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Abstract: La conception de tres grand systemes d’'apprentissage yoos
grand nombre de problemes non résolus. Savons nous, @aipéx construire
un algorithme qui “regarde” la télévision pendant quelsgjsemaines et apprend
a enumeérer les objets présents dans ces images. Labdolelles de nos algo-
rithmes ne nous permettent pas de traiter les quantitésiveasde données que
cela implique. L'expérience suggere que les algorithtassnieux adaptés sont
les algorithmes stochastiques. Leur convergence estgmuéputée beaucoup
plus lente que celle des meilleurs algorithmes d’optinosat Mais il s’agit de
la convergence vers I'optimum empirique. Notre papier mefde la question
en termes de convergence vers le point de meilleure gesgian et montre la
superiorité d’un algorithme stochastique bien concu.
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1 Introduction

During the last decade, we have seen a considerable impemtem our the-

oretical understanding of learning systems as statist@dhines. The Vapnik
Chervonenkis theory (Vapnik, 1974) has spelled out theabteapacity and gen-
eralization in the design of learning algorithms. This wstending has influenced
several recent learning algorithms such as support ve@ohimes (Boser, Guyon
and Vapnik, 1992) and boosting (Drucker, Schapire and Sint393), (Freund

and Schapire, 1996). These algorithms challenge the popuise of dimension-



ality which says that statistical systems with large number cdupaters require
impracticably large data sets.

Bridges have been established between learning algoriimeh®oth classical
and Bayesian statistics. We have seen learning algoritippléed to problems
usually associated with statistics. We also have seen aivaagsplication of
statistics to solve learning problems or improve learnilgg@athms.

Despite these advances, we have yet to see a spectacuéasadn the size of
both the data sets and the learning machines. The MNIST da{8sttou et al.,
1994), for instance, is still described as a relevant bemckrfor more recent
algorithms. Systems dealing with more than a few millionarmegles seldom
compute more than simple counts or histograms. Do we know tobuild a
machine which can learn how to enumerate objects in arpisegnes using TV
broadcasts as a data source?

The MNIST experiments were carried out on workstationsiead a 40MHz
processor and 32MB of memory. The computer hardware wasaa lotgtleneck.
Personal computers now feature fifty times that speed andamyentlard disk
technology has progressed even faster. Large data soueceswa available, be-
cause audio and video capture hardware is now commonpladeglso because
the development of on-line technologies has provided aditlansaction logs.

This discrepancy indicates that we have reached anothéeedtk. Our learn-
ing algorithms do not scale well enough to take advantagedi targe datasets
and such large computing resources.

As datasets grow to practically infinite sizes, we argue dhalinealgorithms
(Bottou and Murata, 2002) outperform traditional learnaigorithms that oper-
ate by repetitively sweeping over the entire training setisTpaper shows that
performing a single epoch of a suitable on-line algorithmvesges to the “true”
solution of the learning problem asymptotically as fastmsather algorithm.

The first part of the paper presents the problem and discilssa®main re-
sults and their consequences. The second part of the papades proofs and
mathematical details.

2 On-line Learning and Batch Learning

Many learning algorithms optimize an empirical cost fuant(C'(6) that can be
expressed as a very large sum of terf{s, §). Each term measures the cost
associated with running a model with parameter vegtam independently drawn



examples z;.
AT
Cu(®) = =D L(z,0) (1)
=1
Two kinds of optimization procedures are often mentionexbimection with this
problem:

e Batchgradient: Parameter updates are performed on the basie gfaklli-
ent and Hessian information accumulated over the entim@nigaset:

ac,
Ok) = Ok —1) = & (0(k— 1))
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whered®,, is an appropriately chosen positive definite symmetric matr

e On-lineor stochastigradient: Parameter updates are performed on the ba-
sis of a single samplg picked randomly at each iteration:

1) = 0 —1) 1 B9 (2,000 1) ©
where®, is again an appropriately chosen positive definite symmeta-
trix. Very often the examples, are chosen by cycling over a randomly
permuted training set. Each cycle is called egpoch This paper how-
ever considers situations where the supply of training $esnp practically
unlimited. Each iteration of the online algorithm utilizagresh sample,
unlikely to have been presented to the system before.

Simple batch algorithms converge linearly to the optinfijnof the empirical
cost, that is to saff (k) — 67 )? converges like*). Careful choices ob; make the
convergence super-linear (e.g. Iik)éeet in favorable cases (Dennis and Schnabel,
1983).

By comparison, on-line algorithms appear to converge viewylg. This con-
vergence has been studied extensively (Benveniste, Metawid Priouret, 1990;
Bottou, 1998). Under mild assumptions, they are shown teexge almost surely
to a local minimurd of the cost. However, whereas on-line algorithms may con-
verge to the general area of the optimum at least as fast als algtorithms (Le
Cun et al., 1998b), stochastic fluctuations due to the naigignt estimate make

1Each example; typically is an input/output paifz;, v;).
2We assume in this paper that the paramefdeaise confined in the neighborhood of a single
minimum.



the parameter vector randomly wobble around the optimunmégi@n whose size
decreases slowly. The analysis shows @(t) — 67 )? converges likd /¢ at best.

At first glance, on-line algorithms seem hopelessly slowweher, the above
discussion addresses the convergence toward the minimtime empirical cost
C,(0), whereas one should be much more interested in the convcergeward
the minimum of the expected cost:

Cno(0) = / L(z 0)p(z) dz (4)

wherep(z) is the unknown probability distribution from which the sdegpare
drawn (Vapnik, 1974).

The main point of this paper is to show that, in situations iehtbe supply
of training samples is essentially unlimited, a well desjron-line algorithm
converges toward the minimum of tegpected cogtist as fast as any batch algo-
rithm. In those situations, the convergence speed is miamited by the fact that
some informative examples have not yet been seen rathebyhidue fact that the
examples already seen have not been fully exploited by themisation process.

This point is very significant because on-line algorithnes@nsiderably eas-
ier to implement. Each iteration of the batch algorithm (®)lves a large sum-
mation over all the available examples. Memory must be atkxat to hold these
examples, and computations must be performed on each of tenthe other
hand, each iteration of the on-line algorithm (3) only irmed one random exam-
ple which can be discarded afterward.

3 Learning Speed

Assume we have immediate access to an infinite number of dgatap. .. z; . . .)
independently drawn from(z). We must decide how to use our computer cycles:

e We can run an on-line learning algorithm (3) and visit as mexgmples
as possible during the allowed computer time. This proeguoduces a
sequence of parameter vecté(s) witht = 1, ..., T whereT represent the
total number of iterations achieved within the impartedeim

e We can run a batch super-linear algorithm (2) on a subsetarhples ex-
amples{z,..., zy} whereN is the size of the largest subset of examples
that can be processed within the imparted time. This praeedccurately
produces the parameter vectyr that minimizes the empirical coéty (6).

The number of example¥ processed by the batch algorithm cannot be as large
as the number of exampl&sprocessed by the on-line algorithm. Comparing the



complexity of equations (2) and (3) clearly shows that thasild only allow for
a couple iterations of the batch algorithm. Even if we asstimeN = T', we
show in this contribution that no batch algorithm can perfdretter than a well
designed on-line algorithm.

3.1 On-line algorithm

The mathematics of on-line learning algorithm easily edtenthe minimization
of the expected cost. Examplesare drawn at each iteration of an on-line al-
gorithm. When these examples are drawn from a set @kamples, the on-line
algorithm minimizes the empirical erra@r,,. When these examples are drawn
from the asymptotic distributiop(z), it minimizes the expected cos&t,..

Because the supply of training samples is practically uitdidh each iteration
of the on-line update rule (3) utilizes a fresh example. €Hfessh examples then
follow the asymptotic distribution. The parameter vect thus converge to
the optimumg* of the expected cost.,. FurthermoreE(6(t) — 6*)% converges
like 1/t at best.

3.2 Batch algorithm

How fast doe®?, converge to the optimum of the expected cost,.(0)?

A first hint is provided by the well known Cramer-Rao bound.the Maxi-
mum Likelihood casg the bound suggests thB{#; — 0*)? converges no faster
thanO (1/t).

We consider now the sequence of solutiéhsomputed by a batch learning
algorithm running on a set of exampley(zy, ..., z,). Our first result (section
A.3) provides the following recursive relation betwe&nandé; ;.

1oL 1
n — Yn—-1— E\I’n%(%wgn—l) +0 (ﬁ) (5)
with

-1
A 1S &2 . RZ A\
v, = (ﬁ 2 aeael’(ziaenl)> 7;)0 (mcoo(e )) (6)

This relation (5) describes th# sequence as a recursive stochastic process
that is essentially similar to the on-line learning aldamit (3). Each iteration
of this “algorithm” consists in picking a fresh examplg and updating the pa-
rameters according to (5). This is not a practical algorittenause we have no

3i.e. L(z,0) = —log ¢(z,8) with both conditions[ ¢(z, ) dz = 1 and¢(z,6*) = p(z).



analytical expression for the second order term. We can bemapply the math-
ematics of on-line learning algorithms to this stochastmcpss. The similarity
between (5) and (3) can be enhanced by an appropriate chbibe ositive
definite symmetric matri®; in the on-line algorithm (3).

3.3 Convergence speed result

Therefore, the convergence of the following stochasticess describes both the
convergence of an online learning algoritrand thebehavior of the solutions of
a batch learning algorithm
0, = 6,1 — %@ti—g(zt,et_l) +0 (%) (7)

Because a same stochastic process describes both coroesger can hope
that they occur at identical speeds. It is therefore immtiadetermine how the
convergence speed of (7) depends on the unspecified seaderdtemms and on
the choice ofd,.

Our main result (section A.4) characterizes the convergespeed of this
stochastic process under the following assumptions:

i) We only consider the final convergence phase (Bottou ancatdu2002).
More precisely we consider that tiig are confined in a bounded domain
whereC (6) has a single minimuré*.

i) We assume thak, converges to the inverse of the hesstanf the expected
risk at the optimum.
82
0000

b, — H' with H= Coo(6%)

iii) We first assume thak, only depends ony, ..., z;_;. The result however
still holds when®,; depends mildly on; as in equation (6).

This convergence speed neither depends on the second erdes in our
stochastic process nor depends on howdastonverges td{—'. More precisely

we have: 1 Gyt .

wheretr (-) represents the trace of a matri¥, is the hessian of the expected
risk in 8*, andg is a Gauss-Newton approximation of the hessian (Le Cun,et al.

1998b): /
oo (][]




In the Maximum Likelihood case, it is well known that bdhandg are equal
to the Fisher information matrix on the optimum. Equationtfn indicates that
the convergence speed reaches the Cramer-Rao bound. Ssilitavas already
reported in the case of tidatural Gradientalgorithm (Murata and Amari, 1999).
Our result extends Murata’s result to vast classes of aniearning algorithms
beyond Natural Gradient.

3.4 Discussion

This result has implications for our initial dilemma. Showle visit as many
examples as possible with a well designed on-line algorittrmnun a batch algo-
rithm on the largest subset of examples we can afford ?

The surprisingly simple answer is to use tdgorithm that uses the most ex-
amples Learning is mainly limited by the fact that some informatiexamples
have not yet been seen rather than by the fact that the examipéady seen have
not been fully exploited by the minimization process.

As discussed above, the higher complexity of the batch algorupdate (2)
implies that the on-line algorithm can process more exashple

This result holds for any on-line algorithm whebg converges to the inverse
of the Hessian of the cost function. The speed of this comrerng is not critical.
It is however essential that; be afull rank approximation of the inverse hes-
sian. Maintaining such a full rank approximation in a largstem is very costly.
This is probably the main justification for avoiding the athisse elegant Natural
Gradient algorithm.

It is therefore important to design new approximations efithverse hessian
that simultaneously are cost effective and still deliveam@ramer-Rao efficiency.
We hope to achieve such a result using the new insights prdwbg the mathe-
matical tools underlying the results presented in this pape

4 Conclusion

We have shown that learning very large data sets is bestwvathigsing a well
designed on-line learning procedure. A well designed nadearning algorithm
learns just as fast as any batch algorithmterms of the number of examples
Furthermore, on-line learning algorithms require less potimg resources per
example, and therefore are able to process more examplaggfeen amount of
computing resources.

4Section A.5 shows thaf = O(N loglog N) whereT is the number of examples visited by
the on-line algorithm andv is the maximum set processed by a super-linear algorithim e
same computing resources.



A Mathematical discussion

A.1 Orders of magnitude

The main discussion uses the well known notatiefig and O (.) without much
analysis. In the case of stochastic sequences, theseomstaiin have several
distinct definitions. Let us first recall the definitions famstochastic sequences
feandg,:

ft = O(gt) = VC, Elt(), Vit > to, ‘ft‘ <c |gt‘
fi=0(g) & de, o, Vt > 1o, |fi| < gl

Let F;(w) andG;(w) be two stochastic sequences. The parameter represents
the elementary random variables. In the case of stochasticihg algorithms, for
instancew represents the initial conditions and the sequence of vbdaxxam-
plesz, ..., z. Although it is customary to simply writ&; or Gy, it is sometimes
useful to make the parameter explicit.

We use the unmodified(.) andO (.) notations to represepbintwise orders
of magnitude It means that the above definitions apply for each particuland
thatt, depends ow.

Definition 1. Pointwise orders of magnitude.
F,=0(Gy) & VYw, Ve, 3tg, Yt > 1y, |Fi(w)] < ¢|Gw)|
F,=0(Gy) & VYw, 3¢, Jto, Yt > to, |[Fi(w)] < ¢|Gi(w))|

The above definitions is poorly adequate for deriving prdistiz results. We
do not need the inequality to be true for absolutely.allNothing bad happens
if the inequality is violated on a set with zero probabilifPn the other hand it
is often desirable to makiy independent frona. This motivates the following
definition.

Definition 2. Almost uniform order of magnitudes.

Fy=0,(Gy) & Ve, Ttg, VE > to, P{|Fy(w)] < c|Gy(w)] } =1
E = Ou (Gt) = E|C, Elt(), Vvt > t(), P{ \Ft(w)| <c |Gt((U)‘ } =1

It is more practical however to make a slight modificationhef above defini-
tion, in the spirit of the concept @lonvergence in probability

Definition 3. Stochastic order of magnitudes (Mann and Wald, 1943).

F,=0,(G:) & Ve, Ve, 3, V> t, P{|F(w)| < c|Giw)| } >1—¢
F,=0,(Gy) & Ve, de, Iy, VEt > ty, P{ |Fi(w)| < c|Gi(w)| } >1—¢



Most of the properties of the usual orders of magnitude gipbyeo stochastic
orders of magnitude. In particular it is known th&t = o (G;) implies F; =
o, (Gt). On the other hand the relatid(o, (¢:)) = o (g:) is not true in general.
This is why we introduce yet another concept:

Definition 4. Almost uniformly bounded stochastic order of magnitude.
_F;g = Og (Gt) <~ _F;g = 0p (Gt) andFt = Ou (Gt)
Theorem 1. With the above definitions

E (05 (9:)) = 0 (g1)

Proof. Let us writeF(w) = o, (g¢). SinceF;(w) = O, (g:), there is a constant
M and a subscript; such that

Vi>t, P{|F(w)| < Mlg|} =1

Let us choose an arbitrary positive numbeWe define the everR, as follows:

2

C
Re 2 {w: |R@) = 5 Lol }
SinceFi(w) = o, (g¢) there is a subscrigt such that

C
< —.
Vit > ty, P(Ry) < Y0

Therefore, for alk > max(ty, t5), we can write

E (Fw)) < (1 - P(R))elgl + P(RIM lgi| < (5 + 55:M) |l = clad

This proves the theorem. O

A.2 Problem setup

Let the loss functior.(z, §) measure how much a learning system with parameter
¢ fails to handle example. The unknown example distributigr{z) represents
the ground truth. Our goal is to minimize the expected €sk6).

E (L(z,0) 2 /L(z,e) dp(z)

To achieve this goal, it is common to collect a finite traing®gz4, . . ., z, and to
minimize the objective functiot’, (6).

1>

Coo(0)

Cal®) & 37 L(e0)



Online learning algorithms provide another way to achidwus tjoal. Each iter-
ation of a typical online algorithm consists of drawing adam examplez and
applying the following parameter update rule, where®are well chosen posi-
tive definite symmetric matrices.

0y = 01— %q)tg—z(ztagt—l)

We assume that functions(z, 8), C,,(0), andCy () are three times differ-
entiable with continuous derivatives. We also assume tbtt the exampleg,
the parameter8, and the matrice®; are uniformly bounded. These assumptions
imply that many dependent variables are uniformly bounashbse they are con-
tinuous functions of uniformly bounded variables. Thidheatstrong assumption
is supported by experience. Unbounded online algorithms te diverge and be
useless.

Our discussion addresses the final convergence phase oé ¢éedirning algo-
rithms. Therefore we further assume that the paraméteemain confined in a
bounded domaif® where the cost functio@'s,(¢) is convex and has a single non
degenerate minimum € D.

Notation? denotes the definite positive hessian of the expected cést in

H=H(O) =E (agggL(z, 9*))

NotationG denotes the expectation of the squared Jacobian of thedoss f
tion at the optimum. This matrix measures the noise intreduxy the stochastic
selection of the examples. It is also related to the Gausgtdteapproximation
(Le Cun et al., 1998b). In the Maximum Likelihood case, itdgal to the well
known Fisher Information matrix (see (Murata and Amari, 29@r a definition).

o= (] o]

A.3 Recursive formulation of the batch algoritms

The result discussed in section 3.2 addresses the mifimicthe empirical objec-
tive functionsC,,(f). We must assume that the empirical casjg6) are convex
and have a minimum on domain.

We define the empirical hessians

i, 21 P g ©



and further assume that the eigenvalues of the empiricaldresare bounded by
some constant&,.. > Amin > 0 With probability oné. This implies that the
hessians and their inverses are@|l(1).

Theorem 2. With the above assumptions and notations,

. « 1 oL . 1
en = en 1 anlae( ﬂ79n—1) +OU (ﬁ)

Proof. Let us define

5.0 =23 %

Z_

and write a first order expansion in poiit ,
Su(6) = Su(051) = Ha (0 — 05_1) + Ou ((6; — 6521)%) -

where we use a uniform order of magnitude because the bonede@dssump-
tions described in section A.2 mean that the second denevafiS,, is uniformly
bounded. Sincé,,(0}) = S,—1(6;_,) = 0, we can then rewrite the left hand side
of this equality.

10L
" n b

We can then transform the right hand side as

(Zm 0*—1) = I:In (0;: - 9;—1) + Ou ((02 - 07*1—1)2) (10)

n 60 (Zn’ 071 1) (H + O (en - gn—l)) (0n - Hn—l)
and write
* * 1 Fr— * % 8L %
0y =01 = — (H +0 (0, = 0,1)) 5 (20 03 )

Thanks to our pervasive boundedness assumptions, the etpoakty implies that
0 —6:_, = O, (1/n). We can then rewrite equation (10) as

* & * * 1
nae(znae—l):Hn (gn_e )+0 <n2>

and derive the theorem. O

5This assumption is not very satisfying. We could considet ihis true only with some
probabilityl — n. The results would then hold with probability— n as well.



A.4 Convergence speed

Section 3 defines a stochastic process that simultaneoasbtyrides (a) the dy-
namics of an online learning algorithm, and (b) the convecgeof the solutions
of a batch learning algorithm running on training sets oféasing sizes. The fol-
lowing theorem addresses the convergence speed of thisastacprocess when
the scaling matrice®, converge tg{ ! in probability.

Theorem 3. We consider the following stochastic process

1. 0L

1
0, = 0,1 — ?I)t%(zt, 0;—1) + O, (t_z) (11)

with the assumptions described in section A.2 and where
i) & =H ' +0,(1).
ii.) @, is afunction of(z,...,z;1) only.

We have then

-1 -1

The proof relies on the following technical lemma.

Lemma 1. : Let the positive sequencg verify

o= (gt

If « >1andg > 0, then
g

tu, — ———
a—1

This result proves that; is asymptotically equivalent tb/t and also provides
the value of the constant factor. Amazingly enough, thistamt does not depend
on the unspecified low order terms of the recurrence.

Proof. Let us definey, = tu; and observe that

(e ()= (1) (-2 0)

Multiplying the recurrence by gives:

vtz(1—a;1+0<%))vt_1+§+0<%> (12)




Let us definey* = % and rewrite (12) as:

(0 — ) = (1—0‘;1+o<%)) (vt_l—v*)-l—o(%)

-1 A B
= (1_at +Tt>(vt—1—v)+7t (13)

with 4; — 0 andB; — 0.
By repeated substitutions of (13), we obtain

(’Ut — ’U*) = ht(UO — ’U*) + Z h_ -0 (14)
i=1 "

with
t

a—14+A;
= qT (1)
j=1 J
To prove the lemma, we must prove that (14) converges to Zérere is an integer
ip > 0 such thatl — &= 1+A1 is positive for allz > i,. For allt > iy, we can then
write:

log h Z log (1 — LA) Z _M 5 —00

j=to+1 1=jo+1

Thereforeh; — 0.

This result implies that the first term of (14) converges tmz&Ve now focus
on the second term. Sincg — 0, there is a; > iy such thatA4;| < “7*1 For all
7 > 4, we can also write:

t t

10g%=210g<1—a_1j+Aj> S—Za_1.+A _Za—l

b =it j=i+1 J j=i+1

It is well known that

t
/ifﬂ'*'l Z—</—dm

Jj=i+1
and that
| b1
Vi>1,/ d:v>/—dx—1
; T+1 i T
Therefore we can write
h ] -1
log = < ——1 gE a




and

a—1

h/ ) T2 . a—1
Vi >i>i, ogh—t§K1<%> with K, = e°7

Furthermore, for alk > 0 there is &, > i; such thatB;| < ¢ for all i > 5.
We can now bound the second term of (14) as follows:

> - (1)‘ (15)

i=ip+1

t

h; B;
20T

i=1

2

B;
ht;m

e The first term of this sum converges to zero becayse 0.

<

+€K1

e Whent is large enough, the second term is smaller ttaf(; K, because

L1\ T 1 i\ T L
. < Z - — T 'dz = K
i) <ix(l) o fere=n

i=12+1

We can now gather all the terms in (14) and (15). We can chbtzsge enough
to ensure that the first term of (14) and the first term of (16)esch smaller than
¢. We can also choogdarge enough to ensure that the last term of (15) is smaller
than2e K K.
Therefore we have just proven that foratb 0, we can chooselarge enough
to ensure thaw; — v*| < ¢ (2 4 2K, K5). Hencev, — v*. O

We can now proceed with the proof of theorem 3.

Proof. To simplify the notation in the following proof, we assumatlithe opti-
mum 6* is located on the origin. This assumption entails no lossesfegality
since it only involves a translation of the coordinate syst@/e also use notation
J(2,0) = % (z,0).

The assumptions described in section A.2 are sufficientitiond for the gen-
eral results discussed in section 4 of (Bottou, 1998). Wenkti@refore that,
converges t@* = 0 almost surely. This almost sure convergence implies that
; = o, (1). Since the), are uniformly bounded, we ha¥e = o, (1).

We first derive an expression féf; by squaring the recursive update formula.
This operation generates a number of high order terms tndbegummarized as
0, (1/t%). In particular the termd, ;O (1/t*) can be summarized as (1/t?)
because we have established that = o, (1).

et—lJ'(Zt, 0t—1)q) _ (I)tJ(Zt, 9t—1)9,lg_1
t t

o, J 0,_1)J" 0,_1)® 1
i t (Zt; t 1)752 (Zt, t 1) t + o, (_)

0,592 = 9?5—101/5—1 -

t2



We shall now take compute the conditional expectaBd#,6; | P;) where the
notationP; represents all variables known by timencluding the initial condi-
tionsf, and the selected examples ..., z; ;.

When the pasp; is known, variable®,; andé,_, are fixed and can be moved
outside the expectation operator.

E(q)tJ(Ztaet—l)Jl(Ztaet—l)q)t |P) = O, E, (J(Zaet—l)J,(Zaet—l)) o, (16)

The following relation holds becaugg = o, (1) and because functiai(z, 9) is
continuous and uniformly bounded.

E, (J(z,0,_1)J'(2,0,.1)) = G+ o5 (1)

We also remark thab, = H ! + o, (1) becaused, = H ! + o, (1) and because
both®, and# ! are uniformly bounded. Then

E (®;J(2s,0;-1)J" (24,0,_1)®: | Py) = H'GH ™ +0,(1) (17)

Using similar arguments we can also write the following éifya

ac
rY)

= (1! + 04 (1)) (M1 + 05 (0p-1)) 04y = 16,1 + 0 (16:-1]?)
We can now derivéa (6,0, | P;).

2 01| H ' GH! 1
E (9t07,5 | Pt) = 9t7191lt—1 — E Ht_10§_1 + o4 (' t 1| ) + g + 04 (—)

E (@tJ(Zt, 0t_1)0é71 | Pt) - @t EZ(J(Z, 975_1)) 01,5_1 - @ (Ht_l) 0?,5_1

4 2 2

Applying the trace operator gives the following expression

2 t -1 -1
E(|0t|2|Pt) _ (1_%) ‘975—1'2 +Os(|0t—1| ) + I'(H gH ) + Os(1>

t 12 2

We can then take the unconditional expectation, invokerdrad,, and obtain

2 1 tr (H'GH™) 1
E(‘et‘2) == (1—¥+0<¥)>E(|0t_1|2) + t2 4+ 0 t_2
Lemma 1 allows us to conclude.

E (0,2) = tr (H'GHY) ‘o <1>

t



Theorem 3 makes the assumption tabnly depends ony, ..., z;_; and is
therefore independent from. This assumption is reasonable for online learning
algorithms. However it is not verified by the empirical hass{9) introduced in
theorem 2. The following result relies on a weaker assumptibich is verified
by the empirical hessian (9).

Theorem 4. The result from theorem 3 still holds whép can be written as

. 1
ét =E ((I)t ‘ Pt) + ¢t(zt) with ¢t(zt) = O (¥>
The proof is essentially identical to the proof of theoremThe difference
shows in equation (16). The scaling matfxis no longer a constant when the
pastP; is known. We cannot mové; outside the expectation operator. We must
instead use the following derivation wheke is a uniformly bounded random
variable.

E(@X |P) = EE(®:|P)X|P)+E(¢:X|P)
— @ |P)E(X|P)+o. (})

The last equality (¢ X | P;) = o, (1/t) is a consequence of Schwartz’s inequal-
ity:

E (60X | P) | <E(16:/1X] | Ps) < VE (|02 | POVE (X[ Py)
We can then invoke the following relation
E(@ |P)=E(H '"+o0s(1) |P)=EH ' |P) +os(1)=H ' +o04(1)
and obtain equation (17) without changes.
E, (J(2,0i_1)J" (z,6,_1)) = H 'GH ' +0,(1)

The same argument yields

1
E ((I)tJ(Zt, 07571)0;71 ‘ Pt) = 975,102,1 + ‘0t71‘205 (1) + o4 <;>

The proof then proceeds without changes.



A.5 Complexity of Batch vs. Online Learning

Each iteration of a batch learning algorithm running/@rtraining examples re-
quires a timeK; N + K,. Constantds; and K, respectively represent the time
to compute the gradient for each example, and the time tydbelupdate to the
parameters. Theorems 2 and 4 indicate that

_tr (H1GH™Y
N

We must perform enough iterations of the batch algorithmppreximatefy,
with at least the same accura®y(1/N). A superlinear algorithm with quadratic
convergence will achieve this if? (log log V) iterations.

Each iteration of an online learning algorithm requires astant time. Pro-
cessindgl’ examples therefore requires tildg@7". The number of examples pro-
cessed by both algorithms with the same computing resoaredberefore related
by the following relation.

Oy —0)°

T = 0O (N loglogN)

We assume now that the online learning algorithm fulfils teditions of theorem
3. Comparing the acuracies of both algorithms shows thaotitiee algorithm
asymptotically performs better.

tr(H1GH™ e tr (H1GH™
T N

The essential condition for such a fast online algorithmhis ¢onvergence
of the scaling matrice®, to #~!. This is not very difficuly in theory. The
well known Natural Gradient algorithm, for instance, metbiis condition and
is known to perform optimally (Murata and Amari, 1999).

This means however that a full rank scaling matrix must bentaaied. This
is unfortunately not practical for large learning systenithwnany parameters. It
is therefore important to find out whether reduced rank sgatatrices offer the
same asymptotic properties.

(Or —07)" ~ ~ (0 —0)
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