
Guarantees for Approximate Incremental SVMs

Nicolas Usunier Antoine Bordes Léon Bottou
LIP6, Université Paris 6,

Paris, France
nicolas.usunier@lip6.fr

LIP6, Université Paris 6,
Paris, France

antoine.bordes@lip6.fr

NEC Laboratories America,
Princeton, USA

leon@bottou.org

Abstract

Assume a teacher provides examples (xt, yt)
one by one. An approximate incremental
SVM computes a sequence of classi�ers that
are close to the true SVM solutions computed
on the successive incremental training sets.
We show that simple algorithms can satisfy
an averaged accuracy criterion with a com-
putational cost that scales as well as the best
SVM algorithms with the number of exam-
ples. Finally, we exhibit some experiments
highlighting the bene�ts of joining fast incre-
mental optimization and curriculum and ac-
tive learning [Schohn and Cohn, 2000, Bordes
et al., 2005, Bengio et al., 2009].

1 Introduction

It has been observed that some form of curriculum

learning [Bengio et al., 2009] like selective sampling

can reduce the computational costs required to achieve
a prede�ned generalization error [Schohn and Cohn,
2000, Bordes et al., 2005, Dasgupta and Hsu, 2008].
Such procedures involve a (teacher, learner) pair,
where the teacher provides examples (xt, yt) one by
one, and the learner computes a sequence of classi�ers
representing at each instant the set St = {(xi, yi), i ≤
t} of the examples observed so far. When the learning
objective is convex, it is desirable that the sequence
of classi�ers is close to the sequence of optimal solu-
tions. It becomes a requirement when the quality of
the teacher is a�ected by the quality of the learner, like
in selective sampling. Then, in order to be successful
from the computational point of view, these proce-
dures need a learner that is computationally e�cient
and exhibits strong approximation guarantees.
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In this paper, we consider approximate incremental
SVM algorithms that strive to track the sequence
of optima with a prede�ned tolerance. Our analysis
shows that adequately designed algorithms can track
the successive optima by performing a constant num-

ber of iterations for each additional example. This
translates into a total number of iteration growing lin-
early with the number of examples, comparable to the
best batch algorithms computing approximate SVM
solutions [Joachims, 2006, Shalev-Shwartz et al., 2007]
which require the train set to be known beforehand.

The bound we obtain holds regardless of the quality
of the teacher, making the algorithms suitable for any
online learning setup, even with adversarial teachers,
or when learning with a curriculum like selective sam-
pling. In a second part of the paper, we discuss, on
the basis of experimental results, why an e�cient in-
cremental procedure together with selective sampling
can dramatically improve the learning curve.

These results corroborate the extensive study on fast
SVM optimization carried out by the family of online
SVMs proposed by Bordes et al. [2005, 2007, 2008]. In
fact, the algorithms we study are variations on these
algorithms, simpli�ed for the sake of the theoretical
analysis. Thus, as a by-product, our work leads to a
new interpretation of these online SVMs as incremen-
tal approximate optimizers, and explains some of their
empirical behavior.

Despite its importance in the context of large scale
learning, approximate incremental algorithms that ef-
�ciently track the sequence of optima have, to the best
of our knowledge, never been studied in the litera-
ture. Cauwenberghs and Poggio [2001] describe an
incremental algorithm for SVM that performs rank
one updates of the SVM coe�cients until reaching the
new optimal solution. In contrast to their approach,
the algorithm we propose do not try to converge to
the optimum at each time index, but guarantee that
a prede�ned accuracy is maintained on average on
the sequence of batch optima. Although we accept
a slightly weaker approximation guarantee, it comes
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together with a considerable bene�t in terms of com-
putational costs. The algorithms we propose are also
similar to some online algorithms studied in [Shalev-
Shwartz and Singer, 2007]. Yet our analysis is com-
pletely di�erent, since the quality of these online algo-
rithms was measured in terms of regret rather than in
terms of approximate optimization guarantee.

In the rest of the paper, we �rst describe our SVM
setup, and give a new result on the duality gap. Then
we present and analyze two approximate incremental
SVM algorithms, and exhibit some experiments that
illustrate the theoretical results. Finally, we discuss
the impact of joining selective sampling and fast in-
cremental optimization on the computational cost.

2 Setup

We consider a stream of examples (xi, yi)i≥1 with pat-
terns xi verifying ‖xi‖ ≤ 1 and with labels yi = ±1.
We consider discriminant functions of the form ŷ(x) =
〈w,x〉 where the notation 〈·, ·〉 designates a suitable
dot product in pattern space.

Let Pt(w) be the primal cost function restricted to the
set St containing the �rst t examples,

Pt(w) ∆=
1
2
‖w‖2 + C

t∑
i=1

[1− yi 〈w,xi〉]+ (1)

with notation [z]+
∆= max{z, 0} and let Dt(α) be the

associated dual objective function

Dt(α) ∆=
t∑
i=1

αi −
1
2

∑
i,j≤t

yiyjαiαj 〈xi,xj〉 (2)

with α = {α1 . . . αt} ∈ [0, C]t.

If α∗ maximizes Dt, it is well known that

w(α∗) ∆=
t∑
i=1

α∗i yixi minimizes Pt, and

D∗t
∆
= Dt(α

∗)
∆
= maxα∈[0,C]t Dt(α)

= minw Pt(w) = Pt(w(α∗))
∆
= P ∗t

Dual coordinate ascent is a simple procedure to max-
imize Dt. Let (e1 . . . et) be the canonical basis of Rt.
Starting from a dual parameter vector αk ∈ [0, C]t,
each dual coordinate ascent iteration picks a search
direction eσ(k) and outputs a new dual parameter vec-

tor αk+1 = αk + a∗ eσ(k) with a
∗ chosen to maximize

D(αk+1) subject to αk+1 ∈ [0, C]t. A simple deriva-

tion shows that, with gi(α) ∆= 1− yi 〈w(α),xi〉,

a∗ = max
(
−αkσ(k) , min

(
C−αkσ(k),

gσ(k)(αk)∥∥xσ(k)

∥∥2

))
. (3)

An approximate minimizer of the primal cost D can
therefore be obtained by choosing a suitable starting
value α0, performing an adequate numberK of succes-
sive dual coordinate ascent iterations and outputting
w(αK). The convergence and the e�ciency of this pro-
cedure depends on the scheduling policy used to chose
the successive search direction eσ(k) at each step. A
simple policy, which we will discuss in the paper, is to
chose the direction randomly.

3 Duality Lemma

The following lemma is interesting because it connects
the two quantities of interest: the gap, which measures
the accuracy of the solution, and the expected e�ect
of the next coordinate ascent iteration.

Lemma 1 Let t ≥ 1, maxi=1..t ‖xi‖ ≤ 1, and α ∈
[0, C]t. Then:

Pt(w(α))−Dt(α)
Ct

≤ µ
(

E
i∼U(t)

∆t,i(α)
)

where µ(x) =
√

2x + x/C, U(t) denotes the uniform

distribution over {1...t}, and

∆t,i(α) ∆= max
a∈[−αi,C−αi]

[Dt(α + aei)−Dt(α)]

A bound on the gap is of course a bound on both the
primal Pt(w(α)) − P ∗t and dual Dt(α) − D∗ subop-
timalities. The left hand side denominator Ct makes
sense because it normalizes the loss in the expression
of the primal (1).

Proof: The result follows from elementary arguments re-
garding ∆t,i(α) and the duality gap

G(α)
∆
= Pt(w(α))−Dt(α)
= ‖w(α)‖2 + C

Pt
i=1 [gi(α)]+ −

Pt
i=1 αi

Recalling ‖w(α)‖2 =

tX
i=1

yiαi 〈w(α),xi〉 =
tX
i=1

αi
`
1 −

gi(α)
´
, we obtain the identity

G(α) =

tX
i=1

max [(C − αi)gi(α),−αigi(α)] . (4)

We now turn our attention to quantity ∆t,i(α). Equa-
tion (3) shows that a∗ has always the same sign as gi(α)

and |a∗| ≤ |gi|/ ‖xi‖2. Since Dt(α + aei) − Dt(α) =

a
`
gi(α)− a/2 ‖xi‖2

´
,

1

2
|a∗||gi(α)| ≤ ∆t,i(α) = |a∗||gi(α)| − 1

2
‖xi‖2 |a∗|2 . (5)

To use this result in equation (4), we �x some index i and
consider two cases:
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Figure 1: Duality lemma with a single example x1 = 1,
y1 = 1. The �gures compare the gap Pt −Dt (contin-
uous blue curve), the bound (dashed red curve), and
the primal suboptimality Pt −P ∗t (dotted cyan curve)
as a function of α1. The left plot shows a free sup-
port vector (C = 1.5, α∗1 = 1). The right plot shows a
support vector at bound (C = 0.7, α∗1 = C).

1. If |a∗| ≥ |gi(α)|, then, using equation (5), we have

|gi(α)| ≤
p

2∆t,i(α), and thus

C|gi(α)| ≥ max [(C − αi)gi(α),−αigi(α)] ,

and C|gi(α)| ≤ C
p

2∆t,i(α) ≤ Cµ(∆t,i(α)) .

2. If |a∗| < |gi(α)|, then, given (3) and the assumption

‖xi‖2 ≤ 1, αi + a∗ has necessarily reached a bound.
Since a∗ and gi(α) have the same sign, it means that if
gi(α) ≤ 0, then a∗ = −αi, and a∗ = C−αi otherwise.
This implies

max [(C − αi)gi(α),−αigi(α)] = |a∗||gi(α)|
= ∆t,i(α) + 1

2
‖xi‖2 |a∗|2 .

In order to obtain a bound involving only ∆t,i(α), we
need to bound the last term of the last equation. Since
we are in the case |a∗| < |gi(α)|, the left-hand side of

equation (5) gives us |a∗| ≤
p

2∆t,i(α). Moreover,

since ‖xi‖2 ≤ 1, we have 1
2
‖xi‖2 |a∗| ≤ 1

2
C and

max [(C − αi)gi(α),−αigi(α)]

≤ ∆t,i(α) + 1
2
C
p

2∆t,i(α)
≤ Cµ(∆t,i(α)) .

Putting points 1 and 2 in equation (4), and using the con-
cavity of µ, we obtain the desired result:

Pt(w(α))−Dt(α)
Ct

≤ 1
t

Pt
i=1 µ(∆t,i(α))

≤ µ
`
Ei∼U(t) ∆t,i(α)

´
. �

To ascertain the quality of this bound, consider how
a SVM with a single scalar example x1 = 1, y1 = 1
illustrates the two cases of the proof. The left plot
in �gure 1 shows a situation where the optimum uses
the example as a free support vector, that is, case 1
in the proof. The lack of a vertical tangent near the
optimum α1 = 1 con�rms the square root behavior of
µ(x) when x approaches zero. The right plot shows

a situation of a bounded support vector, that is, case
2 in the proof. The bound is much looser when αi
approaches C. However this is less important because
coordinate ascent iterations usually set such coe�cient
to C at once. The bound is then exact.

4 Algorithms and Analysis

4.1 The Analysis Technique

Let us illustrate the analysis technique on the dual co-
ordinate ascent algorithm outlined in section 2 running
on a �xed training set with t examples. Assume the
successive search directions are picked randomly. We
can easily copy the collapsing sum method of Shalev-
Shwartz and Singer [2007].

Let Fk represent all the successive search directions
eσ(i) for i < k. For all k, we can rewrite lemma 1 as,

Pt(w(αk))−Dt(αk)

Ct
≤ µ

“
E
h
Dt(α

k+1)−Dt(αk)
˛̨̨
Fk
i”

.

Taking the expectation, averaging over all k, and using
twice Jensen's inequality,

1

K

KX
k=1

E
»
Pt(w(αk))−Dt(αk)

Ct

–
≤ 1

K

KX
k=1

E
h
µ
“

E
h
Dt(α

k+1)−Dt(αk)
˛̨̨
Fk
i”i

≤ µ

 
E

"
1

K

KX
k=1

Dt(α
k+1)−Dt(αk)

#!

≤ µ

 
E
ˆ
Dt(α

K+1)−Dt(α1)
˜

K

!
≤ µ

„
ED∗t
K

«
.

Since the gap bounds both the primal and dual sub-
optimality, we obtain a dual convergence bound

E
»
D∗t −Dt(αK)

Ct

–
≤ E

"
1

K

KX
k=1

D∗t −Dt(αk)

Ct

#
≤ µ

„
ED∗t
K

«
,

and a somehow less attractive primal convergence
bound

E

"
1

K

KX
k=1

Pt(w(αk))− P ∗t
Ct

#
≤ µ

„
ED∗t
K

«
.

These bounds are di�erent because each iteration in-
creases the value of the dual objective, but does not
necessarily reduce the value of the primal cost. How-
ever it is easy to obtain a nicer primal convergence
bound by considering an averaged algorithm. Let

ᾱK ∆= 1
K

∑K
k=1 αk. Thanks to the convexity of the

primal cost, we can write

E
»
Pt(w(ᾱK))− P ∗t

Ct

–
≤ µ

„
ED∗t
K

«
.
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In practice, this averaging operation is dubious be-
cause it ruins the sparsity of the dual parameter vec-
tor α. However it yields bounds that are easier to
interpret, albeit not fundamentally di�erent.

4.2 Tracking Inequality for a Simple
Algorithm

We now return to our incremental setup. A teacher
provides a new example (xt, yt) at each time step. We
seek to compute a sequence of classi�ers wt that tracks
minw Pt(w) with a prede�ned accuracy.

Algorithm 1 Simple Averaged Tracking Algorithm

1: input: stream of examples (xi, yi)i≥1, number of iter-
ations K ≥ 1 at each time index.

2: initialization: ∀i, αi ← 0, t← 1
3: while exists(xt, yt) do
4: let αt ← 0
5: for k = 1 to K do
6: pick i randomly in {1, ..., t}
7: let αi ← αi + max

“
−αi,min

“
C − αi, gi(α)

‖xi‖2

””
8: let ᾱt ← k−1

k
ᾱt + 1

k
α

9: end for
10: output classi�er wt = w(ᾱt)
11: t← t+ 1

12: end while

After receiving each new example (xt, yt), Algorithm 1
performs a prede�ned number K of dual coordinate
ascent iterations on randomly picked coe�cients as-
sociated with the currently known examples (line 7).
The parameter vector given as output w(ᾱt) is the av-
erage of the parameter vectors on these K iterations
(lines 8 and 10). Notice that this averaging only a�ects
the output vector, and not the parameters used by the
algorithm to perform the updates. The algorithm is
thus as fast as if it did not contain the averaging step.
Moreover, the averaging only concerns the last K it-
erations, so that it does not has much e�ect on the
sparsity of the solution as soon as K << t.

Theorem 2 Let w(ᾱt) be the sequence of classi�ers

output by algorithm 1. Assume furthermore that

maxt ‖xt‖ ≤ 1. Then, for any T ≥ 1, we have

E

[
1
T

T∑
t=1

Pt(w(ᾱt))− P ∗t
Ct

]
≤ µ

(
ED∗T
KT

)
where µ(x) =

√
2x + x

C . Moreover, the number of

dual coordinate ascent performed by the algorithm after

seeing T examples is exactly KT .

Theorem 2 does not bound the primal suboptimality at
each time index. However, since all these primal sub-
optimalities are positive, the theorem guarantees that
an upper bound of the excess misclassi�cation error,

(Pt−P ∗t )/Ct, will be bounded on average. This weaker
guarantee comes with a possibly huge computational
bene�t as it saves the computation of a stopping crite-
rion. It is true that computing the duality gap can be
cheap if all the gradients gi(α) are cached. However,
such a strategy is only relevant with non-linear kernels,
and even then, careful and e�cient implementations
(e.g. [Bordes et al., 2007]) might choose to maintain
a cache for a fraction of the dual coe�cients, making
the computation of a criterion likely to be expensive.

The proof of the theorem follows the schema of sec-
tion 4.1: setup the collapsing sum of dual objective
values; apply the lemma; use Jensen's inequality to
distribute the function µ and the expectations on each
term and regroup the terms on the left hand side.

Expectations in the theorem can have two interpre-
tations. In the simplest setup, the teacher �xes the
sequence of examples before the execution of the algo-
rithm. Expectations are then taken solely with respect
to the successive random choices of coordinate ascent
directions. In a more general setup, the teacher fol-
lows an unspeci�ed causal policy. At each time index
t, he can use past values of the algorithm variables to
choose the next example (xt, yt) . The sequence of ex-
amples becomes a random variable. Expectations are
then taken with respect to both the random search di-
rections and the sequence of examples. The proof is
identical in both cases.

4.3 Tracking Inequality for a
Process/Reprocess Algorithm

Algorithm 2 is inspired by the process/reprocess
idea of Bordes et al. [2005]. Before performing K dual
coordinate ascent iterations on coe�cients associated
with examples randomly picked among the currently
known examples (the reprocess operation), this al-
gorithm performs an additional iteration on the coef-
�cient associated with the new example (the process
operation, compare lines 4 in both algorithms).

Theorem 3 Let w(ᾱt) be the sequence of classi�ers

output by algorithm 2. Let αt denote the succes-

sive value taken by variable α before each execution

of line 4 of algorithm 2. Assume furthermore that

maxt ‖xt‖ ≤ 1. Then, for any T ≥ 1, we have

E

[
1
T

T∑
t=1

Pt(w(ᾱt))− P ∗t
Ct

]
≤ µ

(
E [D∗T − δT ]

KT

)
where µ(x) =

√
2x+ x

C and δT =
∑T
t=1 ∆t,t(αt) is the

cumulative dual increase during the process opera-

tions. Moreover, the number of elementary optimiza-

tion steps performed by the algorithm after seeing t
examples is exactly (K + 1)t.
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Algorithm 2 Averaged Tracking Algorithm with pro-
cess/reprocess

1: input: stream of examples (xi, yi)i≥1, number of iter-
ations K ≥ 1 at each time index.

2: initialization: ∀i, αi ← 0, t← 1
3: while exists(xt, yt) do

4: let αt ← max
“

0,min
“
C, gt(α)

‖xt‖2

””
5: for k = 1 to K do
6: pick i randomly in {1, ..., t}
7: let αi ← αi + max

“
−αi,min

“
C − αi, gi(α)

‖xi‖2

””
8: let ᾱt ← k−1

k
ᾱt + 1

k
α

9: end for
10: output classi�er wt = w(ᾱt)
11: t← t+ 1

12: end while

The proof of the theorem is similar to the proof of the-
orem 2 except that terms of the collapsing sum cor-
responding to the process operations (line 4 in the
algorithm) are collected in quantity δT .

Adding this process operation gives the bound
µ
(
E
[
D∗T − δ̄T

]
/KT

)
instead of µ (E [D∗T ] /KT ).

Since the quantity δT is related to the online loss
incurred by the online algorithm [Shalev-Shwartz and
Singer, 2007], δT = Ω(T ) unless the all training exam-
ples received after a given time index are separable.
Under this condition, the process operation saves a
multiplicative factor on the number K of reprocess
operations necessary to reach a prede�ned accuracy.
Although we cannot give a precise value for δT , we can
claim that Algorithm 2 should perform signi�cantly
better than Algorithm 1 in practice.

4.4 Rough Comparisons

Since D∗T − δT ≤ D∗T ≤ PT (0) = CT the following
corollary can be derived from the theorems.

Corollary 4 Under the assumptions of theorem 2

and 3, let 4C ≥ ε ≥ 0. When K =
⌈

8C
ε2

⌉
, both algo-

rithms 1 and 2 satisfy E
[

1
T

∑T
t=1

Pt(w(ᾱt))−P∗
t

Ct

]
≤ ε .

The total number n of iterations therefore scales like
CT/ε2 where T is the number of examples. Since the
cost of each iteration depends on details of the algo-
rithm (see section 5), let us assume, as a �rst approxi-
mation, that the cost of each iteration is proportional
to either the number of support vectors, or, in the
case of linear kernels, on the e�ective dimension of
the patterns. The results reported in this contribu-
tion are then comparable to the bounds reported in
[Joachims, 2006, Franc and Sonnenburg, 2008]. Im-
proved bounds for generic bundle methods [Smola
et al., 2008] are di�cult to compare because their suc-
cessive iterations solve increasingly complex optimiza-

tion problems. Bounds for stochastic gradient algo-
rithms [Shalev-Shwartz et al., 2007] also scale linearly
with the number T of examples1 but o�er better scal-
ing in 1/ε.

5 Reducing the Computational Cost

Corollary 4 gives a bound on the number of dual co-
ordinate ascent steps the algorithm should perform to
maintain, on average, a prede�ned accuracy. But, it
also provides an estimate of the learning time: com-
puting a gradient gi(α) costs, at most, as many kernel
computations as the number of support vectors, which
itself grows linearly with t when the data is not separa-
ble. This translates in a time complexity of O(Ct2/ε2)
to train on t examples. We now discuss how caching
strategies can reduce this cost.

5.1 Detecting Useless Ascent Directions

Algorithms 1 and 2 select dual coordinate ascent di-
rections randomly. As a consequence, most of their
iterations have no e�ect because the selected coef-
�cient αi cannot be improved. This happens when
αi = 0 , gi(α) ≤ 0 or when αi = C , gi(α) ≥ 0.

In practice, a vast majority of ascent directions may
actually do nothing. Given a training set of t train-
ing examples, let n0(α) and nC(α) be the number of
examples falling into these two cases. These numbers
approach n0(α∗t ) and nC(α∗t ) when α approaches the
SVM solution α∗t . Provided that C decreases with
an appropriate rate to ensure consistency, Steinwart
[2004] has famously proved that the total number of
support vectors t− n0(α∗t ) scales linearly with the to-
tal number t of examples. But his work also shows
that the number of support vectors is dominated by
the number nC(α∗t ) of margins violators. Therefore
the fraction (n0(α) + nC(α)) /t of useless coordinate
ascent iterations tends to 1 when t increases and the
algorithm converges.

To avoid spending time in computing gradient values
of useless ascent directions, the traditional solution in
SVM solvers (see [Bottou and Lin, 2007] for a review)
consists in allocating new variables gi that always con-
tain quantity gi(α). It is then immediate to check
whether a direction can improve the objective function
or not. Whenever a coe�cient of α changes, updating
all the gi variables requires a time proportional to the
total number t of examples. Since this only happens
when an actual update takes place, the amortized cost
of a coordinate ascent iteration is then proportional to
t− n0(α)− nC(α) which grows slower than t. This is

1Shalev-Shwartz et al. report a bound in Õ
`

1
λε

´
. Their

λ is 1/CT in our setup.
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Dataset Train. Ex. Test. Ex. Features C k(x, x̄) Cache

Adult 32,561 16,281 123 1 e−0.005‖x−x̄‖2 512MB

MNIST (8vsAll) 60,000 10,000 780 1000 e−0.005‖x−x̄‖2 512MB

Table 1: Dataset and parameters used for the experiments.

usually signi�cantly smaller than the worst-case cost
of t− n0(α) per iteration.

5.2 Tracking Inequalities for LASVM
Algorithms

The previous discussion suggests that maintaining the
gradient cache actually dominates the amortized cost
of an iteration. A large part of this cost is due to
the n0(α) examples that are correctly classi�ed. It
is reasonable to assume that most of them will remain
correctly classi�ed on future iterations. Updating their
corresponding cached gradients is thus useless.

Consider the variant of Algorithm 2 with the following
modi�cations:

i) we maintain variables gi representing gi(α) for
only those i such that αi > 0,

ii) we shortcut line 7 in Algorithm 2 whenever αi = 0
or αi = C , gi ≥ 0.

This modi�ed algorithm can be viewed as a random-
ized variant of the LASVM family of algorithms dis-
cussed by Bordes et al. [2005, 2007, 2008]. Updating
the gi is now proportional to the number of support
vectors instead of the total number of examples. This
brings very positive e�ects on the memory require-
ments of the kernel cache [Bordes et al., 2005].

The results in section 4.3 do not directly apply to these
algorithms, because the ascent directions are not se-
lected randomly anymore. However, we can still use
lemma 1 at any time step, considering that the algo-
rithm chooses its ascent directions randomly, on its
current set of support vectors. The complete analy-
sis would be rather involved technically, but one could
then interpret algorithms of the LASVM family as ap-
proximately optimizing the SVM objective on multi-
ple example sets that change in a solution-dependent
manner. In practice, it appears that the shortcut (ii)
does not discard too many examples that should be
in the �nal support vector expansion. This explains
why these algorithms tend to give solutions close to
the optimum after only a single pass on the dataset.

6 Experiments

In this section, we intend to empirically display the
tracking behaviour of our fast approximate incre-

mental optimizers. Besides, we exhibit some results
demonstrating the interest of using such methods, in
particular when dealing with selective sampling.

We compare several setups of Algorithm 1 and 2. We
�rst vary the parameter K �xing the number of dual
coordinate ascent iterations. We also confront two
ways for the teacher to provide new examples to the
learner, randomly or using selective sampling. Follow-
ing Bordes et al. [2005], our selective sampling strategy
employs an active selection criterion which chooses the
example that comes closest to the decision boundary
of the current classi�er. In practice, at each round t,
our implementation �rst randomly picks a pool of 50
unseen training examples and then, among those, se-
lects the one for which |〈w(ᾱt),x〉| is minimal. We
�nally compare Algorithm 1 with its batch counter-
part that consists in: (i) loading the whole dataset in
memory and (ii) repeatedly performing updates using
equation (3) on randomly picked examples.

Our experiments were conducted on two benchmarks
for classi�cation: Adult2 and MNIST3. MNIST is a
multiclass dataset but we restricted our work to the
sub-task of classifying the �8� digit against the others.
Implementations of all algorithms employ a cache of
512MB for kernel values. All other parameters come
from the literature and are displayed in Table 1. All
reported results were obtained after an averaging over
ten runs on the randomly shu�ed training sets.

6.1 Tracking the Sequence of Optima

Figure 2 displays the duality gap normalized by both C
and the number of training examples for algorithms 1
and 2 and for various values ofK. These curves clearly
shows that the normalized gap keeps a constant value
on average during the whole pass over the training
set: both algorithms successfully track the successive
optima. The in�uence of the increase K is twofold.
This decreases the mean value of the gap and reduces
its �uctuations. Indeed, the gap can increase drasti-
cally if the algorithm picks a nasty example, but, as
such examples are rare, the gap decreases to its mean
value in subsequent iterations. This is the reason why
theorems 2 and 3 do not bound the gap but its mean
value at each iteration.

2Available from the UCI repository.
3Available at http://yann.lecun.com/exdb/mnist/.
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Figure 2: Normalized duality gap for various values of
K on the course of training on Adult.
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Figure 3: Normalized duality gap for two example se-
lection strategies for Algorithm 1 on Adult.

A comparison between Algorithm 1 (red) and 2 (green)
on �gure 2 also supports the observation of section 4.3
stating that an algorithm using process/reprocess
should perform better in practice. Hence, we observe
that Algorithm 2 with K = 10 performs nearly as well
as Algorithm 1 with K = 20.

Figure 3 con�rms the very little assumptions about the
teacher's policy of our theorems by showing that, when
combined with active example selection, Algorithm 1
is still able to track the optimum on the course of train-
ing. Indeed, its normalized gap does not grow. On the
contrary, the curriculum induced by the active selec-
tion even causes it to decrease regularly. This happens
because the very beginning of the curriculum �rst pro-
poses very informative bits that rapidly increase the
dual and primal costs. Bounds of both theorems man-
age this phenomenon via the term ED∗T /T .

Figure 4 depicts the mean value taken by the normal-
ized gap of Algorithm 1 according to eight values of
the K parameter. The �tting curve tends to express a
dependency of K in 1

ε and not in 1
ε2 as stated in corol-

lary 4. This suggests that, in practice, optimization
might be much better than our theoretical results and
tracking algorithms as fast as batch optimizers.

6.2 Bene�ts of a Good Curriculum

Previous work on curriculum learning [Bengio et al.,
2009] and active selection [Schohn and Cohn, 2000,
Bordes et al., 2005, Dasgupta and Hsu, 2008] indicate
that using a good teacher's policy allows to reach good
generalization accuracies with less training examples
and less kernel computations. We now con�rm that for
the special case of Algorithm 1 with the �gures 5 and 6
which display the test error according to the number
of training examples and kernel computations.

Both �gures demonstrate the interest of using accu-
rate online optimization algorithms. Combined with
an active selection strategy, Algorithm 1 provides a
fair solution early during training. As a consequence,
its intermediate solutions soon perform almost as well
as the optimal solution and thus require much less ker-
nels computations, memory usage and training dura-
tion to be re�ned. It is worth noting that the more
accurate the incremental algorithm is the higher the
bene�ts are: using K = 100 leads to better perfor-
mances in terms of strong generalization abilities and
low computational requirements than using K = 10.

6.3 Batch Optimization

Figure 6 also demonstrates that the test error de-
creases much faster for Algorithm 1 than for its batch
counterpart, independently of the example selection.
This could be surprising because both algorithms use
the same update. However, at the beginning of train-
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Figure 5: Test error for two example selection strate-
gies for the �rst iterations of Algorithm 1 on MNIST.
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Figure 6: Test error against number of kernel compu-
tations for several setups of Algorithm 1 on MNIST.

ing, the incremental algorithm optimizes on succes-
sive working sets of relatively small sizes where the
batch algorithm has immediately access to the whole
dataset. Hence, Algorithm 1 has a much higher prob-
ability to pick the same example several times than its
batch counterpart sketched in Section 2 and thus usu-
ally gathers less support vectors. This translates in far
less computations overall to reach similar accuracies.
This e�ect is greatly magni�ed by active selection.

7 Conclusion

Leveraging a novel duality lemma, we have pre-
sented tracking guarantees for approximate incremen-
tal SVMs that compare with results about batch
SVMs. We have also introduced two algorithms and
displayed some experiments allowing to illustrate the
theoretical results and highlight some of the bene�ts
of fast incremental optimization, in particular when
joined with curriculum and active learning.
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