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Abstract

Traditional scalable video encoders sacrifice coding efficiency to reduce error
propagation because they have avoided using enhancement-layer (EL) information
to predict the base layer (BL) to prevent the error propagation termed “drift”.
Drift can produce very poor video quality if left unchecked. In this paper, we
propose a video coder with significantly better compression efficiency because it
intentionally allows the drift produced by predicting the BL from the EL. Our
drift management system balances the trade-off between compression efficiency
and error propagation.

The proposed scalable coder uses a spatially adaptive procedure that optimally
selects key encoder parameters: the quantizer and the prediction strategy. Our
numerical results indicate the encoder is very powerful, and the selection procedure
is effective. The video quality of our coder at low rates is only marginally worse
than the drift-free case, while its overall compression efficiency is not much worse
than a one-layer nonscalable encoder.

1 Introduction

Compressed video, which uses predictive coding algorithms and variable-length coding,
is sensitive to network impairments. A single bit error or erasure can cause substantial
degradation if no action is taken to stop or limit the extent of error propagation. Motion

compensation allows the error to propagate both temporally and spatially. Because of
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this, there has been extensive effort in the video community to design new techniques
that limit the extent of error propagation [1]. However, almost all attempts to limit
error propagation decrease the coding efficiency, some dramatically so. To ensure the
best operation of the video coder in an error-prone channel, the balance between resilience
and efficiency must be managed carefully.

Layered and scalable coding algorithms create a partitioning of the compressed bit-
stream into more and less important parts. Algorithms with bitstream scalability have
the added advantage that the less important enhancement layer (EL) bitstreams are still
decodable when truncated at any arbitrary point. These properties allow a natural com-
bination with different mechanisms to prioritize network transport, for example, marking
less important parts for early discard [2] [3], applying unequal error protection [4] [5] [6]
[7], or facilitating rate-matching between encoder, decoder, and network [8] [9] [10] [11].
When used in conjunction with such techniques, scalable video can be very resilient to
network-introduced errors.

One of the primary difficulties in creating a scalable video coder lies in the prediction
strategy of an efficient video coder. Past scalable video coders can be characterized into
three classes depending on the prediction process used to code the more important (or
base) layers (BL) and the less important enhancement layers (EL). In the first class, an
EL is compressed without prediction from itself or from other less important layers. For
example, Taubman and Zakhor [12] use a prediction structure for a bit-plane encoder
which does not use less important bit-planes of previous subbands to predict more im-
portant bit-planes of the current subband. This limits error propagation, but can reduce
compression efficiency.

In the second class of scalable coders, an EL can be compressed relative to itself, but
not relative to other less important layers. For example, in H.263+, the previous EL
frames can be used to predict the current EL frame, but the BL frames are predicted
only from BL information [13]. This improves compression efficiency, particularly when

the rate of the base layer is small relative to the enhancement layer; however, if parts of



the enhancement layer are not received, some error propagation may result.

In the third class of scalable coders, all layers including the base layer can be com-
pressed relative to other less important layers. One example of this is MPEG-2 SNR
scalability [2], which uses a single-loop prediction structure in which BL information is
predicted from previous base and enhancement information. These coders have the high-
est compression efficiency, but the most error propagation if some information is lost. In
this paper, we present a scalable video coder in the third class, which achieves very good
trade-off between error propagation and compression efficiency. We explicitly consider a
block-based DCT hybrid coder, although the basic ideas can be applied to other hybrid
video coders which use some form of motion-compensated temporal prediction.

Each of the three classes of scalable coders described above is represented in MPEG-
2, which was the first international standard to define scalable coding [2]. MPEG-2
SNRS is in the third class, while MPEG-2 Spatial Scalability (SS) allows a coder to be
in either the first or second class. Neither H.263 nor MPEG-4 version 1 have options
for a coder to be in the third class, although they allow both the first or second class
as options. However, experiments show that with MPEG-2 SS, MPEG-4 and H.263
scalability, operating as in the second class suffers from 0.5-1.5 dB losses for every layer
[2], [14]. When operating with the additional restriction of the first class of scalable
coders, with no temporal prediction in the enhancement layer, these coders suffer even
more degradation.

Another disadvantage is that each of these earlier standardized scalable coders has
monolithic enhancement layers, in the sense that there is no partition within an EL which
might allow the less important parts of that EL to be discarded prior to more important
parts. If part of the EL is lost, the entire EL is lost for that spatial location. Therefore,
these coders are not well suited for an application in which a video sequence should be
encoded once with the ability to decode to any bandwidth. These coders do allow the
partition between the base and enhancement layers to be chosen arbitrarily, but it can

not be changed after encoding.



Great strides were made with the introduction of the Fine Grained Scalability (FGS)
option of MPEG-4 version 2, which uses bit-plane encoding of the EL [8, 16, 15]. Not
only does this major breakthrough facilitate stored video transmission over the Internet
(where the transmission rate is variable and not known at the time of encoding), but
also the flexible EL structure allows easy design of unequal error protection for wireless
networks. Unfortunately, at the time of standardization, MPEG-4 FGS chose to use a
temporal prediction structure that places it in the first class of scalable coders above;
the EL layer is not used for the temporal prediction of either the base or enhancement
layer. As a result, this algorithmic structure can lose 2 dB of compression efficiency when
compared to a non-scalable one-layer MPEG-4 coder for the moderately active Stefan
sequence [16]. (There would be more degradation for a less active sequence, but less for
a more active sequence.)

The inefficiency of the MPEG-4 FGS prediction structure has been noted in [17]. The
Progressive FGS (PFGS) prediction structure [17] attempts to address this compression
inefficiency by predicting EL information from a few bit-planes of EL data. However, it
does not allow the possibility of predicting base-layer information from EL information;
therefore it still suffers a nontrivial loss in compression efficiency.

Predicting BL information from EL information introduces the possibility of drift,
defined here as the mismatch between encoder and decoder frame memories due to partial
reception of the less important EL information. The history of avoiding drift started with
the introduction by Goodman of Embedded DPCM (EDPCM) in 1980 [18]. There, he
showed that for temporal correlation of p = .85, an infinite time horizon, and quantizers
with fixed bit-rates, EDPCM was highly effective when compared to DPCM with drift.
The first layered video coder [3] also was configured to avoid drift, and Arnold et. al. [19]
present a variety of drift-free prediction structures, after observing that drift continues
to accumulate even as the number of times steps gets large. Continued recent effort in
developing scalable coders all focus on tolerating absolutely no base-layer drift [20],[21].

However, despite the predominance of arguments in the literature maintaining that
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systems should not be designed to allow drift, there is some evidence that drift need not
be eliminated completely. In Aravind et. al. [2], the MPEG-2 SNRS with 0.1% cell losses
was invisible even when the base bit-rate was only 25% of the total bit-rate. Further,
in [22], the loop structure with only partial mismatch control provided the best single-
channel reconstruction quality for a given redundancy in a motion-compensated multiple
description video coder. Finally, if we reconsider EDPCM using a limited time horizon,
entropy coded quantization, and higher temporal correlations of, say, p = .99, DPCM
with drift can become more efficient than EDPCM.

In [23], we showed that drift can indeed be tolerated in a scalable video coder, and
that careful management along with macroblock-level mode selection can provide very
efficient scalabe hybrid coders. A number of more recent papers have considered systems
that control base-layer drift, including [24] and [25].

In this paper, in Section 2, we present our drift management system. In Section 3, we
present a DCT-based motion-compensated scalable video coder with two key features.
First, the coder allows the BL to be predicted from past EL information, and second,
the coder contains mechanisms that allow the resultant drift to be controlled. In [23],
we used a simple heuristic decision algorithm to show that this encoder can significantly
outperform both the FGS encoder and the one-layer encoder across the range of channel
rates. In Section 4 we present a spatially adaptive algorithm for jointly selecting the
prediciton and quantization strategies used the scalable encoder. Section 5 demonstrates
that our coder performs better than alternative encoders across most of the range of
channel bit-rates, even though our coder suffers marginal performance degradation at the
lowest bit-rates compared to the no-drift encoder alternative. Our coder has significantly
better compression efficiency than FGS for higher bit-rates, with only slightly degraded
resilience for the lower bit-rates. Section 6 concludes the paper.

We note that our scalable coder with managed drift has many of the same key ad-
vantages of the MPEG-4 FGS that were described in [16]. It allows a server to have

minimal real-time processing, it is highly adaptable to unpredictable bandwidth, and



also it is resilient to packet losses. Further, our coder has the additional advantage that
it has significantly better compression efficiency than FGS. In particular, our coder is
designed to take advantage of the fact that typical video sequences have spatially incon-
sistent temporal correlation; therefore our coder adapts its coding technique to the local
statistics. The FGS prediction structure is a fall-back mode that can always be used by

our coder.

2 Managing drift

In this section, we consider structures for managing drift in a scalable DCT-based motion-
compensated video coder. For a comprehensive management of drift, five features are
necessary. Partial management of drift is possible with different subsets of these five

features. Our scalable coder presented in section 3 contains all five features.

e First, there should be a means to introduce drift incrementally. This is straight-
forward to achieve by bit-plane encoding or by creating an embedded bitstream.
This will only be effective, however, if used in conjunction with a mechanism in the
transport that provides more reliable delivery of the more important bit-planes to

the receiver. Examples can be found in [4] and [9].

e Second, there should be a way for the encoder to measure the drift being potentially

introduced, so it knows when drift is becoming significant.

e Third, there should be encoding options that can allow drift (i. e. allow errors in

the EL to propagate into the BL), while simultaneously keeping drift under control.

e Fourth, there should be a means to drastically reduce or eliminate drift without

using a full I-frame.

e Fifth, there should be a system-level optimization, designed to maximize expected
quality across all expected receivers. Inherent to this optimization, there must be

some (possibly inaccurate) knowledge on the part of the encoder as to how many
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errors the channel will introduce, and how those errors will be introduced (gradually
bit-plane by bit-plane, or suddenly when an entire packet of high-priority data is
lost).

The recognition that the impact of errors in a one-layer coder can be probabilistically
characterized by the encoder has lead to range of methods, including those of Wenger
and Coté [26], Zhang et. al. [27], and Wu et. al. [28]. The impact of errors in a two-layer
coder has also been probabilistically characterized in the encoding process by Zhang
et. al. in [13]. However, while they consider the impact of errors in the enhancement-
layer reconstruction, the encoder they optimize does not have the option of using EL
information to predict the BL. Hence, their scheme still has limited compression efficiency
compared to a one-layer encoder.

The fifth component of our drift management system is based on the observation
that if one can effectively manage error propagation in both a one-layer encoder and
a two-layer encoder that does not allow the introduction of BL drift, it is possible to
extend these techniques to an encoder that does allow the introduction of drift into the
base layer. Such an encoder will have greater compression efficiency for higher bit-rates,

with only slightly degraded resilience for the lower bit-rates.

3 Scalable DCT coder with drift control

This section presents our encoder and decoder structure which allows managed drift.
Our scalable coder balances high compression efficiency with error resilience.

While structures like B-frames or P’-frames' naturally reduce drift by having fewer
predictions made from partially correct data, we purposely do not consider them here.
Instead we focus on ways to manage drift within the predictive framework of P-frames.

Both P’-frames and the temporal scalability provided by B-frames [16] can easily be

IP’-frames are similar to B-frames without forward prediction, and which are enabled by Reference
Picture Selection (RPS) mode of annex N in H.263+ [29].
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Figure 1: Two-loop decoder with drift control

incorporated into our scalable coder. In fact, a P’-frame is one way to limit the temporal

extent of error propagation without an I-frame, even for a one-layer encoder.

3.1 Prediction structure

Figures 1 and 2 show our scalable DCT decoder and encoder with drift control. The
encoder incorporates all five components necessary for effective drift management. The
decoder (Figure 1) takes three levels of input. The base bits, with bit rate R,., are
assumed to be always available. The first part of the enhancement bits, with bit-rate
R,; — R,., may not be received by the decoder, but if received, are used to predict the
next frame. The second part of the enhancement bits, with bit-rate R,, — R, s, may not
be received, and is never used to predict the next frame.

Both the decoder and the encoder maintain two frame memories. The coarse frame
memory depends only on the base bits and never drifts. The fine frame memory is up-
dated by first combining both motion-compensated frame memories, and then applying
the base bits and the first part of the enhancement bits. The fine memory drifts when

some of these enhancement bits are lost.
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Figure 2: Two-loop encoder with drift control

Let p. and p, s be motion-compensated predictions from the coarse and fine memories
for macroblock n. For each macroblock (MB), the drift compensation box in Figure 1
combines the coarse and fine predictions according to a MB type information. The first
option eliminates drift by taking the coarse prediction p,. only (as in FGS). The second
option allows drift by taking the fine prediction p,; only (as in MPEG-2 SNRS). The
third option reduces, but does not eliminate, drift by averaging both predictions. For
simplicity, we only consider here these three options; other combinations would naturally
extend our scheme.

The scalable DCT encoder (Figure 2) tracks both frame memories under the assump-
tion that all bits are received by the decoder. The encoder makes several decisions that
affect the amount of decoder drift in the fine memory. The first decision is the selec-
tion of a prediction mode for the drift compensation. The second decision involves the
number of bit-planes that might be used in the prediction loop; this is accomplished by
adjusting the quantization @)y relative to the final quantization ),. A third technique

could be to apply a filter to the prediction from the coarse loop in order to smooth the



discontinuities associated with prediction blocks that straddle macroblock boundaries;
we do not explore this latter possibility in this paper.

Different sequences, and different parts of sequences, have different trade-offs between
efficiency and resilience as a function of these drift control decisions. In high temporal
correlation, it is advantageous to use temporal prediction as much as possible, while in low
temporal correlation, temporal prediction can be neglected to reduce error propagation.
The encoder must make these decisions and send this information to the decoder. Our
encoder makes these choices on a macroblock basis with the goal of optimizing the total
system performance as described in Section 4.

To minimize the influence of drift in general, we use an embedded coder (described
next) to compress each individual frame. This allows more significant enhancement
layer bit-planes to be received and decoded even if the network does not have sufficient
bandwidth to send the entire enhancement layer. In our implementation, the base-layer
VLC also uses arithmetic bit-plane coding, however it could have been implemented
using the usual Huffman method. Macroblock type information and motion vectors
are included in the base layer. We use the same motion vectors in both the base and

enhancement layers.

3.2 Embedded video bitstream

A scalable video bitstream must indicate the relative importance of bits or groups of bits
within the bitstream. This information is necessary to facilitate transport mechanisms
that respond to the observed channel characteristics by discarding the least important
bits or by applying error correction to the more important bits. In our scalable bitstream,
which is produced by a binary adaptive Z-Coder [30], prioritization is imposed by the
order in which information is encoded during a coding run.

The Z-Coder coder represents probability distributions using context variables. In-
ternal state and context variables are initialized at the beginning of each coding run and

are updated after coding each binary decision. If a piece of the bitstream is missing, the
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decoder cannot perform identical updates and must stop. Decoding can resume at the
beginning of the next coding run. Hence, more important information should be encoded
early in the coding run to ensure it is received prior to any information loss.

Shorter coding runs increase robustness to random losses in the channel. However,
because we assume prioritized transport, very short coding runs will not be useful in our
system. Longer coding runs typically improve the coding efficiency because the contexts
do not need to be re-learned at the beginning of every coding run. A typical single frame
requires 1.072 or 0.513 bits per pixel when quantized with () = 4 or () = 8 respectively.
If the same frame is encoded 256 times without resetting the adaptation contexts after
encoding each copy, the resulting bit-rates are 1.069 and 0.509 bits per pixel respectively.
This suggests that no more than 1% of the bandwidth could be saved by coding several
frames per coding run. Further, latency becomes problematic if we have several frames
per coding run. In this paper, the scalable coder currently performs one coding run per
frame.

Within each coding run, binary decisions are encoded by decreasing order of im-
portance. We start with the macroblock type, quantization and motion information,
followed by the DCT coefficient information for the base layer and the various enhance-
ment layers. The DCT coefficients are encoded as a sequence of binary decisions ordered
according to their importance. The coefficients in each 8x8 block are first divided by
the finest quantizer @),, resulting in an integer quotient with absolute value that can al-
ways be represented using twelve bits. Each elementary bitplane coding operation then
processes one particular bitplane of one particular 8x8 block of DCT coefficients.

Each elementary coding operation belongs either to the base layer or to one of the
two refinement layers, according to the bitplane number and to the values of the Q./Q.
and Q;/Q, ratios for the corresponding macroblock. First, the base layer is encoded
by performing all the base-layer elementary coding operations starting with the most
significant bitplanes, and proceeding towards the least significant bitplane. Then each

refinement layer is encoded by similarly performing all the elementary coding operations
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for that layer in decreasing order of bitplane significance. The Z-Coder internal state is
flushed after each layer in order to clearly delimit the bitstream for each layer.

To perform an elementary coding operation, the coder loops over the 64 coefficients
and codes whether the binary representation of its absolute value contains a 0 or a 1 for
the current bitplane. The sign bit is coded just after coding the first 1 of each coefficient.
Such coefficients are named significant. Previous bit-plane coders [31, 32| take advantage
of the wavelet transform structure by coding decisions addressing the significance of entire
coefficient groups. The same result is achieved for zig-zag ordered DCT coefficients by
coding a stopping decision after each significant coefficient. A positive stopping decision
indicates that none of the remaining coefficients will be significant after processing this
bitplane. When it is known that some remaining coefficients are already significant, there
is no need to code the stopping decision.

This encoding process produces a high bandwidth bitstream. Lower bandwidth chan-
nels are accomodated by simply truncating a fixed proportion of the second refinement
layer. Even lower bandwith channels are accomodated by eliminating the second re-
finement layer altogether and truncating a fixed proportion of the first refinement layer.
Extremely low bandwidth channels might be dealt with by eliminating both refinement
layers and truncating the base layer. Here, we facilitate the truncation process by di-
viding the bitstream into “chunks”, with one chunk per layer per frame. Each chunk is
preceded by a one- to three-byte length indicator, indicating how many bytes are in the
chunk. There are three chunks per frame, corresponding to the base layer, the first part

of the enhancement layer, and the second part of the enhancement layer.

4 Encoder optimization

The traditional (often implicit) optimization when designing a scalable coder is to mini-
mize the maximum possible distortion at the decoder, subject to the constraint that the

channel rate R is in the range R, < R < Ry4.- Typically, both R,;, and R, are
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known, although neither the instantaneous channel rate nor the average channel rate in
some time interval is known. The maximum distortion is achieved for the minimum rate
R,in. Thus, optimizing using this criterion leads to a prediction process that does not
tolerate any drift in the base layer. However, this also results in larger than necessary
distortions at rates near R,,,,. We explore in Section 4.1 some alternate criteria for
optimization, to achieve better compression at high rates without sacrificing too much
quality at lower rates. In Section 4.2, we develop an algorithm for macroblock-level se-
lection of encoding parameters based on Lagrange optimization and a simple model, and

in Section 4.3, we describe in detail our implementation of that algorithm.

4.1 Alternate optimization strategies

One optimization criterion is to minimize the distortion at the highest rate, subject
to constraint that the drift at the lowest rate is kept below some value. This can be

expressed as min{D,} subject to D, < D, and the rate constraints
Rc S Rmm and Ra S Rmam- (]-)

Here, R. and R, are the rates associated with the base bits, and all the bits, respectively,
and D, and D, are the distortions of the associated reconstructions.

An alternate optimization criterion is to minimize the distortion averaged across all
possible channel rates, subject to the rate constraints in (1). Determining the average
distortion, however, requires knowledge of the probability distribution of the channel
rates. This information is typically not available. However, a simple approximation is
to minimize a weighted distortion w.D. + (1 — w,.)D,, subject to the rate constraints in
(1). The choice of w, is influenced by the application and by the expected channel rates.
For example, if smaller rates are expected to be the norm, then w,. should be set close
to 1, while if high channel rates are typically expected, w, should be set close to zero.

These two constrained optimizations can be solved by converting them to uncon-

strained Lagrangian optimizations. The unconstrained optimization problems will have
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two or three Lagrange parameters, and can be attacked using techniques similar to those
in [26, 27, 13]. In this paper, we choose not use the operational rate and distortion,
determined by repeated encodings for each macroblock, as in [26, 27, 13|. Instead, we
use some very simple models for both rate and distortion. We believe this yields more
insight into the solution, and most importantly, our results in Section 5 indicate that

this strategy yields very good results for many sequences.

4.2 Our locally adaptive quantizer and prediction selection

In [23] we fixed the quantizers Q,, @, and (), and used a simple heuristic to choose which
prediction should be used for each MB. Here, we consider changing both the quantizer

Qs and the prediction, with the goal to minimize Y-, R(t) subject to

> 1(1 —7)log Dy(t) + ylog D.(t)] < 3" log D*, (2)

where Ry(t) and D(t) are the rate and distortion produced when using Q¢(t), and D.(t)
is the distortion with only the coarse information, each at time step ¢. To simplify the
notation, we suppress the fact that the summation applies not only over all time steps,
but also over all macroblocks in each frame.

The value of v depends on the application, and should be chosen to create a network-
aware encoding [10]. If the channel rate is expected to be generally close to R,,i,, then
should be set close to 1. Then, the encoder will reduce the drift at the lower rates at the
expense of the compression efficiency at higher rates. On the other hand, if the channel
rate is expected to be generally greater than R,,;, with occasional dips, then v should
be set close to zero [10].

Applying Lagrangian optimization, we choose the fine quantizer () s and the prediction
method p such that

{gﬁt;m&m+u~m%mm+ﬂ%mwy (3)
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We use very simple models for rate and distortion,

1 Q] Qe
R=§log(02/D), Dy = 1—5, and DC=§+MP,

where M, is a measure of the amount of mismatch between a given prediction p and the
coarse prediction p,., to account for the contribution of drift to D.. For an I-block or
when using py., M, = 0. When using the prediction p, ¢, M), is the mean squared energy
between p; and Py, while it is one quarter that when using the average prediction?®.

Using these, the optimization equation becomes

P
*””‘)g(Qf(tV)”l g(” 0ulty )] @)

where p indicates the prediction being evaluated, and we have absorbed the constant
multiplier into .

In general, the first and fourth terms in equation (4) depend on past predictions
and quantizers, as well as on the prediction in the current time step. For example,
consider the selection of the best predictor for a particular macroblock in frame ¢. This
macroblock depends on up to four MBs in frame ¢ — 1. If a finer quantizer (); had been
used for those four Mbs in frame ¢ — 1, then the prediction py in frame ¢ would have had
a smaller 05 but larger M,. Because of this dependency across time, joint optimization
is required; however, a fully joint optimization requires a prohibitive search space.

Here, we choose to ignore some of the dependencies to simplify the optimization
procedure. Because the dependence on the previous prediction is generally weaker than
the dependence on the previous quantizer, we first consider jointly only the quantizer
selection at time ¢ — 1 with the prediction selection at time ¢. However, this is generally
still too complicated because one MB in frame ¢ depends on four different values of Q)

in frame ¢ — 1. This is still too large a state space to reasonably consider.

2In our experiments, we found using a cumulative sum of the mismatch energy which is reset to zero
for an I-block or a block using p,. was more effective.
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Hence, we consider first the choice of the best quantizer for each MB in frame ¢ — 1
assuming the neighboring quantizers are identical, and consider second the choice of the
best prediction using the selected quantizers.

Consider the second step first. Assuming the quantizers )y and Q). are fixed for all
time and that the current predictor depends only weakly on the previous predictors, (4)

reduces to

, 120, (1)
logo?(t) +vlog {1+ —22 5
min  plogoy(t) +7 g( 0 ()

for frame £. Thus, to choose the best predictor given fixed quantizers, we simply evaluate
(5) for each of the three predictors (P, Pnf, and (Pnc+Pns)/2), and choose the minimizing
predictor. Note that in the case when v = 0, this simply chooses the predictor which
has the minimum prediction error. If v > 0, the impact of drift is also considered.

The first step, to choose the best quantizer for a MB in frame ¢ — 1 assuming the
prediction strategies are already fixed, is more complicated. We need to consider the first
and fourth terms of equation (4) for frame ¢, and the second and third terms of equation
(4) for frame ¢ — 1. We can ignore the second and third terms for frame ¢ because the
quantizer () at time ¢ is unknown, and we assume it is constant. The first and fourth
terms for frame ¢ — 1 can be ignored because the predictor for ¢ — 1 is already fixed.
Thus, to choose the quantizer Q;(t — 1), we minimize

(1 —p)logQp(t —1)*/12 + vlog (%)

+plogal(t) + vlog (1 A{;’;?) (6)

For this first step, we consider jointly the effect of the quantizer Q;(¢ — 1) and the
predictor p(t). A particular MB in frame ¢ — 1 may be used to predict multiple MBs
in frame t. Therefore, we first determine all affected MBs in frame ¢ via reverse motion
compensation. For every possible quantizer (¢ — 1), we assume the surrounding MBs
use the same quantizer, and determine the best prediction of those affected MBs, as in

equation (5). Then we choose the Q;(t — 1) that minimizes the weighted cost of the
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affected MBs. To compute the appropriate weight, we use the number of pixels in each

MB in frame ¢ that are impacted by the current MB in frame ¢ — 1.

4.3 Algorithm for selection of (); and predictor

To choose effective encoding parameters to encode frame ¢, we implement the following

algorithm.

Preprocessing step 1: Do motion estimation between frames ¢ and ¢ + 1.

Preprocessing step 2: For each Q = m@),, where m = 1,2,4, 8, create a frame mem-
ory assuming the entire frame uses quantizer ). During this process, each mac-

roblock uses the best prediction p*(¢) according to (5).
Step 1: For each macroblock in frame £,
Step 2: For each affected MB in future frame ¢ + 1,
Step 3: For each QQ = mQ,,
Step 4: Find p*(¢ + 1), the predictor which minimizes (5).

Step 5: Compute incremental cost for this affected MB in future frame ¢ + 1,
AC(Q) according to (6) using p*(t + 1).

Step 6: Add weighted cost to cumulative cost, C(Q)+ = w x AC(Q), where w
is the percentage of pixels affected in the future MB by the current MB in frame ¢.

Step 7: Choose Q} to be the @ = mQ), which has minimum C(Q).

Step 8: Code current macroblock using Q} from step 7 and p*(t) from preprocessing
step 2.
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5 Results

In this section, we compare the performance of our drift-controlled coder to alternative
coders. To ensure a fair comparison, all encoders in our comparisons are implemented
using core components from H.263 baseline, with modifications to obtain the relevant
prediction-loop structure. All coders also have the following additional modifications:
the H.263 quantizer is replaced by a scalable quantizer [12], and the bitstream encoder is
replaced by an embedded DCT coder described in section 3. Using a scalable quantizer
instead of the H.263 quantizer loses less than 0.1 dB in quality, while using the context-
based arithmetic coder instead of the H.263 Variable Length coder reduces the bit-rate
by at least 5%.

In Figures 3 through 8, we compare our optimized coder and our coder with fixed
Qf to a one-layer encoder with no drift control, and to an encoder that uses the FGS
prediction structure [8] (i.e., an encoder that always uses the coarse predictor p.). We
use each encoder to create a single encoding, containing the base layer and 3 bit-planes
of enhancement-layer information. Each coder uses a fixed, identical, quantizer in the
base layer. In the current implementation, our drift-controlled coder sets ), = 4 and
Q. = 8Q),. To emphasize the impact of drift, we use one I frame, followed by continuous
P frames for each coder.

To obtain the performance comparisons in Figures 3 through 8 for the CIF sequences
Hall, News, Akiyo, Table Tennis, Foreman, and Mobile, we truncate the EL bitstreams
and decode the remainder. The x-axis shows the decoded bit-rate, and the y-axis shows
the PSNR of the resulting decoder reconstruction. Also shown is the performance of the
one-layer encoder with no loss, which cannot be generated using a single bitstream but
must be obtained by generating a bitstream for each rate of interest. The curves labeled
“fixed QQ¢” use a fixed quantizer of (}y = 2(¢), for all MBs, while the curves labeled
“optimal ()" use the method in Section 4. The curve labeled “FGS” uses the prediction

structure of MPEG-4 FGS, where there is no temporal prediction of the enhancement
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Figure 3: PSNR vs. rate for sequence Hall (15 fps).

layer.

The FGS coder performs poorly at the higher rates, especially for the mostly-still
Hall, News, and Akiyo sequences. The one-layer decoder with drift suffers more than 5
dB degradation at the lowest bit-rate, compared to the drift-free FGS decoder. Relative
to the FGS coder, our drift-controlled coder with fixed @); suffers about 1.3-1.4 dB per-
formance degradation at the lowest bit-rate, but significantly outperforms it elsewhere.
Our drift-controlled coder with optimized ) undergoes slightly more drift for the lowest
bit-rates, but performs even better at the higher rates. For the Hall sequence, our op-
timized coder is competitive with the one-layer nonscalable coder with no loss for rates
from 200-700 kbps. For News and Akiyo, our optimized coder is also competitve with
the one-layer nonscalable coder in the middle range of bit-rates, losing some efficiency
for the higher bit-rates and incurring some drift at the lower bit-rates. For Mobile, our
drift-controlled coder loses some efficiency at the highest rates compared to the one-layer

coder, but has substantially less drift as bits are discarded.
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Table 1 shows the PSNR for the six sequences averaged across channel rates, assuming
a uniform distribution of rates between the smallest and the largest rate of the one-
layer encoder. In all cases, both our coders with fixed and optimized @); significantly
outperform the other coders, beating FGS by 1-5 dB across the range of channel rates.
The improvement of our coder relative to the FGS coder is largest for sequences with
still backgrounds.

Figures 9 and 10 show individual frames from the Mobile sequence, for the one-layer
coder with and without loss, and for the FGS and drift-controlled coders, respectively.
All encoders use approximately the same average bit-rate as indicated in the captions.
The one-layer bitstream for Figure 9(a) is encoded and decoded at the specific rate, while
the one-layer bitstream decoded to create Figure 9(b) was truncated from an original
bitstream compressed with greater bit-rate. The FGS and drift-controlled pictures were
both generated from truncated streams.

Figure 9(b) shows that uncontrolled drift can significantly affect the quality of the
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Figure 9: Mobile: 50th decoded frame. (a) One-layer no loss ( 688.6 kbps, 32.23 dB
average) (b) One-layer, drift (657.5 kbps, 25.01 dB average)
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Figure 10: Mobile: 50th decoded frame. (a) FGS ( 651.4 kbps, 27.42 dB average) (b)
Controlled-drift (636.0 kbps, 29.04 dB average)
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One- | Fixed | Opt.
seq. loop Qr Qy FGS | bound

Hall 30.18 | 34.75 | 36.64 | 32.59 | 36.86
Akiyo 32.62 | 35.60 | 37.69 | 32.68 | 38.60
News 30.23 | 33.13 | 35.17 | 30.63 | 36.30
Tennis 31.45 | 32.66 | 33.51 | 31.80 | 34.12
Foreman | 32.18 | 33.74 | 33.69 | 32.68 | 35.05
Mobile 26.02 | 29.27 | 29.11 | 27.75 | 31.78

Table 1: Decoded PSNR averaged across channel assuming uniform distribution.

reconstructed frame, by creating significant blurring throughout. However, the controlled
drift in Figure 10(b) shows noticably sharper pictures than FGS in 10(a). The increased
clarity can be seen, for example, in the eyes of the horses, the fence beneath the horses,
and the rightmost goose. When viewed in real-time, the FGS video also exhibits visibly
more flicker, because the artifacts in the enhancement-layer change from frame to frame.

The ability of our coder to keep drift in control is illustrated in Figure 11, which shows
the PSNR as a function of time for Mobile at rates around 270 kbps, for four decoders.
The qualities of the one-layer decoder with drift and of a bitstream which always uses a
fine prediction continue to decrease as a function of time. However, the quality for the
decoder using optimal drift control is effectively maintained, as the number of decoded

frames increases beyond 15.

6 Conclusions

In this paper, we presented an efficient scalable video coder. The temporal prediction
structure of the coder intentionally introduces drift by predicting the high-priority base
layer from the less-important enhancement layer. To combat the negative effects of drift
our scalable coder uses a drift management system that balances compression efficiency
and error propagation.

While the FGS prediction structure is effective when the temporal correlation is low

25



28

M
271 8
\
26 —— One-layer no loss E
N One-layer drift
! - - Fixed Pf
251 }{ O Optimal prediction . 7
N ~
Sy AN
~ \
mogl N ~/ i
g2 AN SN ;7 oo e
x <3 A E)\ ~ -
zZ \ N /\,O//
¥ 23 \ b
N
221 S 8
\
21t RSN g
N
20} N . |
19 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Decoded frame number

Figure 11: PSNR vs. time for sequence Mobile.

[16], our coder takes advantage of the inconsistent temporal correlation within a frame
that is typically present in video sequences. With spatially adaptive prediction, we can
use FGS-style prediction when the local temporal correlation is low and use more efficient
prediction methods when the local temporal correlation is higher. Our results clearly
indicate that the locally adaptive selection of quantizer and prediction, in combination
with the proposed prediction structure, is highly effective for managing drift in an efficient
scalable video coder.

Our current locally adaptive selection algorithm is based on a particular optimization
criteria, and uses very simple models to characterize both the rate and distortion. Further
improvements might be possible, particularly for the sequences Mobile and Foreman by
using alternate optimization criteria or by replacing the simple models with operational
measures of the rate and distortion. Furthermore, the structure of the decoder in Figure 1
uses a specific drift-compensation strategy of switching among three possible predictions.
Alternate drift compensation mechanisms may enable additional improvements to the

overall performance.
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In many video streaming systems, a number of one-layer bitstreams are switched
among, depending on an estimate of the channel conditions. Better system performance
could be obtained by using instead a number of scalable bitstreams from our coder,
each optimized for a different channel condition [10]. Switching among different streams
provides long-term adaptation to changing channel conditions, while using a scalable
bitstream instead of a one-layer bitstream provides short-term robustness against channel

changes.
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