for non convex SGD byYang et al.
(2016), we improve the dependency in β1 from O((1− β1)−2) to O((1− β1)−1).

B.1 Assumptions

We reuse the notations from Section 2.1. Note however that we use here different assumptions than in Section 2.3.
We first assume F is bounded below by F∗, that is,

∀x ∈ Rd, F (x) ≥ F∗. (B.1)

We then assume that the stochastic gradients have bounded variance, and that the gradients of F are uniformly
bounded, i.e. there exist R and σ so that

∀x ∈ Rd, ‖∇F (x)‖22 ≤ R
2 and E

[
‖∇f(x)‖22

]
− ‖∇F (x)‖22 ≤ σ

2, (B.2)

and finally, the smoothness of the objective function, e.g., its gradient is L-Liptchitz-continuous with respect to
the `2-norm:

∀x, y ∈ Rd, ‖∇F (x)−∇F (y)‖2 ≤ L ‖x− y‖2 . (B.3)
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B.2 Result

Let us take a step size α > 0 and a heavy-ball parameter 1 > β1 ≥ 0. Given x0 ∈ Rd, taking m0 = 0, we define
for any iteration n ∈ N∗ the iterates of SGD with momentum as,{

mn = β1mn−1 +∇fn(xn−1)

xn = xn−1 − αmn.
(B.4)

Note that in (B.4), the scale of the typical size of mn will increases with β1.

For any total number of iterations N ∈ N∗, we define τN a random index with value in {0, . . . , N − 1}, verifying

∀j ∈ N, j < N,P [τ = j] ∝ 1− βN−j1 . (B.5)

If β1 = 0, this is equivalent to sampling τ uniformly in {0, . . . , N − 1}. If β1 > 0, the last few 1
1−β1

iterations
are sampled rarely, and all iterations older than a few times that number are sampled almost uniformly. We
bound the expected squared norm of the total gradient at iteration τ , which is standard for non convex stochastic
optimization (Ghadimi and Lan, 2013).
Theorem B.1 (Convergence of SGD with momemtum). Assuming the assumptions from Section B.1, given τ
as defined in (B.5) for a total number of iterations N > 1

1−β1
, x0 ∈ Rd, α > 0, 1 > β1 ≥ 0, and (xn)n∈N∗ given

by (B.4),

E
[
‖∇F (xτ )‖22

]
≤ 1− β1

αÑ
(F (x0)− F∗) +

N

Ñ

αL(1 + β1)(R2 + σ2)

2(1− β1)2
, (B.6)

with Ñ = N − β1

1−β1
.

B.3 Analysis

We can first simplify (B.6), if we assume N � 1
1−β1

, which is always the case for practical values of N and β1,
so that Ñ ≈ N , and,

E
[
‖∇F (xτ )‖22

]
≤ 1− β1

αN
(F (x0)− F∗) +

αL(1 + β1)(R2 + σ2)

2(1− β1)2
. (B.7)

It is possible to achieve a rate of convergence of the form O(1/
√
N), by taking for any C > 0,

α = (1− β1)
C√
N
, (B.8)

which gives us

E
[
‖∇F (xτ )‖22

]
≤ 1

C
√
N

(F (x0)− F∗) +
C√
N

L(1 + β1)(R2 + σ2)

2(1− β1)
. (B.9)

In comparison, Theorem 3 by Yang et al. (2016) would give us, assuming now that α = (1− β1) min
{

1
L ,

C√
N

}
,

min
k∈{0,...N−1}

E
[
‖∇F (xk)‖22

]
≤ 2

N
(F (x0)− F∗) max

{
2L,

√
N

C

}

+
C√
N

L

(1− β1)2
(
β2
1(R2 + σ2) + (1− β1)2σ2

)
. (B.10)

We observe an overall dependency in β1 of the form O((1− β1)−2) for Theorem 3 by Yang et al. (2016) , which
we improve to O((1− β1)−1) with our proof.

Notice that as the typical size of the update mn will increase with β1, by a factor 1/(1 − β1), it is convenient
to scale down α by the same factor, as we did with (B.8) (without loss of generality, as C can take any value).
Taking α of this form has the advantage of keeping the first term on the right hand side in (B.6) independent of
β1, allowing us to focus only on the second term.
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B.4 Proof

For all n ∈ N∗, we note Gn = ∇F (xn−1) and gn = ∇f(xn−1). En−1 [·] is the conditional expectation with respect
to f1, . . . , fn−1. In particular, xn−1 and mn−1 are deterministic knowing f1, . . . , fn−1.
Lemma B.1 (Bound on mn). Given α > 0, 1 > β1 ≥ 0, and (xn) and (mn) defined as by B.4, under the
assumptions from Section B.1, we have for all n ∈ N∗,

E
[
‖mn‖22

]
≤ R2 + σ2

(1− β1)2
. (B.11)

Proof. Let us take an iteration n ∈ N∗,

E
[
‖mn‖22

]
= E

∥∥∥∥∥
n−1∑
k=0

βk1 gn−k

∥∥∥∥∥
2

2

 using Jensen we get,

≤

(
n−1∑
k=0

βk1

)
n−1∑
k=0

βk1E
[
‖gn−k‖22

]
≤ 1

1− β1

n−1∑
k=0

βk1 (R2 + σ2)

=
R2 + σ2

(1− β1)2
.

Lemma B.2 (sum of a geometric term times index). Given 0 < a < 1, i ∈ N and Q ∈ N with Q ≥ i,

Q∑
q=i

aqq =
ai

1− a

(
i− aQ−i+1Q+

a− aQ+1−i

1− a

)
≤ a

(1− a)2
. (B.12)

Proof. Let Ai =
∑Q
q=i a

qq, we have

Ai − aAi = aii− aQ+1Q+

Q∑
q=i+1

aq (i+ 1− i)

(1− a)Ai = aii− aQ+1Q+
ai+1 − aQ+1

1− a
.

Finally, taking i = 0 and Q→∞ gives us the upper bound.

Lemma B.3 (Descent lemma). Given α > 0, 1 > β1 ≥ 0, and (xn) and (mn) defined as by B.4, under the
assumptions from Section B.1, we have for all n ∈ N∗,

E
[
∇F (xn−1)Tmn

]
≥
n−1∑
k=0

βk1E
[
‖∇F (xn−k−1)‖22

]
− αLβ1(R2 + σ2)

(1− β1)3
(B.13)

Proof. For simplicity, we use the notations Gn = ∇F (xn−1) and gn = ∇fn(xn−1) introduced in this section.

GTnmn =

n−1∑
k=0

βk1G
T
ngn−k

=

n−1∑
k=0

βk1G
T
n−kgn−k +

n−1∑
k=1

βk1 (Gn −Gn−k)T gn−k. (B.14)

This last step is the main difference with previous proofs with momentum (Yang et al., 2016): we replace the
current gradient with an old gradient in order to obtain extra terms of the form ‖Gn−k‖22. The price to pay is
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the second term on the right hand side but we will see that it is still beneficial to perform this step. Notice that
as F is L-smooth so that we have, for all k ∈ N∗

‖Gn −Gn−k‖22 ≤ L
2

∥∥∥∥∥
k∑
l=1

αmn−l

∥∥∥∥∥
2

≤ α2L2k

k∑
l=1

‖mn−l‖22 , (B.15)

using Jensen inequality. We apply

∀λ > 0, x, y ∈ R, ‖xy‖2 ≤
λ

2
‖x‖22 +

‖y‖22
2λ

, (B.16)

with x = Gn −Gn−k, y = gn−k and λ =
1− β1
kαL

to the second term in (B.14), and use (B.15) to get

GTnmn ≥
n−1∑
k=0

βk1G
T
n−kgn−k −

n−1∑
k=1

βk1
2

((
(1− β1)αL

k∑
l=1

‖mn−l‖22

)
+

αLk

1− β1
‖gn−k‖22

)
.

Taking the full expectation we have

E
[
GTnmn

]
≥
n−1∑
k=0

βk1E
[
GTn−kgn−k

]
− αL

n−1∑
k=1

βk1
2

((
(1− β1)

k∑
l=1

E
[
‖mn−l‖22

])
+

k

1− β1
E
[
‖gn−k‖22

])
. (B.17)

Now let us take k ∈ {0, . . . , n− 1}, first notice that

E
[
GTn−kgn−k

]
= E

[
En−k−1

[
∇F (xn−k−1)T∇fn−k(xn−k−1)

]]
= E

[
∇F (xn−k−1)T∇F (xn−k−1)

]
= E

[
‖Gn−k‖22

]
.

Furthermore, we have E
[
‖gn−k‖22

]
≤ R2+σ2 from (B.2), while E

[
‖mn−k‖22

]
≤ R2+σ2

(1−β2)2
using (B.11) from Lemma

B.1. Injecting those three results in (B.17), we have

E
[
GTnmn

]
≥
n−1∑
k=0

βk1E
[
‖Gn−k‖22

]
− αL(R2 + σ2)

n−1∑
k=1

βk1
2

((
1

1− β1

k∑
l=1

1

)
+

k

1− β1

)
(B.18)

=

n−1∑
k=0

βk1E
[
‖Gn−k‖22

]
− αL

1− β1
(R2 + σ2)

n−1∑
k=1

βk1k. (B.19)

Now, using (B.12) from Lemma B.2, we obtain

E
[
GTnmn

]
≥
n−1∑
k=0

βk1E
[
‖Gn−k‖22

]
− αLβ1(R2 + σ2)

(1− β1)3
, (B.20)

which concludes the proof.

Proof of Theorem B.1

Proof. Let us take a specific iteration n ∈ N∗. Using the smoothness of F given by (B.3), we have,

F (xn) ≤ F (xn−1)− αGTnmn +
α2L

2
‖mn‖22 . (B.21)
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Taking the expectation, and using Lemma B.3 and Lemma B.1, we get

E [F (xn)] ≤ E [F (xn−1)]− α

(
n−1∑
k=0

βk1E
[
‖Gn−k‖22

])
+
α2Lβ1(R2 + σ2)

(1− β1)3
+
α2L(R2 + σ2)

2(1− β1)2

≤ E [F (xn−1)]− α

(
n−1∑
k=0

βk1E
[
‖Gn−k‖22

])
+
α2L(1 + β1)(R2 + σ2)

2(1− β1)3
(B.22)

rearranging, and summing over n ∈ {1, . . . , N}, we get

α

N∑
n=1

n−1∑
k=0

βk1E
[
‖Gn−k‖22

]
︸ ︷︷ ︸

A

≤ F (x0)− E [F (xN )] +N
α2L(1 + β1)(R2 + σ2)

2(1− β1)3
(B.23)

Let us focus on the A term on the left-hand side first. Introducing the change of index i = n− k, we get

A = α
N∑
n=1

n∑
i=1

βn−i1 E
[
‖Gi‖22

]
= α

N∑
i=1

E
[
‖Gi‖22

] N∑
n=i

βn−i1

=
α

1− β1

N∑
i=1

E
[
‖∇F (xi−1)‖22

]
(1− βN−i+1)

=
α

1− β1

N−1∑
i=0

E
[
‖∇F (xi)‖22

]
(1− βN−i). (B.24)

We recognize the unnormalized probability given by the random iterate τ as defined by (B.5). The normalization
constant is

N−1∑
i=0

1− βN−i1 = N − β1
1− βN1
1− β

≥ N − β1
1− β1

= Ñ ,

which we can inject into (B.24) to obtain

A ≥ αÑ

1− β1
E
[
‖∇F (xτ )‖22

]
. (B.25)

Injecting (B.25) into (B.23), and using the fact that F is bounded below by F∗ (B.1), we have

E
[
‖∇F (xτ )‖22

]
≤ 1− β1

αÑ
(F (x0)− F∗) +

N

Ñ

αL(1 + β1)(R2 + σ2)

2(1− β1)2
(B.26)

(B.27)

which concludes the proof of Theorem B.1.
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