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INTRODUCTION

Many learning algorithm work by repeatedly picking one example and updating the learning system parameters
on the basis of this example only. The evolving state of the parameters is the only trace of the previously seen
examples. These algorithms, called stochastic algorithms or online algorithms date back to early works on recursive
identification and learning systems (Robbins and Monro, 1951; Widrow and Hoff, 1960; Amari, 1967; Tsypkin,
1971). This was the dawn of the computer age. Algorithmic simplicity was a practical requirement.

The analysis of online algorithms is much more difficult than that of ordinary optimization algorithms. Practical
successes in signal processing (Widrow and Stearns, 1985) motivated the creation of sophisticated mathematical
tools known as stochastic approzimations (Ljung and Soderstrom, 1983; Benveniste, Metivier and Priouret, 1990).

Online algorithms are still extremely useful because they enjoy significant performance advantages for large scale
learning problems (Le Cun et al., 1998). This paper describes their properties using the stochastic approximation
theory as a very broad framework, and provides a brief overview of newer insights obtained information geometry
(see NEUROMANIFOLDS AND INFORMATION GEOMETRY) and replica calculations (see STATISTICAL
MECHANICS OF ON-LINE LEARNING AND GENERALIZATION).

The first section describes and illustrates a general framework for neural network learning algorithms based on
stochastic gradient descent. The second section presents stochastic approximation results describing the final phase.

The third section discusses the conceptual aspects of the search phase and comments some of the newest results.

STOCHASTIC GRADIENT

This section presents a simplified version of the general framework for stochastic gradient learning algorithms
introduced in (Tsypkin, 1971). Several examples of neural network learning algorithms are then discussed in this

context.

Stochastic Gradient and Back-propagation

Let us introduce the necessary concepts using the well-known example of multilayer networks (see PERCEPTRONS,
ADALINES, AND BACKPROPAGATION). Each example z is a pair composed of an input pattern z and a desired
output y. The output of a multilayer network is a differentiable function f(z,w) of the input pattern z and the
network weight vector w. The performance of the network on a particular example z = (z,y) is measured by a
loss function Q(z,w). In the multilayer network case, the loss function usually is the squared distance between the

desired output y and the network output f(z,w):

2

Qmse(zaw) % (y - f(ZL',U)))2 (1)
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One seeks a weight vector w that minimize the loss function averaged over the examples. There is however a
subtlety in how we define this average. Do we average over the few examples available in the training set, or over
all the examples that Nature cares to produce? The first average is named empirical risk and measures only the
training set performance. The second average is called the expected risk and measures the much more interesting
generalization performance (Vapnik, 1998).

Both empirical and expected risks can be written as:

Cw) 2 E.Q(uw) 2 / Q(z,w) dP(2) )

where dP(z) represents a probability distribution of examples and E, represents the expectation with respect to
this distribution. In the case of the expected risk, dP(z) is an unknown ground truth distribution representing
the laws of Nature. In the case of the empirical risk, dP(z) is a discrete distribution defined by the training set
examples z(1)...2r). The expectation (2) then reduces to a simple average 1/L ), Q(z(;), w).

It has often been suggested (Rumelhart et al., 1986) to minimize the risk (2) using a gradient descent algorithm.

Each iteration of the algorithms moves the weights along the steepest descent direction,

Wiy = wt—’Yt/Vw Q(z,w;) dP(2) (3)

where 7, is an adequately chosen positive learning rate and V,, @@ denotes the gradient of the loss function @ with
respect to the weight vector w. This optimization algorithm cannot be used to optimize the expected risk case
because the ground truth distribution is unknown. One must optimize the empirical risk instead and hope that the
training set performance is a good predictor of the generalization performance. Each iteration of this batch gradient
descent involves visiting all the training examples in order to compute the average gradient.

The stochastic gradient descent algorithm is a drastic simplification of the above algorithm. Each iteration

consists of picking a single random example z;, and updating the weight vector w according to the following rule:

wiy1 = W — YV Q(2¢, W) (4)

This algorithm illustrates the concept of stochastic approzimation. It is hoped that iterating equation (4) behaves
like iterating its mean (3) despite the noise introduced by this simplified procedure.

The stochastic gradient descent does not need to remember which examples were visited during the previous
iterations. This makes this algorithm suitable for the online adaptation of deployed systems. In such a situation,
the stochastic gradient descent directly optimizes the expected risk, since the examples are randomly drawn from
the ground truth distribution.

The stochastic gradient descent can also pick examples from a finite training set. This procedure optimizes
the empirical risk. The number of iterations is usually larger than the size of the training set. The examples are

therefore presented multiple times to the network.
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(General Stochastic Gradient Descent

The above example suggests a more general framework:

Let us consider a learning system whose goal consists in minimizing a cost function (2) that can be expressed as
the expectation of a loss function Q(z,w). Each iteration of the generalized stochastic gradient descent algorithm
consists in picking a random example z; and updating the parameter vector w using the update rule (4).

A number of well known learning algorithms can be viewed as particular cases of the generalized stochastic
gradient descent algorithm. A few examples a presented below. Additional examples can be found in (Bottou,
1998). Most results discussed in this contribution are based on the general framework and therefore apply to all
these learning systems alike.

Adaline — The early neural network learning algorithms adapt the parameters of a single threshold unit. Input
patterns z are recognized as members of class y = +1 according to the sign of dot product w'z. Each iteration of
the adaline learning algorithm (Widrow and Hoff, 1960) takes one training example z; = (z¢,y;) and applies the
delta rule:

Wiy = wi — Ve (Ye — W) Ty (5)

This is nothing more than an iteration of the stochastic gradient descent algorithm (4) with the following loss
function:

=

Qadatine (7, w) % (y— w/x)2 (6)

The adaline loss function does not take the discontinuity of the threshold unit into account. It is much more difficult
to optimize the apparently more natural loss function (y —sign(w'z))? because its gradient is null almost everywhere
Perceptron — The perceptron algorithm provides a slightly different solution. The weights are updated

according to the following rule if and only if the current example z; = (x4, y;) is mis-classified:

Wyl = We + VYt Tt (7)

This learning algorithm can be derived as an online gradient descent applied to the following loss function:

2

Qperceptron(za 'Ll)) %(Sign(wlx) - y) wlm (8)

The loss function is not differentiable when w'z is null. It has been shown that the average behavior of the stochastic
gradient algorithm is not affected by such mild non-differentiabilities (Bottou, 1998).

Unsupervised Clustering — The K-Means algorithm is a popular clustering method which dispatches K
centroids w(k) in order to find clusters in a set of points x;,...,2zr. This algorithm can be derived by performing

the online gradient descent with the following loss function.

A . .
Qxmeans (T, w) = %mkln (z —wk)? (9)
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This loss function measures the average error achieved when each point z is replaced by the nearest centroid k*(z).
The mild non-differentiability of this loss function on the cluster region boundaries are handled as in the perceptron
case. Equation (4) then yields the K-Means algorithm:

Ty — we(k) if k=k*(z)

Wyp1(k) = We(k) + Ve (10)
0 otherwise

Stochastic Gradient Dynamics

Given a suitable choice of the learning rates ¢, the ordinary gradient descent algorithm (3) is known to converge to
a local minimum of the cost function. This local minimum is a function of the initial parameters wg. The parameter
trajectory follows the meanders of the local attraction basin and eventually reaches the corresponding minimum.
The random noise introduced by stochastic gradient descent (4) disrupts this deterministic picture. The param-
eter trajectory can jump from basin to basin. One usually distinguish a search phase that explores the parameter

space and a final phase that takes place in the vicinity of a minimum.

FINAL PHASE

Convergence

The final convergence phase takes place in the vicinity of a single minimum w*. The following result rely on the
general converity hypothesis:

Ve > 0, inf (w—w")VyuCw) >0 (11)

(w—w=*)2>e
This hypothesis simply states that the opposite of the gradient always points toward the minimum w*. This
hypothesis usually holds within the final convergence region because the cost function is locally convex.

In order to obtain convergence, the parameter updates v: V., @Q(z,w) must become smaller and smaller when the
parameter vector approaches the optimum w*. This implies that either the gradients or the learning rates must
vanish in the vicinity of the optimum.

The size of the gradients can be described with a first order expansion of V,,@ in w*. There usually are constants

A, B > 0 such that the following bound holds within the final convergence region:
E. (VuQ(z,w)?)
~ E. (VuQ(z,w*)?) + E; (w—w*)...) (12)
< A+ B(w—w*)?
The constant A must be greater than the residual variance of the gradients at the optimum E, (V,,,Q(z,w*)z).

This residual variance can be zero for certain rare noiseless problems where w* simultaneously optimizes the loss
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for every examples. It is strictly positive in most practical cases. The average norm of the gradients then does not
vanish when the parameter vector w approaches the optimum. Therefore one must use decreasing learning rates,
e.g.:

> o7 <oo (13)

The presence of constant A in (12) marks a critical difference between stochastic and ordinary gradient descent.
There is no such constant in the case of the ordinary gradient descent. A simple analysis then yields an expression
for the maximal constant learning rate (Le Cun et al., 1998). In the stochastic gradient case, this analysis suggests
that the parameter vector eventually hovers around the minimum w* at a distance roughly proportional to ~;.
Quickly decreasing the learning rate is therefore tempting. Suppose however that the learning rates decrease so fast
that " = R < co. This would effectively maintain the parameters within a certain radius of their initial value.

It is therefore necessary to enforce the following condition:

Z'Yt =00 (14)

The general convexity hypothesis (11) and the three conditions (12), (13) and (14) are sufficient conditions for

the almost sure convergence of the stochastic gradient descent (4) to the optimum w* (Bottou, 1998).

Second Order Methods

Significant speed-ups of the final phase can be achieved using second order methods (Le Cun et al., 1998). The
simplest second order method re-scales the gradient vector using the inverse of the Hessian matrix H(w;) in a

manner analogous to Newton’s algorithm:
w1 = wp — e H(we) ™ Vi Q(21, wy) (15)

It is however preferable to use instead the Gauss-Newton matrix (Le Cun et al., 1998) or the Fisher Information
matrix (section “Natural Gradient”). These matrices asymptotically behave like the Hessian matrix and also provide
superior performance during the search phase.

State-of-the-art batch optimization algorithms (Dennis and Schnabel, 1983) reach so-called super-linear con-
vergence speed on the training set using such second order methods. Such speeds are not possible with stochastic
gradient because the convergence speed is determined by the learning rate schedule which is limited by the condi-
tion (14). This speed limit has often been presented as a severe drawback. However, training algorithms are about
the generalization performance. Well-designed second order stochastic algorithm have been shown to saturate the
Cramer-Rao bound (Murata, 1998). This result means that batch algorithms that converge faster on the training

set are merely over-training.
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SEARCH PHASE

Although our understanding of the search phase is still very incomplete, empirical and theoretical evidence indicate
that stochastic gradient algorithms enjoy significant advantages over batch algorithms.

Stochastic gradient descent can take advantage of the redundancies of the training set. Consider the extreme
case where a training set of size 1000 is inadvertently composed of 10 identical copies of a set with 100 samples.
Averaging the gradient over all 1000 patterns gives the exact same result as computing the gradient based on just
the first 100. Batch gradient descent is wasteful because it re-computes the same quantity 10 times before one
parameter update. On the other hand, stochastic gradient will see a full epoch as 10 iterations through a 100-long
training set.

The stochastic approximation tools only provide weak results on the search phase, e.g. (Bottou, 1998). Stronger
results have been obtained using information geometry (see NEUROMANIFOLDS AND INFORMATION GEOM-
ETRY) and statistical mechanics (see STATISTICAL MECHANICS OF ON-LINE LEARNING AND GENERAL-

IZATION). This section reviews what new information has been brought by these new approaches.

Information Geometry

Describing the geometry of the cost function is paramount to understanding the convergence of a training algorithm.
The final phase results, for instance, are build upon two hypothesis (11, 12) that adequately summarize the geometry
of the cost function in the final convergence region. This is much more difficult to achieve for the search phase
because the parameter vector can explore every aspect of the cost function.

Information geometry provides an elegant description of the global geometry of the cost function. It is best
introduced by casting the learning problem as a density estimation problem. A multilayer perceptron f(x,w), for
instance, can be regarded as a parametric regression model y = f(z,w) + ¢ where € represents an additive Gaussian

noise. The network function f(z,w) then becomes part of the Gaussian location model:

(y— f(w,w))Q)

202 (16)

p(z,w) = Cexp (—

The optimal parameters are found by minimizing the Kullback-Leibler divergence between p(z,w) and the ground

truth P(z). This is equivalent to the familiar optimization of the mean square loss (1):

Plz) _ 1
p(z,w) ;Eszse(z,w) + Constant a7

The essential idea consists of endowing the space of the parameters w with a distance that reflects the proximity

E.log

of the distributions p(z,w) instead of the proximity of the parameters w. Multilayer networks, for instance, can
implement the same function with very different weights vectors. The new distance distorts the geometry of the

parameter space in order to represent the closeness of these weight vectors.



Bottou, L. and Murata, N. — STOCHASTIC APPROXIMATIONS AND EFFICIENT LEARNING. 8

The infinitesimal distance between distributions p(z,w) and p(z,w + dw) can be written as follows:
D(w||w + dw) ~ dw'J(w)dw (18)
where J(w) is the Fisher Information matrix:
Iw) 2 [ (Votonp(e )V o)) ol u)ds (19)

The determinant |J(w)| of the Fisher information matrix usually is a smooth function of the parameter w. The
parameter space is therefore composed of Riemannian domains where |J(w)| # 0 separated by critical sub-spaces

where |J(w)| = 0.

Natural Gradient

Natural Gradient (see NEUROMANIFOLDS AND INFORMATION GEOMETRY) provides an almost ideal way
to search a Riemannian domain. The gradient V,,C(w) defines the steepest descent direction in the Euclidian
space. The steepest descent direction in a Riemannian domain differs from the Euclidian one. It is defined as the

vector dw which maximizes C'(w) — C(w + dw) in the d-neighborhood:
D(w||w + dw) ~ dw'J(w)dw < 6. (20)

A simple derivation then shows that multiplying the gradient by the inverse of the Fisher Information matrix yields

the steepest Riemannian direction. The Natural Gradient algorithm applies the same correction to the stochastic
gradient descent algorithm (4):

w1 = wp — Y (we) Vi Q(2, wy), (21)

The similarity between the update rules (15) and (21) is obvious. This link becomes clearer when the Fisher

Information matrix is written in Hessian form:
Iw) 2 [ - (Vilogp(e,w) ol u)d: (22)

where V2 denotes a second derivative. When the parameter approaches the optimum, distribution p(z,w) becomes
closer to the ground truth dP(z), and the Fisher Information matrix aligns with the Hessian matrix V2 E,Q(z,w).

The natural gradient asymptotically behaves like the Newton algorithm.

Critical Subspaces and Symmetries

Consider a neural network with two fully connected layers and n hidden units. The weight space contains at least
n! symmetrical Riemannian domains corresponding to all permutations of the hidden units and delimited by critical

sub-spaces. The cost landscape in the vicinity of a critical subspace contains multiple directions along which no first
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order change of the cost can be detected. Such critical sub-spaces create considerable problems for gradient descent
algorithms. Batch gradient descent often remains trapped in these extremely flat regions of the cost landscape,
because the gradient V,, C(w) is zero along those directions that would allow the algorithm to escape the critical
subspace.

These problems arise because the gradient vector no longer carries enough information to describe the local cost
geometry. Unlike their batch counterpart, stochastic gradient algorithms have a random component and therefore
can resort to luck in picking each training example z;. A lucky pick sometimes transports the parameter vector
into a more interesting area of the cost landscape.

Critical subspaces have both a hierarchical and a symmetric structure (Fukumizu and Amari, 2000). Replica cal-
culations (see STATISTICAL MECHANICS OF ON-LINE LEARNING AND GENERALIZATION) have brought
new insights into the symmetry breaking properties of online algorithms. The natural gradient algorithm (21) seems

to perform remarkably well (Rattray et al., 1999) in this context too.

DISCUSSION

Online learning algorithms have been introduced in the early days of the computer age by virtue of their low
computational requirements. Online learning algorithms today enjoy significant performance advantages for large
scale learning problems (large dimension, millions of examples). Online algorithms are also mandatory when a
system must continuously adapt while being used.

A large number of common learning algorithms can be understood as instances of the general stochastic gradient
descent algorithm. The stochastic approximation theory provides a general analysis of the convergence of these
algorithms. This analysis describes very accurately the behavior of online algorithms in the vicinity of a local
solution. Second order online algorithms provide asymptotically optimal convergence speed.

The behavior of online algorithms during the search phase is much less understood. Information Geometry
pictures the search space as an ensemble of Riemannian manifolds separated by critical sub-spaces. Critical sub-
spaces cause considerable problems to all gradient algorithms. Online gradient algorithms can overcome these
problems thanks to noise introduced by the random example selection process. Statistical mechanics methods have
recently brought new insights on this topic. These results might be the precursors of vastly more efficient online

learning algorithms.
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